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Despite the importance of plates in structural analysis the flexural analysis 
of plates under parabolic load has not been extensively studied. This paper 
aims to present a single finite sine transform method for exact bending 
solutions of simply supported Kirchhoff plate under parabolic load. The 
governing equation of equilibrium is a fourth order non-homogeneous 
differential equation in terms of the deflection ( , ).v x y  The considered 
thin plate problem has Dirichlet boundary conditions at all the edges. This 
recommends the use of the finite sine integral transform method whose 
sinusoidal kernel function satisfies the boundary conditions. The 
sinusoidal function of x used for the sine transform kernel in this paper 
satisfies the Dirichlet boundary conditions along ,x = 0  x a= edges. The 
transformation simplifies the problem from a partial differential equation 
(PDE) to an ordinary differential equation (ODE) in the transformed space. 
The general solution, obtained using methods for solving ODEs is found in 
terms of unknown constants of integration which are found by using the 
finite sine transform of Dirichlet boundary conditions along the ,y = 0  
and y b=  edges. The solution in the physical domain space variables is 
then found by inversion as a rapidly convergent single series with infinite 
terms.  
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1. Introduction  

Plates are structural members characterized by two in-plane dimensions (length and width respectively) and a 

transverse dimension called the thickness, h. They are commonly used in buildings, bridges, aircrafts, naval 

structures and retaining structures; and are subject to static or dynamic loads that are usually applied transverse to 

their surfaces. They have several advantages in structural applications, including their high flexural load carrying 

capacity (Timoshenko & Woinowsky-Krieger, 1959). 

The plates resist transverse loads by bending. The middle surface (z = 0 plane), divides the plate into two 

halves, and does not stretch according to Kirchhoff’s theory. The flexural behaviour of plates is determined by 

the thickness – least in-plane dimension ratio (h/a). Accordingly, thick plates have a/h ˂ 8-10 while thin plates 

https://doi.org/10.37650/ijce.2024.180203
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have 8-10 ˂ a/h ≤ 80-100.  

The flexural behaviour of thick plates is described by the theory of elasticity in three-dimensions (3D). Thick 

plate analysis uses the governing equations of equilibrium of 3D elasticity (Szilard, 2004). Simplified methods of 

formulation employ assumptions that reduce the rigours of mathematical analysis involved thus yielding first 

order shear deformation theories (FSDTs), higher order shear deformation theories, and refined plate theories 

(Rouzegar & Sharifpoor, 2015) which account for the effects of transverse shear deformations. First order shear 

deformation theories for plates were presented by Mindlin (1951), Ike et al. (2017a), Ike (2017a, 2018) using 

variational and equilibrium methods respectively. 

The formulation for the flexural behaviour of thin plates ignores transverse shear deformations, and was first 

presented by Kirchhoff. The classical Kirchhoff-Love plate theory (KLPT) is a two-dimensional mathematical 

simplification of the 3D elasticity theory used to determine the stresses and deformations in thin plates subjected 

to transverse forces and bending moments. (Ike, 2015). 

1.1. Literature review 

Ghugal and Sayyad (2010, 2013) presented studies on stress analysis of thick laminated plates using 

trigonometric shear deformation theory (TSDT). The formulated TSDT satisfied the shear stress-free boundary 

conditions and accounted for transverse shear deformation effects. Nwoji et al. (2018a) solved the simply 

supported rectangular Mindlin plate bending problem subjected to bisinusoidal loading. Ghugal and Gajhbiye 

(2016) used the fifth order shear deformation theory to carry out accurate flexural analysis of thick isotropic plates. 

The theory accounted for transverse shear deformations and was variationally consistent.  

Do et al. (2020) developed refined plate theory for static flexural analysis of functionally graded plates such 

that transverse shear deformation is accounted for. Nareem and Shimpi (2015) developed variationally consistent 

refined hyperbolic shear deformation plate theory suitable for static bending solutions. Ferreira and Roque (2011) 

used radial basis functions (RBFs) to analyze thick plates bending problems. 

