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ABSTRACT

The article gives a definition of the concept of a modified category and
formulates the problem of developing a theory of modified categories that opens
the way to building high-performance brain-like computers of parallel action.
Analyzing the structure of the category, we discovered in it some abnormality,
which gave rise to a correction of the classical category concept. Having
developed such an adjustment, we received a modified category, which seems to
be better for the theoretical construction starting point role of the parallel action
brain-like computers basis creation. We characterize the classical category, after
that we will realize its predicate interpretation. As a result, we obtain a predicate
category - one of the special cases of classical category. Any algebra, satisfying all
the above requirements, will be regarded as an objectless classical category. It is
possible to develop a theory of modified categories in parallel with the theory of
classical categories. The theory of modified categories will prove to be an
interesting object for theoretical research and an important tool for practical
applications. It turns out that the diagrams of the theory of modified categories
after their predicate interpretation coincide with the logical networks of brain-like
computers. This gives us hope that the theory of modified categories will
eventually become the theoretical basis for constructing of brain-like computers of
parallel action.

1. Introduction

Theory of categories has formed by the 60™ years

Analyzing the structure of the category, we

discovered in it some abnormality, which gave rise to a

of twentieth century. It develops prospective means of
representation, analysis and synthesis of algebraic
structures of arbitrary form. By the 1980s, the
importance of the theory of categories for
computerization and informatization was recognized, in

particular, for the automation of programming.
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correction of the classical category concept. Having
developed such an adjustment, we received a modified
category, which seems to be better for the theoretical
construction starting point role of the parallel action
brain-like computers basis creation.

2. Materials and Methods

2.1 Classical category

First, we briefly characterize the classical category
[1-3], after that we will realize its predicate
interpretation. As a result, we obtain a predicate
category - one of the special cases of classical category.
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Then we consider the most general definition of
the concept of the classical category — the classical
nonobjective category [4]. It is also called the classical

abstract category. Example: LetM be any set. Its
elements, denoted by the symbols f,g,h,..., are called

morphisms. Let, in addition to this, single-valued partial
correspondence be defined as fg=h with the departure
areaMxM and arrival area of M. It is called the
multiplication of morphisms f and{. Morphismﬂis
of morphisms f and{(. The

multiplication of morphisms is associative: for any
f,g.heM , intersections exist(fg)h, f(gh)eM, the

called intersection

equation is justly (fg)h=f(gh). Let E be the set of all

unit morphisms, E < M . Any morphism eeM s called
single (or identical, or simply a unit), if it satisfies the
following two conditions:

1) For each unite€E intersection ee exists;

2) At any morphisms f,geM and any unitse,e'eE
for which intersections exist fe,e'geM , congruence are
met fe=f ande'g=g.

Set of morphisms M with units, satisfying the
conditions listed above, taken together with

multiplication of morphisms, satisfying the above
conditions, is called a classical nonobjective category

K . Itis written aM=MorK, feM , feMork . MorK is

a multiplication of all K categories. If f eMorK , then

morphism f is K -morphisms.

This definition allows the existence in the category
of many units. Namely the presence of many units and
only this distinguishes the category (understood in the
most general sense) from other known algebraic

structures. A unit would always be one if on M
multiplicity, that was accepted not as partial, but
everywhere defined. The existence of many units in the
category and the everywhere demand for the certainty
of multiplication of morphisms are relative to each
other in an irreconcilable contradiction. But if we want
to weaken the need to the categorical multiplication of
morphisms and accept it as partial, then only due to this
a possibility of introducing many units into the
categories emerges. Units€and € 'are respectively

called right and left for morphism correspondently,
feM, if fe=fande' f=f . From the definition of the
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concept of a category it logically follows that for any
ecEequation holds true€€=€, and that for any

morphism f €M there are only one right-hand and one

left-hand unit (which can differ from each other). The
last assertion is called the categorical law of identity.
So, for each morphism f eM there is only one right-

hand unit cand the only left-hand unite', such that
fe=e' f=f . At the same time, for each unite<E there
are such morphisms f andJ (not necessarily the only
ones), that congruence are performed for them fe=f

anded=0g. For any uniteeEin the role of such
morphisms f =g=e can be taken.

