

1

WWaassiitt JJoouurrnnaall ffoorr SScciieennccee && MMeeddiicciinnee 22000099 22 ((11)) :: ((11 -- 1100))

Integer Factorization Problem Solving Using Tabu

Search
Ahmed T. Sadiq Tayseer S. Atia

 Abd-alsattar S.Awad

Computer Sciences Department University of Technology

 حل مشكلة تحليل الاعداد الصحيحة باستخدام البحث المحرّم

 تيسير سلمان عطية أحمد طارق صادق
 عبد الستار سالم عوض

 قسم عموم الحاسبات الجامعة التكنولوجية
 الخلاصة

عي. البحث تقنية البحث المحرّم هي احدى تقنيات البحث عن الهدف في الذكاء الاصطنا
المحرّم له عدة تطبيقات في مجال حل مشاكل الافضلية. في هذا البحث تم استخدام تقنية البحث المحرّم
لحل مشكلة تحليل الاعداد الصحيحة والتي تلعب دور كبير في تحليل الشفرات لانظمة تشفير المفتاح

ن الخوارزمية المقترحة نجحت العام. اظهرت النتائج من خلال التجارب التي اجريت في هذا البحث ا
 في عملية تحليل الاعداد الصحيحة ونتائجها كانت افضل من الخوارزمية الجينية كمقارنة.

Abstract

Tabu Search (TS) technique is one way of search for goal algorithm in

the Artificial Intelligent (AI). TS is used to solve several optimization

problems. In this paper a proposed TS algorithm will be presented to solve the

integer factorization problem that plays very big role in the cryptanalysis of

public-key cryptography. The experimental result of this work shows that the

proposed algorithm can factorize the numbers in good time compared with

genetic algorithm technique.

1. Introduction
The integer factorization problem (IFP) is the following: given a

composite number n that is the product of two large prime numbers p and q,

find p and q. While finding large prime numbers is a relatively easy task, the

problem of factoring the product of two such numbers is considered

computationally intractable if the primes are carefully selected. Based on the

difficulty of this problem, Rivest, Shamir and Adleman [1] developed the RSA

2

public-key cryptosystem. Another public-key cryptosystem whose security lies

on the intractability of IFP is due to Rabin and Williams [2, 3].

While the integer factorization problem has received some attention over the

centuries from well-known mathematicians like Fermat and Gauss, it is only in

the past 20 years that significant progress has been made towards its resolution.

There are two main reasons for this phenomenon. First, the invention of the

RSA cryptosystem in 1978 stimulated many mathematicians to study the

problem. And second, high-speed computers became available for the

implementation and testing of sophisticated algorithms. Fermat and Gauss

would have had little incentive for inventing the number field sieve factorzing

algorithm since this algorithm is more cumbersome than trial division for the

purpose of factorzing integers by hand.

There are basically two types of factoring algorithms, special-purpose and

general-purpose. Special-purpose factoring algorithms attempt to exploit

special features of the number n being factored. In contrast, the running times

of general-purpose factoring algorithms depend only on the size of n[4].

One of the most powerful special-purpose factoring algorithms is the elliptic

curve factoring method (ECM) that was invented in 1985 by Hendrik Lenstra

Jr. [5]. The running time of this method depends on the size of the prime

factors of n, and hence the algorithm tends to find small factors first. Just prior

to the development of the RSA cryptosystem, the best general-purpose

factoring algorithm was the continued fraction algorithm [6], This algorithm

was based on the idea of using a factor base of primes and generating an

associated set of linear equations whose solution ultimately leads to

factorization. This is the same idea underlying the best general-purpose

algorithms used today: the quadratic sieve (QS) and the number field sieve

(NFS). Both these algorithms can be easily parallelized to permit factoring on

distributed networks of workstations. Large mainframe computers or

supercomputers are therefore not essential to factor large numbers.

2. Tabu Search
Over the past 12 years, the tabu search has established its position as an

effective meta-algorithm guiding the design and implementation of algorithms

for the solution of large scale combinatorial optimization problems in a number

of different areas [7, 8]. A key reason for this success is the fact that the

algorithm is sufficiently flexible to allow designers to exploit prior domain

knowledge in the selection of parameters and sub-algorithms. Such prior

knowledge is frequently obtained by repeatedly solving a few representative

test cases using a spectrum of different techniques, attributes and/or

3

parameters. Frequently referred to as target analysis, an application of this

learning approach is described in Laguna and Glover [9]. The tabu search

algorithm combines a few simple ideas into a remarkably efficient framework

for heuristic optimization. Among the main elements of this framework are:

 A (usually) greedy local search; the next solution is usually the best not-yet

visited solution in the current neighborhood.