Onah et al. (2020) used stress function methods of elasticity theory to derive flexural solutions to thick circular 

plate problems under transverse loads. Onyeka et al. (2022a, 2022b, 2023a, 2023b, 2023c) used the energy 

minimization techniques to obtain satisfactorily accurate bending solutions to thick rectangular plates with 

clamped, clamped/simply supported and mixed boundary conditions. Onyeka and Okeke (2021) and Onyeka et al 

(2023a) presented polynomial shear deformation formulations for solving thick plate bending problems. Onyeka 

and Mama (2021) used direct variational methods (DVMs) of energy minimization to solve thick plate bending 

problems using trigonometric functions. 

Nwoji et al. (2018b), Aginam (2011a, 2011b) and Aginam et al. (2012) used the DVM for the analysis of 

Kirchhoff plates under various transverse loadings and boundary conditions. In similar studies, Osadebe and 

Aginam (2011), and Mbakogu and Pavlovic (2000) presented variational symbolic solutions to clamped 

rectangular thin plate bending problems for isotropic and orthotropic material conditions respectively. Emma and 

Sule (2013) have also presented variational solutions to thin plate bending under uniform loads and simple 

supports. 

The application of Galerkin methods to thin plate flexural analysis were studied by Osadebe et al. (2016), 

Nwoji et al. (2017a), Okoye et al. (2019), Aginam et al. (2018) and Ike (2023a), and satisfactorily accurate 

solutions were obtained by the researchers. Kantorovich methods and their variants were applied to plate bending 

analysis by Nwoji et al. (2017b), Ike (2017b, 2023b), Ike et al. (2017b), Onah et al. (2017), Ike and Mama (2018) 

and exact analytical solutions that satisfied both boundary conditions and domain equations were obtained by the 

researchers. Integral transformation methods have also been used for plate problems by An, Gu, and Su (2011). 

Finite sine transform method (FSTM) was applied to simply supported thin plate bending analysis by Mama 

et al. (2017, 2020) and exact analytical solutions were obtained. Ike et al. (2021) used generalized integral 

transform method (GITM) to develop analytical solutions for bending problems of rectangular thin plate with two 

opposite simply supported edges and the other edges clamped. Ike (2023c) used the double finite sine transform 

method to develop closed form solutions for Kirchhoff plate under parabolic load distribution for Dirichlet 

boundary conditions. The sinusoidal kernel satisfied the boundary conditions and the integral transformation 

converted the domain equation from a differential equation to an algebraic equation which is more readily solved. 

Finite difference methods (FDMs) which are based on discretizing the domain equations have been used for plate 

bending problems by Ezeh et al. (2013), and Ergün and Kumbasar (2011). They obtained satisfactorily accurate 
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solutions and demonstrated the simplicity of the FDMs. 

Ibearugbulem et al. (2013) used work principle technique to solve isotropic thin rectangular plate bending 

problems. Symplectic elasticity methods have been applied to derive exact bending solutions to thin rectangular 

plates for various loading and boundary conditions by Cui (2007), Lim et al. (2007), Zhong and Li (2009), and 

Ma (2008). Kant (1981) presented approximate analysis of plate problems with two opposite simply supported 

edges using segmentation method. Other important studies on thin plate bending are found in Delyavskyy and 

Rosinski (2020), Alcybeev et al. (2022), Singh and Prashanth (2022), and Boussem and Belouriar (2020). 

Literature review reveals that single finite sine transform method (SFSTM) has not been used for the flexural 

analysis of simply supported thin rectangular plate under parabolic load distribution.  This paper applies the 

SFSTM to develop exact analytical bending solutions to simply supported thin plate under parabolic load 

distribution. The innovative aspect of the paper is the first principles, systematic derivation of the bending 

solutions. 

2. Governing Partial Differential Equation (GPDE) 

The GPDE for the Kirchhoff plate blending problem is the fourth order equation (Timoshenko and 

Woinowksy-Krieger, 1959): 
4 4 4

4

4 2 2 4
2 ( , ) ( , )z

v v v
D D v x y q x y

x x y y

   
+ + =  = 

    
           (1) 

4 is the biharmonic operator. 
4 4 4

4

4 2 2 4
2

x x y y

  
 = + +

   
           (1a) 

where ( , )v x y  is the transverse deflection x and y are the in-plane coordinates, 

( , )zq x y  is the transversely distributed load intensity, 

D is the modulus of flexural rigidity. D is given in terms of the elastic parameters of the plate material by: 
3

212 1( )