In this way, certain category can be considered as
some kind of algebra [5, 6]. In the role of its carrier

stands a set of morphisms M | the role of basic elements
in this algebra is performed by units, (more precisely -
single-valued  correspondence) is the partial
multiplication of morphisms. Any algebra, satisfying all
the above requirements, will be regarded as an
objectless classical category.

A classical nonobjective category can be
considered as one of the possible monoid
generalizations concept. In it, instead of the operation
(everywhere defined and unique correspondence)
multiplication, appearing in the definition of a monoid.
A correspondence of a more general kind is used -
partial multiplication, from which the property of
everywhere certainty is removed. For some pairs
f,geM intersection fg in the classical nonobjective
category may not exist. The requirement of unique units
is also lifted. There can be a lot of units in the category.

Units of the classical nonobjective category can be
defined by the following two properties:

1) For any unit€ek ee—e;

2) For any f,geMand anye,e'eE, for which
intersections fe,e'geM exist, equalities fe=f and
e'g=g are performed.

If we additionally require that the multiplication of
morphisms be everywhere defined, then the category
will become a monoid. Suppose that multiplication in a
category is everywhere defined and, at the same time, it
has two units that differ from one anothereande€’,
e#€'. Then intersection should existe'¢ . According to
equation fe=f we

obtain intersectione'e=¢",
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According to the same equatione'f =fwe get a

different resulte'e=¢. But this is impossible, since it is
assumed that multiplication has the uniqueness property
for its values. We have arrived to a contradiction. This
means that if there are at least two units in the category,
the last cannot have an everywhere defined
multiplication.

Now we concretize the concepts of category and
morphism. In the process of concretization, the
previously introduced concept of an objectless category
receives additional details and properties and, as a
result, becomes a category with objects [7]. We attach

objects to K morphism non-subject category.
Multiplicity of all objects of K category we write in
the formObinK or in the formObK. Objects are
denoted by letters A,B,C,.... If AcObK | then we say,
that A is K -object. f Is said to be morphism from the
object A to the object B , and is written as f: A—B or
A—' 5B. Object A is the beginning of morphism f |,

and object B — its end. Instead of «morphism» term the
word arrow is also used.

To each pair of (A B)objects A, BeObK some,
maybe even empty multiplicity, it is set as accordance
Hy (A, B) morphisms of K category. It is possible that
much different morphism, for example f,g,h, the same
i.e.

pair of objects is set as accordance (A B),

f,g,h:A—B. Such morphisms are called parallel. And
for some other pair of objects (C,D)in K category any
f morphism, such as f:C—D may not be found.
Instead of a note H, (A, B)designations Homy (A, B),
Moryk (A,B), K(A,B)are also used, and if it does not

lead to indeterminacy, — then it leads to more concise
notesH(A,B), Hom(A,B), Mor(AB). Instead of the

note f eHy (A, B)it is otherwise written as f :A—>Bor A
— " ,B. Instead of expressions «object AcObK » and
«morphism feMorK » it is written «objectAcK» and
«morphism f €K » or even easier: « K -object A » and
« K -morphism f ». For each morphism f eMorK there

is a single pair of objectsAandB, such, that
A, BeObK and feH (A,B). The attribution of this

property to morphisms is motivated by the fact that
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when interpreting them for each f function it is natural

to indicate its domain of definition A and range of

values B .Otherwise the function definition will be
incomplete. It is written as A=domf (beginning of

morphism; in our interpretation - its domain of
definition), B=codf (end of morphism; in our

interpretation — its range of values).
Let us write down the definition of the classical

category with objects. Category with K objects
consists of morphisms MorK multiplicity and objects
ObK multiplicity. It is assumed, thatMorK andObK

multiplicities do not intersect. Category with K
objects are characterized by the following five
properties:

1) Morphisms multiplicity corresponds to each pair

of A B K -objects (perhaps even empty), included to
MorK .

