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 The article gives a definition of the concept of a modified category and 

formulates the problem of developing a theory of modified categories that opens 

the way to building high-performance brain-like computers of parallel action. 

Analyzing the structure of the category, we discovered in it some abnormality, 

which gave rise to a correction of the classical category concept. Having 

developed such an adjustment, we received a modified category, which seems to 

be better for the theoretical construction starting point role of the parallel action 

brain-like computers basis creation. We characterize the classical category, after 

that we will realize its predicate interpretation. As a result, we obtain a predicate 

category - one of the special cases of classical category. Any algebra, satisfying all 

the above requirements, will be regarded as an objectless classical category. It is 

possible to develop a theory of modified categories in parallel with the theory of 

classical categories. The theory of modified categories will prove to be an 

interesting object for theoretical research and an important tool for practical 

applications. It turns out that the diagrams of the theory of modified categories 

after their predicate interpretation coincide with the logical networks of brain-like 

computers. This gives us hope that the theory of modified categories will 

eventually become the theoretical basis for constructing of brain-like computers of 

parallel action.  
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1. Introduction 

Theory of categories has formed by the 60
th
 years 

of twentieth century. It develops prospective means of 

representation, analysis and synthesis of algebraic 

structures of arbitrary form. By the 1980s, the 

importance of the theory of categories for 

computerization and informatization was recognized, in 

particular, for the automation of programming. 
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Analyzing the structure of the category, we 

discovered in it some abnormality, which gave rise to a 

correction of the classical category concept. Having 

developed such an adjustment, we received a modified 

category, which seems to be better for the theoretical 

construction starting point role of the parallel action 

brain-like computers basis creation. 

2. Materials and Methods 

2.1 Classical category 

First, we briefly characterize the classical category 

[1-3], after that we will realize its predicate 

interpretation. As a result, we obtain a predicate 

category - one of the special cases of classical category. 
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Then we consider the most general definition of 

the concept of the classical category – the classical 

nonobjective category [4]. It is also called the classical 

abstract category. Example: Let M be any set. Its 

elements, denoted by the symbols , , ,...f g h , are called 

morphisms. Let, in addition to this, single-valued partial 

correspondence be defined as fg h with the departure 

area M M and arrival area of M . It is called the 

multiplication of morphisms f and g . Morphism h is 

called intersection of morphisms f and g . The 

multiplication of morphisms is associative: for any

, ,f g h M , intersections exist ( )fg h , ( )f gh M , the 

equation is justly ( ) ( )fg h f gh . Let E  be the set of all 

unit morphisms, E M . Any morphism e M  is called 

single (or identical, or simply a unit), if it satisfies the 

following two conditions: 

1) For each unit e E intersection ee exists; 

2) At any morphisms ,f g M and any units , 'e e E , 

for which intersections exist , 'fe e g M , congruence are 

met fe f and 'e g g . 

Set of morphisms M with units, satisfying the 

conditions listed above, taken together with 

multiplication of morphisms, satisfying the above 

conditions, is called a classical nonobjective category

K . It is written a M MorK , f M , f MorK . MorK  is 

a multiplication of all K categories. If f MorK , then 

morphism f is K -morphisms. 

This definition allows the existence in the category 

of many units. Namely the presence of many units and 

only this distinguishes the category (understood in the 

most general sense) from other known algebraic 

structures. A unit would always be one if on M
multiplicity, that was accepted not as partial, but 

everywhere defined. The existence of many units in the 

category and the everywhere demand for the certainty 

of multiplication of morphisms are relative to each 

other in an irreconcilable contradiction. But if we want 

to weaken the need to the categorical multiplication of 

morphisms and accept it as partial, then only due to this 

a possibility of introducing many units into the 

categories emerges. Units e and 'e are respectively 

called right and left for morphism correspondently,

f M , if fe f and 'e f f . From the definition of the 

concept of a category it logically follows that for any

e E equation holds true ee e , and that for any 

morphism f M there are only one right-hand and one 

left-hand unit (which can differ from each other). The 

last assertion is called the categorical law of identity. 

So, for each morphism f M there is only one right-

hand unit e and the only left-hand unit 'e , such that

'fe e f f  . At the same time, for each unit e E there 

are such morphisms f and g  (not necessarily the only 

ones), that congruence are performed for them fe f

and eg g . For any unit e E in the role of such 

morphisms f g e   can be taken. 

In this way, certain category can be considered as 

some kind of algebra [5, 6]. In the role of its carrier 

stands a set of morphisms M , the role of basic elements 

in this algebra is performed by units, (more precisely - 

single-valued correspondence) is the partial 

multiplication of morphisms. Any algebra, satisfying all 

the above requirements, will be regarded as an 

objectless classical category. 

A classical nonobjective category can be 

considered as one of the possible monoid 

generalizations concept. In it, instead of the operation 

(everywhere defined and unique correspondence) 

multiplication, appearing in the definition of a monoid. 

A correspondence of a more general kind is used - 

partial multiplication, from which the property of 

everywhere certainty is removed. For some pairs 

,f g M intersection fg in the classical nonobjective 

category may not exist. The requirement of unique units 

is also lifted. There can be a lot of units in the category. 

Units of the classical nonobjective category can be 

defined by the following two properties: 

1) For any unit e E ee e ; 

2) For any ,f g M and any , 'e e E , for which 

intersections , 'fe e g M exist, equalities fe f and

'e g g  are performed. 