Eh
D =

−
               (2) 

Wherein, 

E is the Young’s modulus of elasticity 

 is the Poisson’s ratio 

h is the plate thickness  

The bending moments Mxx, Myy are (Szilard, 2004): 
2 2

2 2xx

v v
M D

x y

  
= − +  

  
              (3) 

2 2

2 2yy

v v
M D

y x

  
= − +  

  
              (4) 

The twisting moment Mxy is: 
2

1( )xy

v
M D

x y


= − −

 
              (5) 

The shear force distributions Qx, Qy are (Szilard, 2004): 
2 2

2

2 2
( , )x

v v
Q D v x y D

x x x y

    
= −  = − + 

    
           (6) 

2 2
2

2 2
( , )y

v v
Q D v x y D

y y x y

    
= −  = − + 

    
           (7) 

2 is the Laplace operator. 
2 2

2

2 2x y

 
 = +

 
            (7a) 
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3. Method 

3.1. Application of the single finite sine transform method to the GPDE 

The considered problem is shown in Figure 1. 

 

 

Fig. 1 Kirchhoff plate under parabolic load distribution 

 

The GPDE is: 
4 4 4

4 2 2 4
2 0

( , )zq x yv v v

Dx x y y

  
+ + − =

   
            (8) 

where 0 ;x a   
2 2

b b
y

−
    

The finite sine transformation of the GPDE is: 

    
+ + − = 

    
4 4 4

4 2 2 4

0

2 0
( , )

sin

a

zq x yv v v n x
dx

D ax x y x
           (9) 

From the linearity properties of the single finite sine transform (SFST), 

4 4 4

4 2 2 4

0 0 0 0

2 0sin sin sin sin

a a a a

zqv n x v n x v n x n x
dx dx dx dx

a a a D ax x y y

      
+ + − =

             (10) 

Using the properties of the SFST, 

( ), ,

, ,

sin ( , )sin ( ) )

a a

n n
x a y x y

x a y x y

v n x n n x n n v v
dx v x y dx v v

a a a a ax x x
= =

= =

             
= + − − − − −      
         

4 34 2 2

04 2 2
0

0 0

1 1  

                      … (11) 

sin sin

a a

v n x v n x
dx dx

a ax y y x

    
= =

    
4 2 2

2 2 2 2

0 0

( ), ,( , )sin ( )

a

n
x a y x y

d n n x n
v x y dx v v

a a ady
= =

       − − − −   
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 


22

02

0

1   

                          (12) 

4 4 4

4 4 4

0 0

sin ( , )sin ( , )

a a

v n x d n x d
dx v x y dx V x y

a ay dy dy

  
= =

         (13) 

where 

0

( , ) ( , )sin

a

n x
V n y v x y dx

a


=            (14) 

( , )V n y  is the single finite sine transform (SFST) of ( , )v x y   

 
= = 

0 0

1 ( , )
sin sin

a a

z z
z

q Q n yn x n x
dx q dx

D a D a D
         (15) 
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0

( , ) ( , )sin

a

z z

n x
Q n y q x y dx

a


=             (16) 

( , )zQ n y  is the single finite sine transform (SFST) of ( , )zq x y   

Using the boundary conditions, the FST for this problem simplifies, 

4 44

4

0 0

sin ( , )sin ( , )

a a

v n x n n x n
dx v x y dx V n y

a a a ax

       
= =   
            (17) 

24 2

2 2 2

0

sin ( , )

a

v n x n d
dx V n y

a ax y dy

   
= − 

             (18) 

4 4

2 4

0

sin ( , )

a

v n x d
dx V n y

ay dy

 
=

            (19) 

The SFST equation is: 

4 2 2 4

2 4

0

2 0( , ) ( , ) ( , ) sin

a

zqn n d d n x
V n y V n y V n y dx

a a D ady dy

     
− + − =   

           (20) 

Hence, 

4 2 2 4

2 4

0

1
2( , ) ( , ) ( , ) sin ( , )

a

z
z

Qn n d d n x
V n y V n y V n y q n y

a a D a Ddy dy

     
− + = =   

                        (21) 

2
20 0

2 2

0 0

( , ) sin sin

a a

z

q x qn x n x
Q n y dx x dx

a aa a

 
= =           (22) 

q0 is the magnitude of the parabolic load intensity at ,x a=  y. 

