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Abstract:

This paper is concerned with preliminary test single stage Shrinkage estimator for the
unknown shape parameter (o) of two parameter generalized Rayleigh (GR) distribution with
known scale parameter (A), when a prior knowledge about the shape parameter (o) is available as
initial value (o), using shrinkage weight factor y(-) and pretest region R. This prior knowledge
about unknown parameter may be obtaind from past experiences or from a quaintance with
similar situation.

Expression for the Bias, Mean squared error [MSE] and Relative Efficiency [R.Eff(-)] for
the proposed estimator are derived. Numerical results and conclusions of mentioned expressions
are carried out to assess the effects of the considered estimator and to illustrate these results.
Tables of these numerical results are demonstrated. Comparisons between introduced estimator
with respect to classical estimator & and with some existing studies in the sense of mean suqared

error or Relative Efficiency are performed.

1. Introduction

Different forms of cumulative distribution functions for modeling lifetime data are
introduced by [1]. Among those distributions, Burr Type X and Burr Type XII are the most
popular ones. Several authors consider different aspects of Burr Type X and Bure Type XII
distribution, see for example [2] and [3].

In [4], they considered different estimators and studied how the estimator of different
unknown parameter behave for different sample size and different parameter value, they showed
that the two parameters generalized Rayleigh distribution (Burr Type X) can be used quite
effectively in modeling strength data and also modeling general lifetime data. It has application
in the field of acousties, spatial statistics and random walks; [5].

In this paper we also prefer to call the two parameters Burr Type X distribution as the two
parameter generalized Rayleigh (GR) distribution.

For a > 0 and A > 0, the two parameters GR distribution has the following distribution function

F(x;o,0) = (1—e ™) forx >0, 0> 0, 1 >0 (D)
Therefore, GR distribution has the density function

{2ak2xe(“)2 =™y for x >0,00> 0,0 >0

f(x;a,\) = 0 ..(2)

O0.W.

Here, a and A are the shape and scale parameters respectively.
In conventional notation, we write x~GR(a,A).

-1 -



In this paper we introduce the problem of estimating the shape parameter (o) of two
parameter GR distribution with known scale parameter (A) when some prior information (o)
regarding the actual value (o) available. More specifically we assume that the prior information
regarding due the following reasons; [6].

1. We belive that (o) is closer to the true value of a, or
2. We fear that (o) may be near the true value of (a), i.e.; Something bad happens if (o)
approximately equal to (o) and we do not know about it.

In such a situation it is natural to start with classical estimator & (MLE for example) of o and
modify it by moving it closure to (o) using shrinkage weight factor yi(+); 0 < y;(+) < 1, so that
the resulting linear combination estimator a though perhaps biased has a smaller mean suqared
error [MSE] than that & in some interval around (o), i.e.
o=y, ()a+ -y, (), SHE)
Preliminary test single stage shrinkage estimator (PTSSE) is introduce in this paper which is a
testimator of level of significance (A) for test the hypothesis Ho: o = o vs Ha: a # o using test
statistics T( & /o).
If Hy accepted, the shrinkage estimator & which is defined in (3) will be utilize to estimate .
However if Hy rejected, we consider shrinkage estimator via another shrinkage weight factor
ya(+); 0 < wya(+) £ 1, so the shrinkage estimator will be:
G =v,()&+ (-, (), (4
Thus, the general form of preliminary test single stage Shrinkage estimator (PTSSE) for the
shape parameter (o) will be:
L |w(@a+(1-wy (q)a, ,if ¢ eR 5)
o= A A A

v, (a)a+ -y, (a))a, Af a ¢ R
where v, (&),0<wy,(&)<1,i=1, 2 is a shrinkage weight factor specifying the belief in (&)
while (1 — wyi(+)) specifying the belief in (o), and (&) may be a function of & or may be a
constant (ad hoc basis).