If we additionally require that the multiplication of 

morphisms be everywhere defined, then the category 

will become a monoid. Suppose that multiplication in a 

category is everywhere defined and, at the same time, it 

has two units that differ from one another e and 'e ,

'e e . Then intersection should exist 'e e . According to 

equation fe f we obtain intersection ' 'e e e . 
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According to the same equation 'e f f we get a 

different result 'e e e . But this is impossible, since it is 

assumed that multiplication has the uniqueness property 

for its values. We have arrived to a contradiction. This 

means that if there are at least two units in the category, 

the last cannot have an everywhere defined 

multiplication. 

Now we concretize the concepts of category and 

morphism. In the process of concretization, the 

previously introduced concept of an objectless category 

receives additional details and properties and, as a 

result, becomes a category with objects [7]. We attach 

objects to K morphism non-subject category. 

Multiplicity of all objects of K category we write in 

the form Ob in K or in the form ObK . Objects are 

denoted by letters , , ,...A B C . If A ObK , then we say, 

that A is K -object. f Is said to be morphism from the 

object A to the object B , and is written as :f A B or

f
A B . Object A is the beginning of morphism f , 

and object B  – its end. Instead of «morphism» term the 

word arrow is also used.  

To each pair of ( , )A B objects ,A B ObK some, 

maybe even empty multiplicity, it is set as accordance

( , )kH A B morphisms of K category. It is possible that 

much different morphism, for example , ,f g h , the same 

pair of objects is set as accordance ( , )A B , i.e. 

, , :f g h A B . Such morphisms are called parallel. And 

for some other pair of objects ( , )C D in K category any 

f morphism, such as :f C D  may not be found. 

Instead of a note ( , )kH A B designations ( , )KHom A B ,

( , )KMor A B , ( , )K A B are also used, and if it does not 

lead to indeterminacy, – then it leads to more concise 

notes ( , )H A B , ( , )Hom A B , ( , )Mor A B . Instead of the 

note ( , )Kf H A B it is otherwise written as :f A B or A

f
B. Instead of expressions «object A ObK » and 

«morphism f MorK » it is written «object A K » and 

«morphism f K » or even easier: « K -object A » and 

« K -morphism f ». For each morphism f MorK there 

is a single pair of objects A and B , such, that

,A B ObK and ( , )Kf H A B . The attribution of this 

property to morphisms is motivated by the fact that 

when interpreting them for each f function it is natural 

to indicate its domain of definition A and range of 

values B .Otherwise the function definition will be 

incomplete. It is written as A domf  (beginning of 

morphism; in our interpretation - its domain of 

definition), B codf  (end of morphism; in our 

interpretation – its range of values). 

Let us write down the definition of the classical 

category with objects. Category with K objects 

consists of morphisms MorK multiplicity and objects

ObK multiplicity. It is assumed, that MorK  and ObK

multiplicities do not intersect. Category with K  

objects are characterized by the following five 

properties: 

1) Morphisms multiplicity corresponds to each pair 

of ,A B K -objects (perhaps even empty), included to

MorK . 

2) For each f MorK morphism the only pair of

,A B K -objects, such, that ( , )Kf H A B exists. 

3) In MorK multiplicity definitely, a partial, single-

valued correspondence is defined –morphisms 

multiplication; intersection fg morphisms :f A B and

:g C D is defined only in cases, when B C , in other 

words, when morphism f end coincides with the 

beginning of morphism g . In this case intersection fg is

K -morphism from the A objects to the D object. 

Otherwise they say, that for , ,A B C K objects the 

reflection is defined ( , ) ( , ) ( , )K K KH A B H B C H A C  . 

Sign in this case denotes Cartesian intersection 

multiplicity of morphisms ,f g of K category of

:f A B form and :g B C are called consecutive, 

:f A B and :g A B are called– parallel. 

4) Multiplication of morphisms is associative

( ) ( )fg h f gh , when morphisms ( )fg h and ( )f gh exist. In 

other words, associativity holds true every time, when

:f A B , :g B C , :h C D . In this way, associativity 

is fulfilled in all those cases when it makes sense. 

Equation ( ) ( )fg h f gh expresses the categorical law of 

associativity. In recent years, object modeling, in which 

the main tool is diagrams that look like private 

categorical diagrams had become very popular. They 

are also built of objects and arrows. They help in 
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describing the architecture of information systems. 

Private categorical diagrams are opposite to common 

ones, with their help information systems functioning 

patterns are described. On the fig. (1), an example of 

banking system diagram is provided [8]. 

 
Fig. (1): Diagram of the banking system work 

Arrows express the following operations: 1) 

receiving a card by a reading device; 2)card number 

reading; 3) screen initialization; 4) account opening; 5) 

registration number request; 6) registration number 

input; 7) registration number inspection; 8) transaction 

request and (what financial transaction should be 

performed?); 9) transaction selection (withdraw 

money); 10) request of the required money amount; 11) 

input of the money amount; 12) withdrawal of money 

from an account; 13) amount check; 14) deduction of 

the withdrawn amount of money from the account; 15) 

cash dispense; 16) issue of a check. 

The theory of categories can be viewed as the 

doctrine of categorical algebra, which is defined on the 

carrier MorK . It introduces the basic elements in the 

form of identical morphisms and basic operations - 

multiplication of morphisms. 