Using integrator software, 

2
1

0

sin

a

n x
x dx I

a


=             (23) 

( )=   + −   − =


3
2

1 3
2 2 2sin( ) ( ( ) )cos( )

( )

a
I n n n n

n
−  − −



3
2

3
2 1 2(( ( ) )( ) )
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n

n
     (24) 

= 0
12

zQ q
I

D Da
             (25) 

( )( )20
3

2 1 2( ) ( )
( )

nzQ q a
n

D D n
= −  − −


          (26) 

n is even, ( )
−

= −  − =


20 0
3
2 2( )

( )( )

zQ q a q a
n

D D nD n
         (27) 

n is odd, ( )
 −

= − +  − =
 

2
20 0

3 3

4
2 2

(( ) )
( )

( ) ( )

zQ q a q a n
n

D D n D n
        (28) 

4. Results and Discussion 

4.1. Homogeneous solution for 𝑽(𝒏, 𝒚), 𝑽𝒉 

This found by solving the homogeneous part of Equation (21), namely 
4 2 2 4

2 4
2 0( , ) ( , ) ( , )

n n d d
V n y V n y V n y

a a dy dy

    
− + =   

   
        (29) 

Let us assume an exponential form of homogeneous solution, Vh 
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exph nV A y=               (30) 

where An are constants, and  are parameters to be found. 

Then, 
4 2

2 42 0y y y
n n n

n n
A e A e A e

a a

      
−  +  =   

   
         (31) 

Simplifying, 
4 2

2 42 0y
n

n n
A e

a a

     
−  +  =    

    
          (32) 

For nontrivial solutions, 

0y
nA e    

Hence, 
4 2

2 42 0
n n

a a

    
−  +  =   

   
           (33) 

Factorising, 
22

2 0
n

a

  
 − =   
   

            (34) 

Solving, 

n

a


 =   twice            (35) 

Hence the four eigenvalues (roots) are given by Equations (35a) and (35b) 

n

a


 = +  twice                       (35a) 

n

a


 = −  twice                       (35b) 

The basis of linearly independent homogeneous solutions become: 

1 1
( , ) expn n

n y
V n A

a


 =                        (36a) 

2 2
( , ) expn n

n y n y
V n A

a a

 
 =                       (36b) 

3 3
( , ) expn n

n y
V n y A

a

−  
=  

 
                      (36c) 

4 4
( , ) expn n

n y n y
V n y A

a a

−  −  
=  

 
                      (36d) 

The general solution is expressed using hyperbolic functions as 

1 2 3 4( , ) cosh sinh cosh sinhn n n n n

n y n y n y n y n y n y
V n y C C C C

a a a a a a

     
= + + +       (37) 

The problem considered is symmetrical about the x axis since 

( , ) ( , )v x y v x y= −             (38) 

Therefore, expectedly, 

( , ) ( , )n nV n y V n y= −             (39) 

1 2 3 4 1cosh sinh cosh sinh coshn n n n n

n y n y n y n y n y n y n y
C C C C C

a a a a a a a

      −  
+ + + = + 

 
  

 2 3 4sinh cosh sinhn n n

n y n y n y n y n y
C C C

a a a a a

−  −  −  −  −          
+ + =         

         
 

 1 2 3cosh sinh coshn n n

n y n y n y n y n y
C C C

a a a a a

    
+ − − 4 sinhn

n y
C

a


      (40) 

Hence, 
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3 4 3 4cosh sinh cosh sinhn n n n

n y n y n y n y n y n y
C C C C

a a a a a a

     
+ = − −        (41) 

Which implies, 3 0nC =                        (42a) 

            4 0nC =                        (42b) 

Hence, the general solution for ( , )hV x y  which satisfies symmetry of the problem is: 



=

   
= + 

  1 2

1

( , ) cosh sinhh n n

n

n y n y n y
V n y C C

a a a
         (43) 

By inversion, 

1

2
( , ) ( , )sinh h

n

n x
v x y V n y

a a



=


=             (44) 

4.2. Particular solution, 𝑽𝒑(𝒏, 𝒚)   

The applied load distribution does not depend upon the y coordinate variable. Hence, 
4

4
0( , )p

d
V n y

dy
=              (45) 

2

2
0( , )p

d
V n y

dy
=              (46) 

where ( , )pV n y is the particular integral. 