The prior information may be incorporated in the estimation process using a preliminary
test estimator; see for example [7], thus improving the estimation process.
Several authors have been studied (PTSSE) defined in (5) for various parameters of different
distributions and for estimate the parameters of regression models, for example see [6], [8], [9]
and [10].
The aim of this paper is to study the effect of (PTSSE) defined in (5) for the unknown shape
parameter (o) of two parameters GR distribution with known scale parameter () via study the
performance of Bias, mean squared error and Efficiency expressions of the proposed estimator

and make comparisons of the numerical results with & and existing studies.
A numerical study is carried out to assess these effects of proposed estimators.

2. Maximum Likelihood Estimator (G, )

In this section, we consider the maximum likelihood estimator (MLE) of two parameter
GR(a,A).

Let xi, X2, ..., X, be a random sample of size n from GR(a,A) then the log-likelihood
function L(o,A) can be written as:
L(o,A)=c+nlno+2nInk+ > Inx, A2 x> + (- D)+ (-1 In(1—e ™)...(6)

i=1 i=1 i=1

where c is constant.
without loss of generality, we assume that A = 1 (A is known).

8L n I 2
So, —=—+ > Inl-¢ ™ )=0 (7
o o > In( ) (7)

i=1



the MLE of a, say @, is

A n
Gy = (8

Min(i-e™)
i=1
iid n )
Note that, if x; [/ GR(a,1), then —aZln(l —e ) follows gamma distribution with shape
i=1
parameter (n) and scale parameter 1; G(n,1), see [4].

n n‘o’
ie.; E(a =——a and var(a =
(Oype ) n—1 (Ctypee) (n—l)z(n—2)
Using (8), unbiased estimate of o can be easily obtained as:
. n-1, n-1
O =—0\E :—ﬁ (9)
D In(l-e™)
i=1
aZ
i.e.; E(&)=a and var(d) = MSE(a) = 3 ...(10)
n —
And the probability density function of & is
_ n+l o (n-Da
{(nl)a} T
f(6,0) = o foré > 0,00 > 0 .(11)
I'h) (n-Da
0 o.W.

3. Preliminary Test Single Stage Shrinkage Estimator o
In this section, we consider the (PTSSE) defined in (5) when y, (&) =0 and y,(&)=k

(constant); 0 < k <1 for estimate the shape parameter o of two parameter GR distribution when
A=1.

Thus, PTSSE of a can be written as:
N {oco ,if 6 eR

..(12)

k(d—a,)+a, Jif ae¢R

where R is a pretest region for testing the null hypothesis Hp: o = a9 vs the alternative hypothesis

Ha: o # o with level of significance (A) using test statistic T(0/a,) = 2(nﬂ— D o,
2(n—1 2(n—1
ie. R:[ (n-Da, 2n )0‘0} .(13)
b a
where a = (X}, ,,,,) and b=(X3,,,.), ...(14)

are respectively the lower and upper 100(A/2) percentile point of chi-square distribution with
degree of freedom (2n).

The expression for Bias of PTSSE (& ) is defined as below

Bias(a/a,R) =E(a—a)

= [0ty = 0)f(6)d6: + [ (k6 + (1 = K)ot ) (6)d:

where R is the complement region of R in real space and f( &) is a p.d.f. defined in (11).
We conclude,



Bias(G/ o, R) = o {(§ — 1)J, (a%,b%) + (1- k)G —1) - (n - DKJ, (a%,b%) — (1= k)&J, (a*, b¥) + T, ()} ...(15)

b* n-1 -y
where J, (a*,b%) = [y I——dy;/=0,1.2 , ...(16)
’ b ['(n)
(X’O -1 —1 (H—I)OL
also {=—,a*=( -a,b*=C b and y =— ..(17)
(04

ie;R*=[¢ " a* ¢ ' b*]

The Bias ratio [B(-)] of PTSSE (a ) is defined as follows

Bias(d) = 2@/ % R) ...(18)
o

The expression of Mean squared error (MSE) of PTSSE (@) given as follows:-

MSE(a/a,R) = E(a — o)’