5) For each B K object morphism exists :Be B B

, fig. (2), called ordinary or identical morphism of an 

object B , such, that Bfe f and Be g g for any 

morphisms :f A B and :g B C . Identities Bfe f  and

Be g g are called categorical laws of identity. They are 

expressed by the following commutative diagram of the 

identity. 

 
Fig. (2): commutative diagram of the identity. 

For ,f g MorK morphisms fg intersection exists if 

and only if, when ,f g  – successive morphisms of K

category. 

 

2.2 Predicates 

We briefly describe the algebra of predicates [5],in 

terms of which we will subsequently interpret the 

notion of category. 

Predicate, given on a Cartesian product

1 2, ,..., mA A A , is any function 1 2( , ,..., )mP x x x  , 

reflecting Cartesian intersection 1 2 ... mA A A   of

1 2, ,..., mA A A multiplicity to {0,1}  multiplicity. 

Let L be a multiplicity of all relations on S , M

multiplicity of all predicates on S . Between all relations 

of L multiplicity and all predicates of M multiplicity, 

assigned on S , there is a one-to-one correspondence. 

Relation of P  from L and predicate P  of M are  

 
1 2

1 2
1 2

1, if ( , ,..., ) ,
( , ,..., )

0, if , ,..., .

m
m

m

x x x P
P x x x

x x x P


 


 

Correspondent, if at any 1 1 2 2, ,..., m mx A x A x A    

 

The reverse transition from P predicate to P
relation is conducted according to the rule: 

1 2 1 2

1 2 1 2

if ( , , ..., ) 1, then ( , , ..., ) ;

if ( , , ..., ) 0, then ( , , ..., ) .

m m

m m

P x x x x x x P

P x x x x x x P

 

 
 

Multiplicity of all vectors 1 2( , ,..., )mx x x , satisfying 

equation 1 2( , ,..., ) 1mP x x x  , forms of relation P , which is 

called the truth domain of the predicate P . P M
Predicate is called characteristic function of the relation

P L . Any algebra, defined over a support is called 

algebra of M predicates. The operations of disjunction, 

conjunction and negation over predicates are defined by 

the following congruencies:

1 1 2 2, ,..., m mx A x A x A       

1 2

1 2 1 2

( )( , ,..., )

( , ,..., ) ( , ,..., );

m

m m

P Q x x x

P x x x Q x x x

 

 
 

1 2

1 2 1 2

( )( , ,..., )

( , ,..., ) ( , ,..., );

m

m m

P Q x x x

P x x x Q x x x

 

 
 

1 2 1 2( )( , ,..., ) ( ( , ,..., )).m mP x x x P x x x   

Symbols , ,   , standing to the left of the sign of 

congruencies, mean operations on predicates, on the 

right - operations on predicate values, that means, over 

f 

f 
g 

g 

eB 

A 

B 
C 

B 
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Boolean elements. 

 

2.3 Predicate interpretation of the classical category 

Above we have considered the concepts of the 

classical category and the predicate. Now let us turn to 

the predicate interpretation of the classical category. 

Such an interpretation will be called a predicate 

category and will be denoted as Pred . 

We choose some universe of objectsU . In the role 

of objects , , ,...A B C categories Pred we use arbitrary 

subsets of the universeU . As Ob multiplicity Pred

categories we take a system of all multiplicities ofU  

universe. As morphisms of the form :f A B Pred

category we use linear logic operators of ( )fF P Q type. 

Each such operator converts one-place predicates [9].

P in single predicates Q and is expressed as follows: 

 ( ( , ) ( )) ( ).fx A K x y P x Q y    (1) 

In equation (1) predicates P and Q  are variables. 

Predicate ( )P x are imposed on the set A , predicate ( )Q y

on B multiplicity. Predicate ( )P x on A we consider as 

an instance of an object A , predicate ( )Q y on B  – as an 

exemplar of B object. In this way, morphism :f A B

converts instances of an object A to an object B . It 

would be more natural to take not , , ,...A B C

multiplicities of universe elements, but multiplicities of 

all predicates ( )P x , ( )Q y , ( ),...,R z given respectively on 

, , ,...A B C , multiplicities, but this is optional. 

Predicate ( , )fK x y is called the kernel of a linear 

logical operator [10], It completely determines the type 

of transformation (1). Predicate ( , )fK x y  is fixed, it is 

assumed on A B . Morphism of f type (1) is fully 

determined by ( , )fK x y  predicate. In the role of 

( , )Mor A B multiplicity of all morphisms of :f A B

type we take the system of all possible operations of the 

type (1). In Pred category each morphism f Pred

corresponds to ( , )fK x y conversion kernel (1). Each 

morphism :f A B of Pred category can be assumed, 

indicating the predicate corresponding to it ( , )fK x y on

A B . Multiplicity ( )Mor Pred we obtain a union of all 

multiplicities of the form ( , )PredMor A B , where ( , )A B  – 

all possible pairs of multiplicities ,A B U , or as a 

multiplicity of transformations of the form (1) with all 

possible kernels ( , )K x y , assumed on all possible 

Cartesian intersections A B of ,A B U multiplicity. 

Predicate can serve as an example of a kernel 

morphism of Pred category  

 
1 2 3 3

( , ) ( ) ( ) ,
a b d e

K x y x y y x y y x y      (2) 

Assumed on Cartesian intersection AB of

, , ,{ , }A a b c d e and 1,2{ ,3,4}B multiplicities. On the fig. 

