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Local scour is a primary cause of bridge collapse, presenting a complex 
challenge due to the numerous factors influencing its occurrence. The 
complexity of local scour increases with clay-sand beds, particularly in 
predicting scour depth, as empirical equations are inadequate for such 
calculations. This study aims to predict local scour around cylindrical 
bridge piers in clay-sand beds using an artificial neural network (ANN) 
model. The ANN model was developed using 264 observations from 
various laboratory experiments. Eight variables were included in the ANN 
model: clay fraction, pier diameter, flow depth, flow velocity, critical 
sediment velocity, sediment particle size, bed shear strength, and pier 
Reynolds number. Sensitivity and statistical analyses were conducted to 
evaluate the impact of each variable and the accuracy of the ANN model in 
predicting local scour depth in clay-sand beds. The findings indicate that 
the ANN model predicted local scour with high accuracy, achieving a mean 
absolute percentage error (MAPE) of 14.6%. All dimensional variables 
significantly influenced the prediction of local scour depth, particularly 
clay fraction and bed shear strength, which were identified as the most 
crucial parameters. Finally, the MAPE values for local scour depth 
calculated using empirical equations were significantly higher than those 
for the ANN model, leading to an overestimation of local scour depth by 
the empirical equations. 
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1. Introduction  

Local scour is a primary cause of bridge collapses. In simple terms, it can be defined as a natural phenomenon 

that occurs in river systems near obstacles causing to erode the sediments surrounding the obstacles, such as piers 

and abutments. The multitude of variables that govern the occurrence of local scour development adds complexity 

to this matter. The factors are water velocity, water depth, pier shape, pier diameter, sediment types, and bed shear 

forces. Local scour occurs as a result of three-dimensional flow. Firstly, there is downward flow near the front of 

the pier. Secondly, horseshoe-vortices form at the base of the pier. Lastly, vortices form along the direction of the 

flow. Furthermore, wake vortices are generated downstream, specifically behind the pier. Fig 1 illustrates the 

mechanism of the local scour (Alasta et al., 2022; Ettema, Kirkil, & Muste, 2006).  

https://doi.org/10.37650/ijce.2024.180104
https://ijce.uoanbar.edu.iq/
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Fig 1. The mechanism of the local scour (Dheyab & Günal, 2023). 

 

Local scour leads to many losses in the financial aspects, people life, and operational disruptions. Therefore, 

researchers investigated the potential scenarios of local scour in order to fully comprehend all aspects related to 

this issue and ensure the long-term viability and sustainability of infrastructure systems (De Falco & Mele, 2002; 

Schaap & Caner, 2022). 

Numerous studies have been carried out in recent years to investigate the impact of sediment type on local scour. 

Based on the research outcomes, the sediments can be classified into three different types: cohesive sediments 

(clay and silt), noncohesive sediments (sand), and mixed sediments (sand and clay bed) (Baykal, Sumer, Fuhrman, 

Jacobsen, & Fredsoe, 2015; Chaudhuri & Debnath, 2013; Chaudhuri, Pandey, Debnath, & Oliveto, 2022; K. 

Debnath & Chaudhuri, 2010a, 2010b; Ismael, Gunal, & Hussein, 2015; Liang, Du, Pan, & Zhang, 2020; Molinas 

& Hosni, 1999; Najafzadeh & Barani, 2014; Roulund, Sumer, Fredsøe, & Michelsen, 2005; Sumer, Hatipoglu, & 

Fredsøe, 2007; Wang, Yu, & Liang, 2017; Zhang, Sun, Yao, & Yu, 2022; Zhao, Cheng, & Zang, 2010).  

Indeed, the rivers bed sediments are not limited to sand or clay alone. Observations in the field indicate that the 

ocean floor can contain fine sand or silt particles with varying densities. Based on statistical data from China, it 

has been observed that the bed materials in the Yangtze River estuary mainly consist of cohesive soil and sand 

with relatively large particle sizes. However, the bed materials found in the Yellow River Delta consist mainly of 

silt and clay (Wang et al., 2017). Therefore, it is crucial to investigate the methods of predicting local scour in 

clay-sand beds. 