 A mechanism (the tabu list) discouraging returns to recently visited

solutions.

 A mechanism that changes the solution path (perhaps by a random move)

when no progress has been made for a long time.

In addition, many tabu search algorithms incorporate other features

such as flexible memory structures and dynamic aspiration criteria. A rough

overview of a conceptual tabu search algorithm is given figure 1. For difficult

searches, techniques such as influential diversification may be used to extend

the duration and scope of the search [10]. Although a tabu search is

conceptually simple, any implementation of an efficient tabu search algorithm

is problem specific, and no generic tabu search software is available at this

time. Among the issues faced by designers of tabu search algorithms are [10]:

 The nature of the information included in the tabu list.

 The way the tabu list is organized.

 The lengths of the tabu lists.

 The types of moves used to create new solutions.

 The implementation of the local greedy search algorithm.

 Strategies for diversifying the search when no progress has been made

for a while.

3. Proposed Algorithm
The proposed factorization algorithm make use of some concepts

specific to prime number, since the prime number can be one of the following

number(1,3,5,7, and 9) then any generated number composite of any two prime

number must end with one of these prime number . Under this assumption

there is four case help in guess the end digit for both numbers these cases

summarized as follow:

1. Case 1 : if the number end with digit 1 then it can be generated by

multiplying (1× 1) or (7× 3).

2. Case 2 : if the number end with digit 3 then it can be generated by

multiplying (1× 3) or (7× 9).

4

Ahmed T. Sadiq at all

3. Case 3 : if the number end with digit 7 then it can be generated by

multiplying (1× 7) or (9× 3).

4. Case 4 : if the number end with digit 1 then it can be generated by

multiplying (1× 9) or (3× 3).

3.1 Solution encoding, move and neighborhood
Each solution in the problem space is encoded as a structure of three

fields (p, q, fitness), fitness value Represent the difference between n (the

number to be factor) and the product of p and q currently guessed. Move

operation used to generate a set of solution from the current solution is the

addition, each number (p,q) is incremented by 10 to get next prime number end

with the same previous guessed digit. Neighborhood is a list always of size

(10×10) to store a set of generated solutions from p and q by applying move

operation to 10 iterations.

3.2 Tabu and tabu list
Values of p and q are classified as tabu to facility the multiplication

operation and move evaluation in order to get the minimum difference.

Separate list for p and q value is maintained, each p value is considered as

multiply and still tabu active for 2 iterations while q value is considered as

multiplier and is still tabu active for 1 iteration. Tabu list is maintained to store

the recently visited solutions. Length of this list is 10 and is used in the

proposed algorithm to maintain the value of p and q to yield minimum

difference and to make sure that the next generated and selected value from the

current neighborhood must be less than the previously generated value in the

list.

3.3 Local search
Simple search process to explore the current neighborhood and get the

minimum difference is implemented in three steps:

1. Generating move: a set of 10 values for each p and q is generated by

increment the value by 10. These values are used to generate the neighborhood.

2. Evaluation of move: after generating p set and q set; each value from p set

is multiplied by all values in the q set. A total of 100 values is computed and

stored in the neighborhood and the fitness value for each pair is evaluated.

5

3. Selection of move: neighborhood matrices are searched to get the

minimum difference and the values of p and q which generate this difference is

transferred to the tabu list on one condition that value must be less than values

stored in tabu list and the values are not member in tabu list. Neighborhood list

can be sorted ascending and retrieving the first location in the list.

3.4 Diversification

If the present solution path does not appear to be promising, it may be

efficient to abandon the local search and use another path; in this case the other

path is the second guessing value for p and q.

The proposed algorithm

Initialize

L= maximum length of tabu list

D= √n

P,q=intial value “ guess value with length(d) and right digit guessed

according to right digit in n’

J=1 “the first location in p list

Z=2 “no of iteration element must be active in p list

 Sol.p=p

Sol.q=q

Sol.fit=n-(p×q)

Best.fit=n

Done= false

Set p list to all possible pstart value

Set q list to all possible qstart value

Initialize b list all to 1 “ this list control the selected q value to be used

with indexed p value by j

Initialize tabu matrix to 0 “ dicorage use the previous selected q value

with current p

Begin

Do while done=false

 If sol.fit<best.fit then Best=sol

 Begin

If sol.fit<> 0 then Add sol to tl

If length(tl)> 9 thenDelete old entry from tabu list

Let j= index of pstart value in plist

 For i=1 to 9

If b(i).n=1 then

 If tabu(j,i) =0 then Set b(i).n=0

6

 B(i).count=1

Tabu(j,i)=1

Invert all b.n value with b.count=2

Generate all possible solution and store it in neigh list

Find the minimum value in neigh list

If minimum< all value in tl and min. not in tl then Sol=

min.