(3) ( , )K x y bipartite predicate graph is depicted. 

 
Fig. (3): bipartite predicate graph 

A linear logical operator with this kernel is written in 

the form: 

 
1 2 3 3

, , , ,

.

( ) { }

((( ) ( ) ) ( ))a b d e

Q y x a b c d e

x x y x y y x y P x 





 


 (3) 

Let’s define, for example, reaction of )(Q x

morphism (3) for a predicate 

 ( ) .
a b e

P x x x x    (4) 

By the formula (3) we find: 

 1 2 3

3 31

( ) { }

((( ) ( )

)(

, , , ,

.))

a b d

e a b e

Q y x a b

x x

c d e

x x y

y x

x y y

x y y

  

 

 





  

 (5) 

The same result can also be graphically obtained 

(fig. (4)). 

 
Fig. (4): Graphical representation of bipartite 

predicate  

x y 
a 

b 

c 

d 

e 

1 

2 

3 

4 

A B 

K(x, y) 

x y 

a 

b 

c 

d 

e 

1 

2 

   3 

4 

A B 

K(x, y) 

P Q 
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To obtain Q multiplicity we collect all those y

elements together, which are connected by edges of the 

( , )K x y graph with x elements, forming P multiplicity. 

In the result we obtain 3{1 },Q  . In this way, morphism 

(3) converts multiplicity into 3{1 },Q  multiplicity (fig. 

(4)). 

Now we transit to the predicate interpretation of 

morphism intersections. Let’s define morphism

:f A B as operation (1) ( )fF P Q , аmorphism :g B C  

– as operation ( )fF Q R , defined by the equation: 

( ( , ) ( )) ( ).gy B K y z Q y R z                              (6) 

Variable predicate ( )R z is asset on the multiplicity

C , and fixed predicate ( , )gK y z  – on B C . Forming the 

operation ( )hF P R by superposition of operations 

( )fF P Q  and ( )gF Q R : ( ) ( ( )) .h g fF P F F P R 

Substituting (1) in (2), we obtain an expression for the 

transformation hF : 

( ( , )( ( ( , ) ( )))) ( ),g fy B K y z x A K x y P x R z         (7) 

Which transforms the predicate ( )P x on A into 

predicate ( )R z on C . After the identity transformations, 

equation (7) acquires the form: 

(( ( ( , ) ( , ))) ( )) ( ).f gx A y B K x y K y z P x R z         (8) 

Equation (7) is a linear logical operator. The role 

of its kernel is a predicate 

( , ) ( ( , ) ( , ))h f gK x z y B K x y K y z                     (9) 

On A C with x A  and z C arguments. Now the 

transformation (7) can be written in a shorter form: 

( ( , ) ( )) ( ).hx A K x z P x R z                               (10) 

Transformation (10) will be understood as 

morphism :h A C of Pred category. We take it in a role 

of intersections fg morphisms f and i.e. in this way, 

fg h . 

Let’s find, for example, intersection of two any 

morphisms of Pred category. Find ( , )hK x z graphically, 

fig. (5): 

 
Fig. (5): Intersection morphisms f  and g  categories 

 Intersection morphisms f  and g  categories Pred  

Bipartite graphs of ( , )fK x y and ( , )gK y z morphisms 

kernels f and g are on the fig. (5)on the left. They can 

be converted into bipartite kernel graph ( , )hK x z

intersection fg morphisms f and g as follows. At the 

first stage ( , )fK x y and ( , )gK y z . On the second stage 

turn a pair of graphs ( , )fK x y and ( , )gK y z , which we 

successively connected, in the equivalent one graph

( , )hK x z . To form the edges of a graph ( , )hK x z we 

identify all the paths from the points of the multiplicity 

A to the points of the multiplicity C in the chain of 

graphs ( , )fK x y and ( , )gK y z . To each of these paths 

we associate an edge of the graph ( , )hK x z . Obtained as 

a result of these actions graph ( , )hK x z is shown on the 

fig. (5) on the right side. 

It is possible to obtain the same ( , )hK x z kernel 

morphism h for the explored example also analytically, 

making calculations using formula (9). We have:

, }{ , ,A a b c d ; 1,{ 2,3}B ; ,6,7, 9}{5 8,C ; 

 
3 1 2 3

( , ) ( ) ( );
b c

fK x y x x y x y y                      (11) 

 
1 6 2 6 7 9

( , ) ( ).gK y z y z y z z z                         (12) 

Find hK  predicate: 

 ( , ) {1,2,3}hK x z y   

 

3 1 2 3

1 6 2 6 7 9

3 6 6 7 9

3 6 6 7 9

((( ) ( ))

( ( )))

((( ) ( ) 0

( ) ( ).

b c

b c c

b c

x x y x y y

y z y z z z

x x z x z z z x

x x z x z z z

   

    

       

    

        (13) 

We got the same ( , )hK x z kernel, which is depicted 

on the fig.(5), in the form of a bipartite graph. 

Let’s define reaction reviewed in the above 

example fg morphism intersections and h morphism 

equivalent to it. Let, for example, ( )
a c

P x x x  . First 
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we find the reaction of fg morphism on ( )P x predicate. 