Several formulas have been developed through regression analysis to predict the local scour depth based on 

experimental data, leading to the development of an empirical formula that can be used under specific 

circumstances. Nevertheless, the derived formulations of this methodology have faced criticism for their tendency 

to overestimate scour depth in real-world applications (S.-U. Choi, Choi, & Lee, 2017; Ettema, Melville, & 

Barkdoll, 1998; Sonia Devi & Barbhuiya, 2017).  

In the past, numerous investigations were conducted to predict the local scour around bridge piers in non-cohesive 

and cohesive beds. According to S. U. Choi and Cheong (2006), the artificial neural network (ANN) model is 

more accurate than empirical methods in predicting the local scour depth in a non-cohesive bed. Bateni, Borghei, 

and Jeng (2007) employed artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) 

models to predict the local scour depth. Their findings indicated that the ANN model provided more accurate 

predictions of the local scour depth compared to the ANFIS model and empirical formulas. On the other hand, 

according to Muzzammil (2010), the ANFIS model accurately predicts local scour more than the ANN model. 

Muzzammil, Alama, and Danish (2015) applied Gene Expression Programming (GEP) to predict the local scour 

around bridge piers in cohesive beds by using laboratory data, Their findings indicated that (GEP) model is more 

accurate than empirical methods in predicting the local scour depth in cohesive beds. 
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S.-U. Choi and Choi (2022) utilized support vector machines (SVMs) and adaptive neuro-fuzzy inference system 

(ANFIS) models to forecast the depth of local scour in cohesive beds by using dimensional variables. Their 

findings demonstrated that the model training utilizing the ANFIS method was effectively conducted with a very 

low MAPE (Mean Absolute Percentage Error). Nevertheless, the model validation revealed that the ANFIS 

technique was unable to accurately predict the maximum scour depth in the cohesive bed due to overfitting. In 

contrast, the training and validation of SVMs were carried out with a moderate degree of accuracy. 

Regarding clay-sand beds, no research has been conducted to predicate local scour. The objective of this study is 

to predict the depth of local scour in clay-sand beds using an artificial neural network (ANN). The predictions of 

the ANN models were generated using six datasets consisting of experimental data obtained from literature. 

Sensitivity analysis is employed to comprehend the underlying patterns and correlations among the variables. 

Additionally, comparisons are carried out with existing formulas, including one for the erosion of piers in a clay-

sand bed. Finally, the forecasted outcomes are presented and analyzed. 

2. Local Scour Around Bridge Piers 

Several factors govern the local scour. The primary factors can be summarized as follows.:  

 

𝑑𝑠 = 𝑓 (
𝐹𝑙𝑜𝑤( ℎ, 𝑉, 𝑅𝑒𝑝, 𝑔, 𝜌, µ), 𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡𝑠 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠(𝑑50, 𝜏𝑐 , 𝜌𝑠, 𝜎𝑔, 𝑆𝑠 , 𝑉𝑐),

𝑃𝑖𝑒𝑟 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦(𝐷, 𝛼, 𝛽)
) … … … … … .1 

Where: h flow depth, V velocity, Vc critical velocity, Rep Pier Reynolds number, g gravitation acceleration, D pier 

diameter, α flow direction, β correction factors for pier shape, τc bed shear strength, σg standard deviation of 

particle size, d50  median particle size, ρ water density, ρs sediment density, Ss specific gravity of sediment, and µ 

dynamic viscosity of water.  

The most significant parameters of local scour in the clay-sand bed are mentioned in Eq. 2, as stated by (Chaudhuri 

et al., 2022; Das, Chaudhuri, Barman, Roy, & Debnath, 2022; Das, Roy, Barman, Chaudhuri, & Debnath, 2019; 

K. Debnath & Chaudhuri, 2010a). 

 

𝑑𝑠 = 𝑓(ℎ, 𝑉, 𝑑50, 𝜏𝑐 , 𝐶𝑝, 𝑉𝑐 , 𝑅𝑒𝑝) … … … … … .2 

In this study, The data in this study were carefully collected from experimental studies conducted by (Chaudhuri 

et al., 2022; K. Debnath & Chaudhuri, 2010a, 2010b; S. C. V. K. D. K. Debnath, 2020; Kho, Valentine, & 

Glendinning, 2004; Molinas, Jones, & Hosny, 1999). These studies aimed to experimentally investigate the local 

scour depth in the clay-sand bed. The dataset included 264 observations. Table 1 demonstrates the range of 

dimensional variables. Table 2 presents the equations employed to calculate the depth of local scour in a clay-

sand bed. These equations were derived using the regression method based on experimental data. 