Then, substitution of Equations (49) and (50) into the non-homogeneous Equation (21) gives: 
4 ( , )

( , ) z
p

Q n yn
V n y

a D

 
= 

 
           (47) 

4 ( , )
( , ) z

p

Q n ya
V n y

n D

 
=  
 

           (48) 

4.3. General solution 𝑽𝒈(𝒏, 𝒚)  

The general solution Vg(n, y) is the sum of the homogeneous solution and the particular solution. 


=

     
= + = + +   

    
4

1 2

1

( , )
( , ) ( , ) ( , ) cosh sinhz

g p h n n

n

Q n ya n y n y n y
V n y V n y V n y C C

n D a a a
                    (49) 

4.4. General solution in the problem coordinate variables v(x, y)  

The general solution in the physical problem coordinate variables v(x, y) is obtained by inversion of Vg(n, y) 

as: 


=


= 

1

2
( , ) ( , )sing

n

n x
v x y V n y

a a
           (50) 



=

    
= + + 

 


4

1 2 4
1

2
( , ) cosh sinh ( , ) sin

( )
n n z

n

n y n y n y a n x
v x y C C Q n y

a a a a aD n
      (51) 

Let 1 1

2
n nC C

a
=                                     (52a) 

2 2

2
n nC C

a
=                        (52b) 
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1 2

1

( , ) cosh sinh sinn n p

n

n y n y n y n x
v x y C C V

a a a a



=

    
= + + 

         (53) 

where = −  − −


4
20

7

2
2 1 2[( ( ) )( ) ]

( )

n
pn

q a
V n

D n
          (54) 

When n is even, 

= −  −


4
20

7

2
2 2(( ( ) ) )

( )
pn

q a
V n

D n
           (55) 

−
=  −  =

 

4 4
20 0

7 5

2 2
( )

( ) ( )
pn

q a q a
V n

D n D n
           (56) 

2 4 6 8, , ,n =   

When n is odd, 1 1( )n− = −   

= − −  − =


4
20

7

2
2 2( ( ( ) ) )

( )
pn

q a
V n

D n
  

= − +  − =


4
20

7

2
2 2( )

( )
pn

q a
V n

D n
  

=  −


4
20

7

2
4(( ) )

( )
pn

q a
V n

D n
   1 3 5 7, , ,n =         (57) 

Hence, 

 

4
20

1 2 7
1 1 3 5

2
4

, ,

( , ) cosh sinh sin (( ) )sin
( )

n n

n n

q an y n y n y n x n x
v x y C C n

a a a a aD n

 

= =

     
= + +  − + 

  
    

    

4
0

5
2 4 6

2

, ,

sin
( )n

q a n x

aD n



=

− 


        (58) 

1 2

1

( , ) cosh sinh sinn n

n

n y n y n y n x
v x y C C

a a a a



=

    
= + + 

    

   

4 4
20 0

7 7 5 5
1 3 5 2 4 6

2 21 1
4

, , , ,

(( ) )sin sin
n n

q a q an x n x
n

a aD n D n

 

= =

 
 − −

 
      (59) 

Thus, 

1 2

1

( , ) cosh sinh sinn n pn

n

n y n y n y n x
v x y C C V

a a a a



=

    
= + + 

         (60) 

where 



=

 − 
=




4 2
0

7 7
1 3 7

2 4

, ,

(( ) )
sinpn

n

q a n n x
V

aD n
         (61) 

for 1 3 5 7 9, , , , ,n =   

and 



=


=




4
0

5 5
2 4

2 1

,

sinpn

n

q a n x
V

aD n
           (62) 

for 2 4 6 8, , , ,n =   

4.5. Enforcement of Boundary Conditions  

The integration constants 1nC  and 2nC  are found by the enforcement of boundary conditions at the edges 

/2.y b=   The boundary conditions at /2y b=   are 

/2 0( , )v x y b=  =                        (63a) 
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 =  =/2 0( , )v x y b                        (63b) 

For each value of n, 

1 2 0
2 2 2

cosh sinhpn n n

n b n b n b
V C C

a a a

  
+ + =           (64) 