Calculate ( )Q y reaction of f morphism on ( )P x

predicate by the formula (1): 

 
1 2 3

1 1 2 3

1 2 3

( ) { ( , ) ( )

{ ( ) ( ))

( ) 1 0 (

, , , }( )

, , , }((

) 1 0 0

( ).

f
a b c

a c

Q y x K x y P x

x x x y x y y

x x y y

a b c d

a b c

y

y y y Q y

d

y

 

     

           

   



     (14) 

Calculate ( )R z morphism g on a predicate 

 
1 2 3

( )Q y y y y                                         (15) 

by the formula (7): 

 1 6 2 6 7 9 1 2 3

6 6 7 9 6 7 9

( ) {1 ( , ) ( ) {1

( )) ( )

1 (

,2,3}

) 1 0 1

( ) ,2

.

,3}

((

gR x y K y z Q y y

y z y z z z y y y

z z z z z z z

   

      

         

 (16) 

So: 

 
6 7 9

( ) .R x z z z                                         (17) 

Now calculate reaction ( )R z morphism h by the 

formula (7): 

6 6 7 9

6 6 6 7 9

6 7 9

( ) { ( , ) ( )

{ ( ) ( )

(

, , , }( )

, , ,

)) 1 0 (

}(

) 0 0

(

1

.

h
a b c

a c

R z x K x z P x

x x x z x z z z

x x z z z z z

a b c d

a b d

z z z

c

 

      

            

  



(18) 

We obtained coincidence of fg and h morphisms 

reactions, demonstrating their identity. 

Let’s introduce, further, identical morphisms in

Pred category. In the role of the kernel of the identity 

morphism :Ae A A in Pred category accept predicate 

congruencies ( , )AD x y on A A : 

( , ) .
a a

A
a A

D x y x y


                                 (19) 

Give an example of the identity morphism in Pred

category. Let , }{1 2,3A . By the formula (19) we find: 

 
1 1 2 2 3 3

( , ) .AD x y x y x y x y                           (20) 

There are many identity morphisms in predicate 

category. They are of the same quantity as, ( , )AD x y

congruencies predicates. Each A subset ofU universe 

has its own identity morphism :Ae A A . For each 

morphism :f A B of Pred category single right 

identitymorphism e and single left identity morphism 'e

, such, that fe f and 'e f f , along with this Be e and

' Ae e exist. Any identity morphism e of the predicate 

category has the property ee e . Intersection of fg

morphisms :f A B and :g B C in Pred category always 

exists, along with this domf А and codf С . The law of 

associativity for morphisms multiplication in predicate 

category is performed. Its fairness can be visually 

demonstrated on bipartite graphs. We attach to the right 

side the second bipartite graph to the first and then we 

attach the third graph to the obtained chain of graphs. 

As a result, we obtain a bipartite graph. We obtain 

exactly the same graph, if we add to the right side of 

second graph the third and then add obtained graph 

chain to the right side of the first graph. 

Predicate category meets all requirements, 

specified to the classical category. In Congruencies (1) 

and (6-10) we defined fg intersection f morphisms 

and g in the predicate category only for cases when

:f A B and :g B C . The question is, if fg

intersection ofmorphisms :f A B and :g C D exist or 

not in general, whenВ С, remained without answer. 

However, no matter what the answer for this question 

is, no one can forbid us from making a decision not to 

form intersections for :f A B and :g C D morphisms 

in all those cases, when B C . If to do so, then we 

obtain predicate category that subjects all the 

requirements, for the classical category. If it turns out, 

that morphism intersections of such kind are impossible 

to form, then this decision will be forced. And if it is 

possible. Then the way for another, alternative 

definition of the predicate category that does not fit the 

notion of classical category will open. 

Lets’ try to answer the raised question. First we 

take two identical morphism :Ae A A and :Be B B  (

A B ).From the definition of the classical category it 

follows that intersection A Be e does not exist. And what 

about the predicate category? For example. Let

, }{ , ,A a b c d , , }{ , ,B b c d e . Try to obtain intersection

A Be e morphisms Ae and Be , graphically, as described 

above. (Analytical method cannot be applied, because 

we do not have the morphisms multiplication 

definitions in mathematical terms for the given case in 

the predicate category yet). It turns out that the 

graphical method successfully works and without any 

complications and results in a well-defined morphisms 

intersection. On the fig. (6)from the left side bipartite 

kernel graphs of morphisms Ae and Be are depicted. We 

introduce horizontal links between the same points, but 

now not the same, but different A and B multiplicities, 
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located next to each other, marked with symbols Ae and

Be . Next, we convert a pair of graphs Ae and Be , 

which we have connected consecutively, into a single 

graph equivalent to them, marked with a symbol ABe . 

In the result we obtain intersection AB A Be e e . Graph

ABe is depicted on the fig. (6) on the right side. It is 

necessary to note, that obtained morphism ABe is not 

identical 

 
Fig. (6): Morphisms kernel graphs Ae and Be  

It is clear, that it is possible to obtain intersection 

of any morphisms :f A B and :g C D in exactly the 

same way in all those cases, when B C . The 

corresponding example is shown on the fig. (7). 

 
Fig. (7): Morphisms intersection f  and g  

So, we got a clear answer to the question. There 

are no limits for forming of any morphism intersections 

in predicate category. This means, that multiplication in 

it can be considered everywhere defined. This fact, on 

the other hand, does not prevent from considering the 

multiplication in the predicate category to be partial. 