 

Table 1. Range of dimensional variables. 

Variable Observations Minimum Maximum 

Flow depth h (cm) 264 15 35 

Pier diameter D (cm) 264 2.5 15.24 

Sand median particle size d50 (mm) 264 0.081 0.55 

Clay fraction Cp (%) 264 0 100 

Local scour depth ds (cm) 264 0 24.77 

Velocity V (m/s) 264 0.2177 0.8273 

Critical velocity  Vc (m/s) 264 0.1755 0.736 

Pier Reynolds number Rep 264 6323 96571  

Bed shear strength  τc (kN/m2) 264 1.1 12.7 
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Table 2. Local scour formulas in clay-sand bed. 

Source Equation Eq. no. 

Molinas et al. (1999) 
𝑑𝑠

𝐷
= 18.92 [

𝐹𝑟
2.08

(1 + 𝐶𝑝)
1.88] 3 

K. Debnath and Chaudhuri (2010a) 𝑑𝑠 = 8.2𝐹𝑟𝑝
0.79𝐶𝑝

−0.28𝑊𝑐
0.15𝜏𝑠

−0.38 4 

K. Debnath and Chaudhuri (2010b) 𝑑𝑠 = 2.05𝐹𝑟𝑝
1.72𝐶𝑝

−1.29𝜏𝑠
−0.37 5 

3. ANN Method 

Artificial neural networks (ANNs) are a class of machine learning models that draw inspiration from the intricate 

operations of the human brain. Artificial Neural Networks (ANNs) seek to simulate the collaborative processing 

and analysis of data in the brain, where billions of interconnected neurons work. This is achieved through the use 

of mathematical methods (S.-U. Choi et al., 2017). Fig. 2 illustrates the basic structure of the Artificial Neural 

Network (ANN). 

 

Fig 2. The general structure of ANN (S. U. Choi & Cheong, 2006). 

An artificial neural network (ANN) consists of three separate layers, which are the input layer, the hidden layer, 

and the output layer. The input layer is responsible for collecting essential data. The hidden layer, whether it 

consists of singular or multiple sections, remains unreported and performs calculations. The output layer 

represents the predicted result. Linkages are formed among these levels using weights. The initial learning rate is 

a critical factor in determining how the weight values are adjusted in the neural network model. This element 

helps to minimize the difference between the expected and actual values. The weight values can be assigned 

randomly. However, these parameters are adjusted as the training progresses (S.-U. Choi et al., 2017). 

The nodes in the network receive input signals, perform computations on them, and transmit output signals to 

other nodes in the network. The effectiveness of these nodes' interactions varies.  

In this study, the ANN model was trained using the error back-propagation approach, as proposed by Rumelhart, 

Hinton, and Williams (1986). This approach is employed to measure errors, facilitating efficient monitoring of 

the model's efficacy. Subsequently, it modifies the weights according to these evaluations. Detailed descriptions 

regarding the ANN model can be found in (S. U. Choi & Cheong, 2006). 
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4. ANN Training and Prediction  

An artificial neural network (ANN) was used to predict the depth of local scour in a clay-sand bed. The training 

dataset for the Artificial Neural Network (ANN) model included 264 experimental observations. The training was 

conducted using the dimensional variables which are listed in Table 1. The Artificial Neural Network (ANN) 

model included 8 input nodes. 

In order to identify the optimal ratio for dividing the data set into training, testing, and validation, various ratios 

were evaluated, such as 60:40, 70:30, and 80:20. In addition, many layers were carefully examined to determine 

the optimal fit for the prediction. Consequently, it was found that the most accurate predictions were achieved by 

dividing the data into training (70%), testing (15%), and validation (15%) and 20 hidden layers. 

The Levenberg–Marquardt backpropagation training algorithm was utilized in this study. According to  S.-U. 

Choi et al. (2017) and Ali and Günal (2021), using this algorithm improved the accuracy of predicting the local 

scour depth. The Levenberg–Marquardt backpropagation is a modified version of the Gauss–Newton method. The 

error back-propagation algorithm estimates errors to monitor the model's performance and recalculates the weight 

values accordingly. During the learning process, the artificial neural network (ANN) model adjusts its own code 

to fit the particular circumstance. Additional information about Artificial Neural Networks (ANNs) and The 

Levenberg–Marquardt backpropagation can be found in the research conducted by (Reynaldi, Lukas, & 

Margaretha, 2012). 