2 2

1 2 2 0
2 2 2 2

cosh sinh coshn n

n n b n n b n b n b
C C

a a a a a a

            
+ + =       

       
       (65) 

Solving, 

2

1

2
2 2 2

2

sinh cosh

cosh

n

n

n b n b n b
C

a a aC
n b

a

   
− + 

 
=


          (66) 

1 2 2
2 2

tanhn n

n b n b
C C

a a

  
= − + 

 
           (67) 

Then, substitution of Equation (73) into the second boundary condition Equation (70) yields: 

              
+ +                 

= − = −   
          

       

1

2 1
2 2 4 2

2
2 2

tanh tanh

cosh cosh
n pn pn

n b n b n b n b

a a a aC V V
n b n b

a a

      (68) 

2

2
2

cosh

pn

n

V
C

n b

a

=
 

 
 

            (69) 

Then the deflection equation becomes: 



=

        
+                    

= − + +          
                 

       


1

2
2 2

2 2
2 2

tanh

( , ) cosh sinh sin

cosh cosh
n

pn

p

n

n b n b
Vn y n y n y n xa av x y V

n b n ba a a a

a a

  

  

 

= =

 −     
+   

    
 

4 42
0 0

7 7 5 5
1 3 5 2 4 6 8

2 24 1

, , , , ,

(( ) )
sin sin

n n

q a q an n x n x

a aD n D n
     (70) 

Simplifying, 
4 42

0 0
7 7 5 5

1 3 5 2 4

2 24

, , , ,

(( ) ) ( , )
( , ) ( , )sin sin

n n

q a q an n x K n y n x
v x y K n y

a aD n D n

 

= =

 −  
= −

 
       (71) 

where 
2

1
1 2

cosh cosh sinh cosh sinh cosh
( , )

cosh

n n n n n n n n

n

K n y
  +    −    

= −  +  
     (72) 

2
n

n b

a


 =                         (73a) 

n n

n y
y

a


 = =                          (73b) 

n

n

a

 
 =  

 
             (74) 

It is observed that 

0 0( , )v x y= =                         (75a) 

0( , )v x a y= =                         (75b) 

/2 0( , )K n y b=  =                        (75c) 

When 
2

b
y =    
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/2

2
n

n b n b

a a

  
 = =                         (75d) 

2
/2 1

1 2

( cosh cosh sinh cosh sinh cosh )
( , )

cosh

n n n n n n n n

n

K n y b
  +    −   

=  = −
+ 

                  (76) 

2 1 2 2
/2 1

1 2 1 2

cosh cosh cosh cosh cosh
( , )

cosh cosh

n n n n n

n n

K n y b
  +  −  

=  = − =
+  + 

                 (76a) 

22 2 1cosh coshx x −                          (77) 
21 2 2 0cosh coshn n+  −  =                       (77a) 

 /2 0( , )K n y b=  =                         (78) 

Hence, /2 0( , )v x y b=  =   

 

Solutions at the Center of Square Plate 

For square plates, ,b a=  and at the center, /2,x a= 0y =   

4 42
0 0

7 7 5 5
1 3 5 2 4

2 24 0
/2 0 0

2 2
, , , ,

( ) ( , )
( , ) ( , )sin sin

n n

q a q an n K n y n
v x a y K n y

D n D n

 

= =

  −  = 
= = = = − 

  
                       (79) 

2 0 0 0
0 1

1 2

cosh cosh sinh cosh
( , )

cosh

n n n

n

K n y
 +   − 

= = −  +  
                     (80) 

For square plates, 

2
n

n
 =                           (81) 

( )

2
2 2 20 1

1 2
2

cosh sinh

( , )

cosh

n n n

K n y
n

   
+ 

= = −  


 +
 

                      (82) 

2
2 2 20 1

1

cosh sinh

( , )
cosh

n n n

K n y
n

   
+ 

= = −  
 + 

                      (83) 

( ) ( )( )2
2 2 21 0 1
1

cosh sinh

( , )
cosh

K n y

   
+ 

= = = −  
 + 

                    (84a) 

8 63322882
1 0 1

12 59195328

.
( , )

.
K n y

 
= = = −  

 
                     (84b) 

1 0 0 314385256( , ) .K n y= = =                       (84c) 

4 42
30 0

7

2 4
0 314385 1 221945 10

1
( , ) ( . ) ( . )

q a q a
v x y

DD

−   −
= =   

  
                    (85) 

4
3 0/2 0 1 221945 10( , ) .

q a
v x a y

D

−= = =                         (86) 

This is 2% greater from the solution found in Szilard (2004) who used a Levy method. 