This means, that two different definitions of a predicate 

category are possible. One of them uses partial 

morphisms multiplication; it is covered by the concept 

of the classical category. Such a predicate category is 

called classical. The second definition of a predicate 

category uses an everywhere defined multiplication. It 

is not covered by the notion of the classical category. 

Such predicate category is called modified. Each of the 

variants of the predicate category deserves attention, 

may be of interest for theoretical development and 

practical applications. We also suppose that there is a 

sense to summarize from the concept of a modified 

predicate category and as a result, as alternative to the 

general concept of the classical theory to form the 

general concept of a modified category. There is a sense 

to develop both the theory of classical categories and 

the theory of modified categories.   

Now we give a mathematical definition of the 

multiplication of morphisms in a modified predicate 

category. The same result, as we obtained graphically 

on arbitrary graphs (fig. (6)), is obtainable also 

analytically by the following formula: 

( , ) ( ( , ) ( , )).h f gK x z y B C K x y K y z              (21) 

Here h fg , :f A B , :g C D , , , ,A B C D – are 

arbitrarily chosen subsets of the universeU . Predicate

( , )fK x y is set on A B , predicate ( , )gK y z – on C D , 

and predicate ( , )hK x z  – on A D .  Define intersection fg

morphisms f and g in the modified predicate category 

for the example shown on the fig. (7). Accept

, }{ , ,A a b c d , ,2,1 4}{ 3,B , 2,3{ ,4,5}C , 5,6,7, 9}{ 8,D . 

Morphisms kernels f and g are written in the form: 

1 1 2 2 3 4
( , ) ( ) ( );

a b c
fK x y x y x y y x y y y     (22) 

2 3 6 3 7 9 5 8
( , ) ( ) ( ) .gK y z y y z y z z y z          (23) 

Kernel ( , )hK x z of intersections h fg found by the 

formula (21): 

1 1 2

2 3 4 2 3 6

3 7 9 5 8 6 7 9

( , ) {2,3,4}( ( )

( )) (( )

( ) ( ) ( ).
.

a b
h

c

b c c

K x z y x y x y y

x y y y y y z

y z z y z x x z x z z

    

      

      
     (24) 

As we see, the result of calculations by the formula 

exactly corresponds to the graph ( , )hK x z , which was 

obtained before by the graphic method (fig. (7)). 

It is our task to compare the properties of the 

modified predicate category with the properties of 

classical category. In classical category multiplication 

of morphisms is partial, in modified category it is 

everywhere defined. In both categories for each 

morphism f unique identity morphism e  exists, which 

satisfies the equation fe f , and the only equal 

morphism 'e , which satisfies 'e f f equation. In both 

categories any identical morphism satisfies the equation

ee e . The notion of a classical unit, as it is represented 

eA eB 
eAB 

x y 
A A 

a 

b 

c 

d 

a 

b 

c 

d 

A B B B 
y z x z 

e 

a 

b 

c 

d 

b 

c 

d 

e  

b 

c 

d 

b 

c 

d 

x y 

Kf(x, y) 
A B 

a 

b 

c 

d 

2 

3 

9 

1 

2 

3 

a 

b 

c 

d 8 

5 

6 

7 

9 

8 4 

5 

7 

A C D 
Kg(y, z) Kh(x, z) 

D 

y z x 

h=fg 

4 

6 

z 
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in the monoid, is defined as follows: the unit is one, and 

it has properties fe f and ef f at any f . Both in 

classical and modified predicate categories the concept 

of unit is somewhat deformed. In both categories 

instead of one, appears many units. In the classical 

category of identity fe f  and ef f remain unchanged 

for any unitsеand for any morphism f , but only then, 

when intersections fe and ef exist. In modified category 

intersections fe and ef exist at any e and f , but 

congruencies fe f and ef f are not always performed. 

Everything that can be detected in the classical category 

can be observed also in the modified category. In the 

modified category, the area of the observation is wider; 

there you can find something that does not exist in the 

classical category. In this way, in some sense, modified 

category is an extension of the classical category. 

2.4 General modified category 

Now passing from a particular modified predicate 

category to the general concept of modified category. In 

the beginning we give a definition to the common 

notion of modified non-subject category. Let M
multiplicity be defined. Its elements, designated by the 

symbols , , ,...,f g h are morphisms. Let, besides, a single-

valued and everywhere defined correspondence fg h

with the area of departure M M and the area of arrival 

M be defined. It is called multiplication of morphisms

f and g . Morphism h is called morphisms intersection

f and g . Morphisms multiplication is associative: at 

any , ,f g h M the equation ( ) ( )fg h f gh  holds true. Let, 

finally, E subset of M subset is defined. Its elements, 

called single morphisms, are defined by the condition: 

at any ,f g M , 'e e E , for which congruencies fe f

and 'e g g are performed exist. Set of morphisms M

with units, which meet the above condition, taken 

together with multiplication of morphisms, satisfying 

the above conditions is called K  objectless modified 

category. As in the classical category, the identity 

morphism e , satisfying the condition fe f  is called 

right identical morphism f . Identical morphism 'e , 

satisfying the condition 'e f f , is called left identical 

morphism f . Morphisms e and 'e for any f and g are 

unique. 

There are two differences of classical and modified 

categories-in the definition of multiplication of 

morphisms and in the definition of identical morphism. 