End For

If z=0 then Set z=2

J=j+1

If j=10 then J=1

Iter=iter+1

If iter >threshold and no solution found yet then

Generate new p and q and diverse from beginning

 End

Else

Done=true

Until done =true

End.

4. Experimental Results
This section shows the test results for the proposed algorithm, different

numbers are factored with different value, the output result for factoring and

the value of each parameter in the implementation are evaluated, the most

important values are p, q, tabu active element in b list, minimum. These values

are explored with each implementation is shown in Figures (1, 2, 3). Figure(1)

shows the implementation result of the algorithm to factor n=29143, the output

shows that only one iteration needs to discovering p and q, tabu column shows

that only one item is used from b list indexed 1 which is inverted after selection

to discourage select it again.

7

Figure (1)

Result of factorization of n=29143

Figure (2) shows factor of n=122353, and the result p and q is

discovered after 153 iterations.

Figure (2)

Result of factorization of n=122353

8

Figure (3) shows the result of factor n= 124089, the results p and q are

discovered after 6 iterations.

Figure (3)

Result of factorization of n=124089

Figure (4) shows the algorithm running time relative to a number of

digit for N, as shown in this figure, the time increases respectively according to

the increasing of the number of digit. Also to compare the efficiency of the

proposed algorithm with previous work, Genetic Algorithm (GA) is used to

solve the factorization problem and attack RSA public key algorithm found in

[11].

9

Comparison Curves

0

5

10

15

20

0 2 4 6 8

Digit Length

T
im

e
 (

S
e

c
.)

Tabu Search

GA

Figure (4)

Comparison Results of Factorization using Tabu Search & Genetic Algorithms

5. Conclusion
This paper presents a special purpose algorithm to factor prime number

composite from product of two prime numbers, this algorithm is designed

according to the concept of tabu search algorithm and classified as special

purpose algorithm since it depends on some concepts in number theory to

guess the prime number and guess the size of both numbers depends on n

under assumption that both number must be of the same size, experimental

result shows that it can factor a number of composite from product of number

which has 3 digits correctly and relatively in smaller number of iteration. Our

results are compared with those another of algorithm to factorize n which is

composite of product of two prime numbers using GA. It shows that the time

need factorize n using the proposed algorithm is less than the time needed to

factorize it using GA.

10

References

1. R.L. Rivest, A. Shamir and L.M. Adleman, “A Method For Obtaining

Digital Signatures And Public-Key Cryptosystems”, Communications of the

ACM, volume 21, pages 120-126, 1978.

2. M.O. Rabin, “Digitalized Signatures And Public-Key Functions As

Intractable As Factorization”, MIT/LCS/TR-212, MIT Laboratory for

Computer Science, 1979.

3. H.C. Williams, “A Modification Of The RSA Public-Key Encryption

Procedure”, IEEE, Transactions on Information Theory, volume 26, pages

726-729, 1980.

4. A Certicom Corp., ”Marks On The Security Of The Elliptic Curve

Cryptosystem”, July 2000. http://www.certicom.com

[5] H.W. Lenstra, “Factoring Integers With Elliptic Curves”, Annals of

Mathematics, volume 126, pages 649-673, 1987.

6. M.A. Morrison and J. Brillhart, “A Method Of Factoring And The

Factorization Of F7”, Mathematics of Computation, volume 29, pages 183-

205, 1975.

7. Glover, F. "Future Paths For Integer Programming And Links To

Artificial Intelligence", Computers and Operations Research 13, 533-549,

1986.

8. Glover, F. and M. Laguna, “Tabu Search”,. Boston: Kluwer Academic

Publishers(1997).

9. Barnes, J.W. and M. Laguna, "A Tabu Search Experience in Production

Scheduling", Annals of Operations Research 41, 141-156,1993.

10. Arne Thesen, “Design and Evaluation of Tabu Search Algorithms for

Multiprocessor Scheduling”, Department of Industrial Engineering,

University of Wisconsin—Madison, 1513 University Ave, Madison, WI, USA,

53706

11. Mohammed A. Nasser, ”Cryptanalysis RSA algorithm Using GA”, M.

Sc. Thesis, University of Technology, 2001.

RReecciivveedd ……………………………………………………………………....……………………………………………….. ((88//1100//22000088))

Accepted …………………………………………...……………... (2/3 /2009)

http://www.certicom.com/