Figure 3 illustrates the significant results of the Artificial Neural Network (ANN) model in predicting the local 

depth in a clay-sand bed. The training phase yielded a correlation coefficient (r) of 0.94967 and a Mean Squared 

Error (MSE) of zero. Throughout the next testing phase, the correlation coefficient (r) constantly maintains a high 

value of 0.84323, while the mean squared error (MSE) remains at zero. During the validation phase, 15% of the 

dataset was utilized. The correlation coefficient (r) was recorded at 0.88393, along with a mean squared error 

(MSE) of 0.0016. The average correlation coefficient (r) across all stages is 0.91336. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. ANN model with dimensional variables. 
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The artificial neural network (ANN) model incorporating dimensional variables has exhibited commendable 

performance in accurately forecasting the scour depth proximate to bridge piers within clay-sand beds. The 

outcomes depicted in Figure 3 demonstrate notable efficacy, as evidenced by a correlation coefficient (r) of 

0.94967 during the training phase and a Mean Squared Error (MSE) of zero. During the subsequent testing phase, 

the correlation coefficient (r) remains consistently high at 0.84323, with MSE persisting at zero. In the validation 

phase, the attained correlation coefficient (r) registers at 0.88393, accompanied by an MSE of 0.0016. 

Cumulatively, across all phases, the correlation coefficient (r) averages at 0.91336. 

According to these results, the utilization of the ANN model with dimensional variables predicted the local scour 

depth with a high degree of accuracy due to the utilization of a large number of variables. These findings align 

with previous studies conducted by (Bateni, Jeng, & Melville, 2007; S.-U. Choi et al., 2017; Muzzammil, 2010). 

5. Sensitivity Analysis and Statistical Analysis  

A sensitivity analyze was carried out to assess the impact of the specified variables on the ANN model. In order 

to evaluate the impact of each variable, eight models were developed following the same approach for first ANN 

model. The dataset was divided into 70% for training, 15% for testing, and 15% for validation. The hidden layers 

contained 20 layers, and the Levenberg–Marquardt backpropagation training approach was applied. For each 

model, one variable was selectively removed and the comparison was conducted based on the R-value. Table 3 

displays the models labelled as ANN1-ANN8. Additionally, Figure 4 illustrates the fitting of training of each 

model. Overall, the sensitivity analysis demonstrated that all variables have significant impacts on predicting local 

scour in a clay-sand bed. Furthermore, the most significant variables might be ranked in the following order: shear 

stress, clay fraction, flow depth and velocity. 

 

Fig 4. Models training with dimensional variables a. ANN1 model, b. ANN2 model, c. ANN3 model, d. 

ANN4 model, c. ANN5 model, d. ANN6 model, e. ANN7 model, f. ANN8 model. 

Table 3. Sensitivity Analysis 
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Model R Training R Testing R Validation Removed Parameter 

ANN1 0.89 0.891 0.889 CP% 

ANN2 0.91 0.78 0.91 D 

ANN3 0.90 0.95 0.96 d50 

ANN4 0.94 0.81 0.76 h 

ANN5 0.92 0.84 0.876 Rep 

ANN6 0.85 0.50 0.7 𝜏𝑐 

ANN7 0.87 0.85 0.89 V 

ANN8 0.94 0.86 0.94 Vc 

 

A Pearson correlation analysis was carried out to assess the eight-dimensional variables used in the ANN model. 

The correlation coefficient is a measure of the degree of relationship between variables and is represented on a 

scale ranging from -1 to 1. This continuum represents the corresponding P value linked to the correlation. 

 

𝑟 =
𝑛 ∑(𝑥𝑦)−(∑ 𝑥)(∑ 𝑦)

√𝑛[∑ 𝑥2−(∑ 𝑥)
2

][∑ 𝑦2−(∑ 𝑦)
2

]

,…………………….6 

where r is the correlation coefficient; n represents the sample size; and x and y are the first and second variables 

in the given dataset, respectively. 

Figure 5 demonstrates the significant correlation between the local scour depth ds and the eight-dimensional 

variables. The results of the Pearson correlation analysis are similar to the obtained results from the sensitivity 

analysis. Additionally, all variables have statistically significant relationships with depth of local scour according 

to the P value as presented in the Table 5.  