For the classical definition of category partial 

multiplication is used, for modified – everywhere 

defined. We know, that when using everywhere defined 

multiplication of morphisms, the standard definition (as 

for monoid) of a unit cannot be maintained due to the 

appearance of a contradiction in the definition of a 

category. And in modified category weakened 

definition of a unit is used. This is not a real unit, but 

аquasi-unit. In appearance, the definition of identical 

morphism remains as if it were the same: still for any 

morphism f single right e and single left 'e identical 

morphisms, satisfying the conditions fe f and 'e f f

exist. In the definition of the classical category it is not 

mentioned that such identical morphisms are unique. 

But it does not mean anything, since this uniqueness 

follows logically from the definition of the classical 

category. Both for classical and modified categories this 

statement is fair for any morphism f . So where are the 

differences and limitations on the identical morphisms? 

In order to answer this question, first we will have to 

reformulate both definitions so that their texts differ 

only where semantic differences take place, and then 

the differences in definitions will become clearly 

visible, and it will be possible to understand which side 

has increased and what weakened. 

We formulate the definition of the classical 

category. Let M  be a set of all morphisms. Morphisms 

multiplication, which is unambiguous, generally 

speaking partial, correspondence fg h with the area of 

departure M M and the area of arrival M is set. 

Morphisms multiplication is associative: at any

, ,f g h M , for which intersections ( ) , ( )fg h f gh M

exist, equation ( ) ( )fg h f gh holds true. Let E be a 

multiplicity of all single morphisms E  ( E M ). For 

each e E intersection ee M exists. At any ,f g M and 

any , 'e e E , for which intersections , 'fe e g M exist, 

congruencies fe f and 'e g g are performed. 

Multiplicity M , on which the morphisms multiplication 

described above is defined, all single morphisms which 

meet properties listed above is K  objectless classical 

category. 
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Formulating the definition of the modified 

category. Let M be a multiplicity of all morphisms. 

Morphisms multiplicity, representing single-valued and 

everywhere defined correspondence fg h with the area 

of departure M M and the area of arrival M is defined. 

Multiplication of morphisms is associative: at any

, ,f g h M the equality ( ) ( )fg h f gh is fair. Let E  – be 

a subset of all single-unit morphisms E  ( E M ). At 

any ,f g M exist , 'e e E , for which congruencies fe f

and 'e g g performed, existed. M Multiplicity, on which 

the multiplication of morphisms described above is 

defined, single-unit morphisms of which satisfy 

properties listed above is called non-objective classic 

K category. 

The result of comparing the definitions of the 

classical and modified categories is as follows: at 

transition from a classical category to a modified one 

morphisms multiplicity is intensified, and units are 

weakened. This means, that the classical category is not 

a special case of a modified one, and the modified 

category is not a special case of a modified one. These 

algebras are different; none of them logically follows 

the other. None of them can be obtained from the other 

as a result of generalization or concretization. 

3. Results 

3.1Logical Networks 

The result of a formal description of any object in 

the language of the predicate algebra is always a 

predicate , , ,1 2( )mP x x x . It must express some kind of 

definite relation P , which is a multiplication of all 

objects sets , , ,1 2 mx x x , satisfying equation

, , ,1 2( ) 1mP x x x  . Namely this relation that expresses 

the structure of the described object. 

Addressing the result of a formal object description 

which is taken for example, we see, that it is 

represented differently, namely by the system of six 

predicates ( , )R i x , 1 1( , )E x x , 2 2( , )E x x , 1 1( , ),F s x

2 2( , )F s x , ( , )G s t . How to reconcile this result with just 

stated statement? And where is that single predicate

, , , )1 2( mP x x x , which should describe the structure of 

our object? The answer to these questions is very 

simple: from predicates R , 1E , 2E , 1F , 2F , G it is 

possible to form not only a system, but also a 

conjugation which will be precisely that predicate P , 

which describes the structure of the object under 

consideration: 

1 1 2 2 1 1

2 2 1 2

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , , , , , ).

R i x E x x E x x F s x

F s x G s t P i x x x s t

   

 
 

In fact, for the described object space S relations R

1E , 2E , 1F , 2F , and G  should be simultaneously 

performed, and this leads to conjugation of 

correspondent predicates. 

To obtain P predicate of 1 2, , , nР Р P predicates of 

the system 1 2{ , , , }nР Р P is its composition. The inverse 

transformation of the predicate P to the system

1 2{ , , , }nР Р P of 1 2, , , nР Р P predicates is a 

decomposition. Composition and decomposition of 

predicates are inextricably linked to each other. 

Operation of obtaining a predicate P of predicates

1 2, , , nР Р P is considered to be a composition in that 

case and only if there is an inverse operation, allowing 

restoring the same predicates by the predicate P . 

Similarly, the predicate transformation operation in the 

predicate system 1 2, , , nР Р P can be called 

decomposition only, when there is an inverse operation, 

restoring predicate P at predicates 1 2, , , nР Р P . 