2
2 0 1

1 2

cosh sinh
( , )

cosh
K n y

 +   
= = = −  

 + 
                       (87) 

2 0 1 0 221269052( , ) .K n y= = = −                        (88) 

2 0 0 778731( , ) .K n y= = =                         (89) 

 

Two term solution increment vc is: 
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4
0
5 5

2 0 778731
0

2

.
sincv

q a

D

−  
=  = 

 
                        (90) 

For two term solution 
4

3 0/2 0 1 221945 10( , ) .
q a

v x a y
D

−= = =                         (91) 

Three term solution 

2 1 5 1 5 1 5
3 0 1

1 3

cosh . . sinh .
( , )

cosh
K n y

 +   
= = = −  

 + 
                      (92) 

3 0 1 0 060287646 0 929712353( , ) ( . ) .K n y= = = − =                      (93) 

The increment in center deflection vc due to the third term is: 
4 2

0
7 7

2 3 4
0 939712353 1 5

3

( )
. sin .c

q a
v

D

  −
 =   

 
                      (94) 

Evaluating, 
4

5 02 413561 10.c

q a
v

D

− = −                          (95) 

Three term solution for center deflection vc is 
4 4

3 50 01 221945 10 2 413561 10. .c

q a q a
v

D D

− −=  −                        (96) 

4
3 01 19780939 10.c

q a
v

D

−  
=   

 
                       (97) 

The analytical solution for center deflection is identical with the solution obtained by Szilard (2004) using Levy 

method. 

4.6. Bending Moment Expressions  

By partial differentiation of ( . ),v x y  

2 24 42 2
0 0

2 7 7 5 5

2 24( ) ( , )
( , ) sin sin

n n

q a q av n n n x K n y n n x
K n y

a a a ax D n D n

 
   −       

=  − −  −    
      

                   (98) 

Similarly, 
4 42 2 2 2

0 0
2 7 7 2 5 2 5

2 24 1( ) ( , ) ( , )
sin sin

n n

q a q av n d K n y n x d K n y n x

a ay D n dy D dy n

 
   −  

= − 
   

                    (99) 

Simplifying Equation (104) gives: 
2 22 2

0 0
2 5 5 3 3

1

2 24( ) ( , )
( , )sin sin

n n

q a q av n n x K n y n x
K n y

a ax D n D n

 

=

−    −  
= + 

   
                   (100) 

Simplifying Equation (105) gives: 
2 22 2

0 0 1
12 5 5 3 3

1 1

2 24( )
sin sin

n n

q a q a Kv n n x n x
K

a ay D n D n

 

= =

−  −   
= − 

   
                    (101) 

where 
2

2
12
( , )n

d K
K n y

dy
=                         (102) 

n

n

a

 
 =  

 
  

Substitution of Equations (106) and (107) into the bending moment-deflection equations-Equations (3) and (4) – 

and simplification gives: 
2 22

0 0
1 15 5 3 3

1 3 5 2 4

2 24 1

, , ,

( )
( ( , ) ( , ))sin ( ( , ) ( , ))sinxx

n n

q a q an n x n x
M K n y K n y K n y K n y

a an n

 

= =

  −  
= − − +  

  
    
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                    …(103) 

where 1 2

1

1 2

sinh cosh sinh cosh
( , ) ( , )

cosh

n n n n n n

n n

K n y K n y
   −   

= =
+  

                 (104) 

Similarly, 
2 2

0
15 5

1 3 5

2 4

, ,

( )
( ( , ) ( , ))sinyy

n

q a n n x
M K n y K n y

an



=

  − 
= − − 

 


2
0

13 3
2 4

2 1

,

( ( , ) ( , ))sin
n

q a n x
K n y K n y

an



=


+ 


   

                     ...(105) 

At the plate center, 0,y =  /2,x a=  0n =   

1 0
1 2

sinh
( , )

cosh

n n

n

K n y
 

= =
+ 

                      (106) 

where, 

2
n

n
 =  for square plate 

( )
1

20
1

sinh

( , )
cosh

n

n

K n y
n




= =
+ 

                      (107) 

1

/2
1 0 0 287078

1
( , ) .

cosh
K n y


= = = =

+ 
                     (108) 

The solution for center bending moments using the expressions are 
2 2

01 319 10.xxM q a−=    

2 2
01 389 10.yyM q a−=    

The single finite sine series solutions are in agreement with the Levy solutions present by Szilard (2004). 