 

Table 5. Pearson correlation between the dimensional variables and ds 

 Cp (%) D d50 V Vc h Rep 𝝉𝒄 

r −0.621** 0.063** 0.320** −0.492** 0.264** -0.29** 0.094** -0.83** 

P value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

**Correlation is significant at the 0.01 level (two-tailed). 

The performance of the ANN model for predicting the local scour depth in a clay-sand bed was evaluated using 

the following statistical analysis: 

The Nash-Sutcliffe efficiency (NSE) is a statistical method used to assess the performance of a model. The purpose 

of this evaluation is to assess the degree of agreement between the predicted values and the observed data (Nash 

& Sutcliffe, 1970). The NSE can be calculated by use Equation 7. Table 4 indicates that the NSE values of the 

ANN model were near to 1, indicating that the ANN model accurately predicted the local scour depth. 

𝑁𝑆𝐸 =
∑ (𝑂𝐵𝑆𝑖−𝑃𝑅𝐸𝑖)2𝑛

𝑖=1

∑ (𝑂𝐵𝑆𝑖−𝑂𝐵𝑆̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1

,………………….7 

Where OBS is the observed data, and PRE is the predicated data.  

Additionally, the ANN model was evaluated using the root mean square deviation (RMSD). The root mean square 

deviation (RMSD) result is presented in Table 4, throughout the obtained results for all phases. The RMSD values 

demonstrate the high level of accuracy of predicting the local scour depth in clay-sand bed by using the ANN 

model.  

𝑅𝑀𝑆𝐷 = √
∑ (𝑥𝑖−𝑥𝑖̂)2𝑁

𝑖=1

N
,………………….8 
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Where N is the number of observations, 𝑥𝑖 is observed value, 𝑥̂𝑖 is predicted value. 

Table 4. Statistical analysis (ANN Model) 

 ANN 

r NSE RMSD 

Training  0.949 0.959 0.109 

Testing 0.843 0.897 0.126 

Validation 0.88 0.901 0.101 

All 0.913 0.928 0.038 

 

Lastly, A Mean Absolute Percentage Error (MAPE) was used to determine the error percentage and is calculated 

using Eq.9.  

MAPE =  
1

𝑛
∑ |

𝐴𝑖−𝐹𝑖

𝐴𝑖
| × 100𝑛

𝑖=1 ……………………..9 

 

Where n is the number of observations, 𝐴𝑖 is the actual value, 𝐹𝑖 is the forecasted value. 

 

A comparison was carried out between the predicted scour depth using the ANN model and the computed scour 

depth using the empirical formulas listed in Table 2. Figure 6 presents a box plot illustrating the errors in scour 

depth predictions. The error is calculated as the difference between predicted and observed scour depths. The 

dotted line represents the zero error of the local scour depth. The positive value of errors indicates overprediction 

by the respective formula. The Mean Absolute Percentage Errors (MAPE) are also depicted in the figure. All 

formulas tend to overpredict scour depths. Nonetheless, the ANN method demonstrates significantly superior 

predictive accuracy compared to the empirical formulas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. Correlation coefficient for the dimensional variables. 
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Fig 6. Box plot of prediction errors of ANN model and various formulas in application to experimental 

data. 

6. Conclusion  

This study aimed to predicate the local scour depth in clay-sand bed using the ANN method with eight-

dimensional variables, namely mean velocity, clay fraction, sand median particle size, critical velocity, flow depth, 

pier diameter, pier Reynolds number, and bed shear strength.   

The results demonstrated that the artificial neural network (ANN) model achieved a high level of accuracy in 

predicting the depth of local scour in a clay-sand bed. The Mean Absolute Percentage Error (MAPE) in this 

prediction was 14.6% when using eight-dimensional variables. The study demonstrated that the optimal ratio of 

the training-to-testing data is 70:30. Furthermore, the applying of a 20-hidden-layer and Levenberg–Marquardt 

backpropagation training method greatly enhanced the accuracy of predictions. The results of sensitivity analysis 

and Pearson correlation analysis showed that all dimensional variables have a significant impact on predicting 

local scour depth. Among these variables, clay fraction and bed shear strength were found to be the most 

significant parameters. Finally, the comparison of the predicted local scour depth using artificial neural networks 

(ANN) yielded superior results compared to the calculated local scour depth using empirical formulas. 
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