Getting the predicate P in the form of a 

conjunction of predicates 1 2, , , nР Р P is called its 

conjunctive composition. Decomposition of the 

predicate P in the conjunction of the same predicates 

1 2, , , nР Р P is called its conjunctive decomposition. An 

important special case of decomposition is the so-called 

binary predicate decomposition P , characterized in 

that each predicate in the system 1 2{ , , , }nР Р P has 

exactly two important arguments. Conducting a formal 

description of the S  space object, we, unwittingly, 

incidentally produced a binary conjunctive 

decomposition of the predicate P , which led us to the 

concept of a logical network. Now we can give a formal 

definition of a logical network [11, 12], which is 

meaningfully understood as the device by which man 

thinks today, and tomorrow a brain-like computer will 

think in the same way. A logical network is a graphical 

representation of the result of a multi-place predicate 

binary conjunctive decomposition. 

Each model has its own logical network. Any 

logical network consists of poles and branches. Each 

pole of the logical network is assigned its own model 
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object variable, which is called the attribute of this pole. 

Each pole is denoted by its subject variable. With each 

pole we connect its domain, that is the area of the 

attribute change of this pole. Any pole of a logical 

network at any given time carries some knowledge 

about the meaning of its attribute. This knowledge is 

called the state of the pole. It is one of the subsets of the 

domain of the pole. When pointing the states of all 

poles of the network at a given time, we will get the 

network state at the same time. The poles of the 

network are divided into two classes – external and 

internal. Each outer pole is connected to only one 

branch, each internal pole to more than one branch. 

Each branch of the logical network is assigned its 

binary relation of the model, which is called the ratio of 

this branch. Each branch is denoted by its relationship 

number. It connects two poles that correspond to those 

subject variables that are connected by a relation 

corresponding to a given branch. 

Each logical network can be turned into an 

electronic circuit for the automatic solution of a certain 

class of tasks, determined by the model for which the 

network was built. 

4. Conclusions 

The concepts of classical and modified categories 

can be generalized; as a result we obtain an algebra that 

is called a quasicategory. From the classical category it 

uses weakened multiplication of morphisms, and from 

the modified one - weakened units. The definition of a 

quasicategory is given below. Let M  be the set of all 

morphisms. The multiplication of morphisms, which is 

a single-valued, generally speaking partial 

correspondence fg h with the area of departure M M

and the area of arrival M is defined. Multiplication of 

morphisms is associative: , ,f g h M  , for which 

intersections exist, the equality ( ) ( )fg h f gh holds true. 

Let E be the set of all single morphisms E  ( E M ). 

For each e E intersection ee M exists. At any ,f g M

exist , 'e e E , for which congruences fe f and 'e g g

are performed. M multiplicity, on which the 

multiplication of morphisms described above is defined, 

all single morphisms of which satisfy the properties 

listed above, is called a quasicategory M . 

The modified category is located above the 

monoid, but below the semigroup. It is located in a 

series of algebras with an everywhere defined principal 

operation. Classical category, as well as modified, 

generalizes the concept of a monoid, but in a different 

way. It is not a special case of a semigroup. Its 

introduction can be regarded as a departure to the side 

from the mainstream of the development of 

mathematics. Introduction of modified category returns 

the notion of a category in a family of algebras with an 

everywhere defined principal operation. Now it is 

possible to develop a theory of modified categories in 

parallel with the theory of classical categories. Perhaps 

the theory of modified categories will prove to be an 

interesting object for theoretical research and an 

important tool for practical applications. It turns out that 

the diagrams of the theory of modified categories after 

their predicate interpretation coincide with the logical 

networks of brain-like computers. This gives us hope 

that the theory of modified categories will eventually 

become the theoretical basis for constructing of brain-

like computers of parallel action. 
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تشبة الدماغ أجهزة الكمبيوتربناء ظرية شبه الفئات باعتبارها قاعدة نظرية لن  
 اس بغداديعمار عوني عب
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 الخلاصة :

داء ي ذات الأتعريفًا لمفيوم الفئة المعدلة ويصوغ مشكمة تطوير نظرية لمفئات المعدلة التي تفتح الطريق لبناء أجيزة الكمبيوتر ذات الأداء المتواز  بحثيقدم ال

، حصمنا عمى فئة معدلة ، والتي العالي. عند تحميل بنية الفئة ، اكتشفنا فييا بعض الشذوذ ، مما أدى إلى تصحيح مفيوم الفئة الكلاسيكية. بعد تطوير مثل ىذا التعديل 

عمى  حصمنانتيجة لذلك ،  ،يا الأصميعريفت حسبالكلاسيكية ، و الفئة  تمتمييزيبدو أنيا أفضل لدور نقطة الانطلاق النظري لمبناء عمى أساس إنشاء الحواسيب المتوازية. 

. من الممكن تطوير نظرية جديدهفئة كلاسيكية  اجميع المتطمبات المذكورة أعلاه ، سيتم اعتبارى ذلك فئة أصمية واحدة من الحالات الخاصة لمفئة الكلاسيكية. يستوفي

الرسوم البيانية  وضحتللاىتمام لمبحث النظري وأداة ميمة لمتطبيقات العممية.  ةثبت نظرية الفئات المعدلة أنيا مثير اية. الفئات المعدلة بالتوازي مع نظرية الفئات الكلاسيك

ف تتوافق مع الشبكات المنطقية لأجيزة الكمبيوتر الشبيية بالدماغ. وىذا يعطينا الأمل في أن تصبح نظرية الفئات المعدلة في نياية المطا انيالنظرية الفئات المعدلة 

 الأساس النظري لبناء أجيزة كمبيوتر تشبو الدماغ تعمل بالتوازي.
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