= [ty — o f(6)dé + [ [ké + (1 = K)ot, — T F(6)d6:

and by simple computations, one can get:
2

+(C =D (k=1)’ =K’ [(n-1)’T,(a*,b%) — (n - DCJ, (a*,b*) +

MSE(é./a,R) = o {(Q—l)ZJO (a*,b*) + K >
n—

€I, (a%,b%)] = 2k(C ~ D(n = 1)J, (a*,b*) = CJ, (a*,b¥)]+ (£ = 1)* T, (a*,b¥) }

...(19)
Now, the Efficiency of a relative to the & denoted by R.Eff( 6./a,R) is defined as

REff(6/o,R) = % : see [6], [9] ...(20)

4. Conclusions and Numerical Results
The computations of Relative Efficiency [R.Eff(-)] and Bias Ratio [B(:)] expression were
used for the considered testimators ¢ . These computations were performed for the constants
A =0.01,0.05,0.1, n = 4,6,8,10,12, 16,20,30, k = 0.0(0.1)0.5 and £ = 0.25(0.25)2. Some of these
computations are displayed in tables (1)-(3) for some samples of these constants. The observation
mentioned in the tables leads to the following results:
i.  The Relative Efficiency [R.Eff(-)] of & are adversely proportional with small value of A
especially when € =1, i.e. A =0.01 yield highest efficiency
ii.The Relative Efficiency [R.Eff(-)] of & has maximum value when a=0({=1), for each k, n,
A, and decreasing otherwise (C#1). This feature shown the important usefulness of prior
knowledge which given higher effects of proposed estimator as well as the important role of
shrinkage technique and its philosophy.
iii.Bias ratio [B(-)] of & increases when { increases.
iv.Bias ratio [B(:)] of & are reasonably small when o=ay for each k, n, A, and increases
otherwise. This property shown that the proposed estimator & is very closely to
unbiasedness especially when a=o.
v.The Relative efficiency [R.Eff(-)] of & decreases function with increases value of k, for each
n, A, €. This property employ the role of the prior information for proposed Shrinkage
estimator via takes high weight for prior information which leads to maximum efficiency.
vi.The Effective Interval [the value of { that makes R.Eff.(-) greater than one] using proposed
estimator & 1is [.75,1.5]. Here the pretest criterion is very important for guarantee that prior
information is very closely to the actual value and prevent it faraway from it, which get
optimal effect of the considered estimator to obtain high efficiency.



vii.The considered estimator & is better that the classical estimator especially when ooy,
which is given the effective of & and important weight of prior knowledge as well as the
increment of efficiency may be reach to tens time.

viii.The proposed estimator & has smaller MSE than some existing estimators introduced by
authors, see for examples [4].
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Table (1)