5. Conclusions 

In this paper, the single finite sine transform method has been used for closed form flexural solutions of simply 

supported Kirchhoff plate under parabolic load. The sinusoidal kernel of the finite sine transform satisfies the 

simply supported boundary conditions along the edges 0,x =  and ;x a=  and is a suitable transformation method 

for the considered problem. 

In conclusion, 

• the single finite sine transform method simplifies the governing equation of equilibrium to a fourth 

order ODE in the transformed space variables. 

• the general solution Vg(n, y) in the transformed space variable is obtained using methods for solving 

ODEs as the sum of the homogeneous solution and the particular solution. 

• the general solution for the deflection in the physical problem coordinate variables v(x, y) is obtained 

by inversion of Vg(n, y)  as a rapidly convergent single series of infinite terms. 

• the enforcement of boundary conditions along the simply supported edges ,y = 0  y b=  is used to 

determine the unknown constants of integration in the expression for ( , )v x y . 

• a three-term truncation of the infinite series for ( , )v x y  gives solutions for the center deflection that 

is equal to the exact solution showing convergence at the third term. 

• bending moments are obtained using the bending moment deflection relations as convergent single 

series with infinite terms. 

Nomenclature 

x, y  in-plane Cartesian coordinates 

z  transverse Cartesian coordinate 

h  thickness 

a  least in-plane dimension 
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b  in-plane dimension (length) 

( , )v x y    transverse deflection 

( , )zq x y   transversely distributed load intensity 

D  modulus of flexural rigidity 

E  Young’s modulus of elasticity 

  Poisson’s ratio 

Mxx, Myy  bending moments 

Mxy  twisting moment 

Qx, Qy  shear force distributions 

n  single finite sine integral transform parameter 

( , )V n y    single finite sine transform of the transverse deflection ( , )v x y   

( , )zQ n y   single finite sine transform of the distributed  transverse loading intensity. 

I1  integral defined in terms of sine transform of x2 

Vh  homogeneous solution for ( , )V n y  

An  constants used in the trial function solution for Vh 

  parameters used in the trial function solution for Vh 

C1n, C2n, C3n, C4n, integration constants 

( , )pV n y   particular solution for ( , )V n y  

( , )gV n y   general solution 

pV    expression for Vp when n is even or when n is odd. 

1 2,n nC C   integration constants re-expressed in terms of C1n and 2/a and C2n and 2/a respectively. 

3D  three-dimensions 

2D  two-dimensions 

FSDT  first order shear deformation theory 

FSDTs  first order shear deformation theories 

KLPT  Kirchhoff-Love plate theory 

TSDT  trigonometric shear deformation theory 

DVM(s)  direct variational method(s) 

FSTM  finite sine transform method 

GITM  generalized integral transform method 

FDM(s)  finite difference method(s) 

SFSTM  single finite sine transform method 

GPDE  governing partial differential equation 

ODE(s)  ordinary differential equations 
2

2y




   operator for second partial derivative with respect to x 

2  Laplace operator 

4  biharmonic operator 

  summation 

  integral 
2

2x




  operator for second partial derivative with respect to x 

n  parameter defined in terms of n, , a and y 

n  parameter defined in terms of n, , and a 

n  parameter defined in terms of n, , b and a 

( , )K n y    parameter defined in terms of n, n 

%  percent (percentage) 

  change in 

q0  value of parabolic load intensity at ,x a y=  

v0  transverse deflection of the plate at the plate center 



IRAQI JOURNAL OF CIVIL ENGINEERING (2024) 018–002                                                                                                                                                                                    35                                                                                                                                                                                                                           

 

2

2

( , )d K n y

dy
  second derivative of ( , )K n y  with respect to y 

1( , )K n y   parameter defined in terms of the second derivative of ( , )K n y  with respect to y 
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