Shown Bias Ratio [B(:)] and R.E.ff of & w.r.t. A, n and { when k =0.1

o
R.EfT.
A n Bins 0.25 0.75 1 1.25 1.75 2
A R.Eff() 1.0709 8.6529 154.1478 | 7.3399 0.8803 0.4981
B() (—6792) | (-0.2313) | (0.0106) | (0.2565) | (0.7527) | (1.0012)
q R.Eff(-) 0.3645 3.1770 154.33 2.5422 0.2954 0.1667
B() (~.675) | (-.2256) (0.011) | (0.2550) | (0.7510) | (0.9998)
001 6 R.Eff() 0.1565 1.4089 157.0383 | 1.1106 0.1269 0.0715
B() (—.675) | (-.2238) (.0102) (0.2533) | (.7502) | (0.9994)
20 R.Eff(-) 0.1218 1.0924 159.2414 | 0.8739 0.0988 0.0556
B() (—.6749) | (-0.2244) | (0.0085) | (0.2519) | (0.7499) | (0.9993)
A REF) 1.085 9.5245 126.9996 | 6.9479 0.8741 0.4984
B() (- .6751) | (-0.2193) | (0.0195) | (0.2629) | (0.7549) | (1.0005)
5 R.Eff(-) 0.3645 3.3074 143.0019 | 2.4907 0.2953 0.1675
B() (—.6749) | (-0.2213) | (0.0149) | (0.2576) | (0.7511) | (0.9973)
009 R.Eff(-) 0.1565 1.3988 1463186 | 1.1363 0.1274 0.0719
o B() (—.6749) | (-0.2245) | (0.0075) | (0.2503) | (0.7487) | (0.9960)
20 R.Eff(-) 0.1218 1.0871 135.8908 | 0.9092 0.0993 0.0559
B() (-.6750) | (-0.2249) | (0.0047) | (0.2468) | (0.7479) | (0.9958)
Table (2)
Shown B(:) and R.E.ff of & w.r.t. A, n and { when k = 0.5
o
R.Eff.
A n Bias 0.25 0.75 1 1.25 1.75 2
A REf() | 16951 3.8090 6.1659 | 3.6144 0.8073 0.4785
B(") (-.3962) | (~.1567) | (.0528) | (0.2823) | (0.7634) | (1.0060)
q REff(.) | 09142 3.0175 6.1733 | 1.8748 0.2899 0.1660
B(") (—.3751) | (-.1281) | (.0551) | (2751) | (.7552) | (.9991)
001 6 | REfO 0.4507 2.3840 6.2815 | 0.9593 0.1264 0.0717
B() (—.3749) (.1188) (.0512) | (.2667) (7512) | (0.9968)
o | REMO) 0.3596 2.0044 6.3697 | 0.7976 0.0987 0.0558
B(") (—.3749) | (~.12181) | (.0424) | (2597) | (.7499) | (.09964)
A REMY | 1875 4.1987 50799 | 2.9411 0.7664 0.4708
B() | (-03757) | (-0.0967) | (0.0976) | (0.3145) | (0.7746) | (1.0025)
5 REff() | 0.9143 3.5922 5.7201 1.7171 0.2878 0.1682
BO) | (03749) | (~0.1067) | (0.0745) | (0.2879) | (0.7555) | (0.9864)
009 REff(:) | 04507 22386 5.8527 | 1.0484 0.1285 0.0734
o BO) | (03749) | (—0.1224) | (0.0374) | (0.2517) | (0.7436) | (0.9802)
0 R.II;fo(.) 0.3596 1.9106 54356 | 0.9335 0.1010 0.0572
O | (03750) | (—0.1243) | 0.0238) | (0.2341) | (0.7397) | (0.9791)




Table (3)

Shown B(:) and R.E.ff of & w.r.t. A, n and £ when k =0.01

o
R.Eff.
A n Bias 0.25 0.75 1 1.25 1.75 2

A R.Eff(-) 0.9058 8.1152 15414.7760 | 7.9558 0.8882 0.4999
B(") (—0.7429) | (—0.2481) | (0.0011) | (0.2506) | (0.7503) | (1.0001)

) R.Eff(-) 0.3023 27187 15433.2995 | 2.6558 02962 | 0.16667
B(") (- 0.7425) | (—0.2476) | (0.0011) | (0.2505) | (0.7501) | (0.99998)

001 6 | REf) 0.1296 1.1671 15703.8332 | 1.1398 | 0.12698 | 0.0714
B() (—0.7425) | (-0.2474) | (0.0010) | (0.2503) | (0.7500) | (0.9999)

o | REMO) 0.1008 0.9073 15924.1373 | 0.8875 0.0988 0.0556
B(") (—0.7425) | (-0.2474) | (85x10~%) | (0.2502) | (0.74999) | (0.9999)

A REM) 0.9068 8.1940 12699.9569 | 7.9145 0.8877 0.4999
B() (—0.7425) | (~0.2469) | (0.0019) | (0.2513) | (0.7505) | (1.0001)

R.Eff(") 0.3023 27282 14300.19 | 2.6503 0.2962 0.1668
s B() (—0.7445) | (—0.2471) | (0.0015) | (0.2508) | (0.7501) | (0.9997)

0.05 6 R.;{g(.) 0.1296 1.1664 14631.8639 | 1.1425 0.1270 0.0715
(- 0.7425) | (—0.2474) | (75x10~% | (0.2500) | (0.7499) | (0.9996)

R.Eff(") 0.1008 0.9069 13589.0783 | 0.8911 | 0.09882 | 0.0567

20 BO | C07425) | (£02475) | 0x107%) | (0.2497) | (0.7498) | (0.99)
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