2) For each f eMorK morphism the only pair of
AB K -objects, such, that f eH (A, B) exists.

3) InMorK multiplicity definitely, a partial, single-
valued correspondence is defined —morphisms
multiplication; intersection fg morphisms f :A—B and
g:C—Dis defined only in cases, whenB=C, in other
words, when morphism f end coincides with the
beginning of morphism{. In this case intersection fg is
K -morphism from the A objects to the D object.
Otherwise they say, that for A B,CeK objects the
reflection is defined Hy (A B)xHk (B,C)—>Hk (AC).
Signxin this case denotes Cartesian
of

intersection
of
consecutive,

multiplicity morphisms f, g of K category

f:A—>Bform andg:B—»>Care called

f:A—Band g:A—B are called- parallel.

4) Multiplication of morphisms is associative
(fg)h=f(gh), when morphisms ( fg)hand f (gh) exist. In
other words, associativity holds true every time, when
f:A—>B, g:B-C, h:CoD. In this way, associativity
is fulfilled in all those cases when it makes sense.
Equation (fg)h= f (gh) expresses the categorical law of

associativity. In recent years, object modeling, in which
the main tool is diagrams that look like private
categorical diagrams had become very popular. They
are also built of objects and arrows. They help in
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describing the architecture of information systems.
Private categorical diagrams are opposite to common
ones, with their help information systems functioning
patterns are described. On the fig. (1), an example of
banking system diagram is provided [8].
Customer
6,911
/-_F__\A [ ATM screen I
Ll E R 12| ()13

\ [ Customer's account ]
'N (V2 / 1516 | ()14
ATM |

Fig. (1): Diagram of the banking system work

Arrows express the following operations: 1)
receiving a card by a reading device; 2)card number
reading; 3) screen initialization; 4) account opening; 5)
registration number request; 6) registration number
input; 7) registration number inspection; 8) transaction
request and (what financial transaction should be
performed?); 9) transaction selection (withdraw
money); 10) request of the required money amount; 11)
input of the money amount; 12) withdrawal of money
from an account; 13) amount check; 14) deduction of
the withdrawn amount of money from the account; 15)
cash dispense; 16) issue of a check.

The theory of categories can be viewed as the
doctrine of categorical algebra, which is defined on the
carrier MorK . It introduces the basic elements in the
form of identical morphisms and basic operations -
multiplication of morphisms.

5) For each BeK object morphism existseg:B—B
, fig. (2), called ordinary or identical morphism of an
object B, such, that feg=f andegg=gfor any
morphisms f:A—Band g:B—C. Identities feg=f and
egg=g are called categorical laws of identity. They are
expressed by the following commutative diagram of the
identity.
f

A~ B
g
f ég
g C
——

Fig. (2): commutative diagram of the identity.

For f,geMorK morphisms fg intersection exists if

and only if, when f,g — successive morphisms of K
category.

2.2 Predicates

We briefly describe the algebra of predicates [5],in
terms of which we will subsequently interpret the
notion of category.

Predicate, given on a Cartesian product

A A, Ay, 1S any  function P(xg, Xp, ..., X)) =E
reflecting ~ Cartesian  intersection A x Ay x...x A, Of
AL A, ..., Ay, multiplicity toX ={0,3 multiplicity.

LetLbe a multiplicity of all relations onS, M
multiplicity of all predicates onS. Between all relations
of Lmultiplicity and all predicates of M multiplicity,
assigned onS, there is a one-to-one correspondence.
Relation of P fromLand predicate P of M are
1,if (X, X0,y X)) € P,

P =
(Xl,Xz, ,Xm) {0, if (Xl,xz,,,,,xm)é P.

Correspondent, if at any x € A, X, € Ao, ..., X € Ay,

The reverse transition from P predicate to P
relation is conducted according to the rule:
if P(x,X2,..., Xm) =1 then (%, X2,..., Xm) € P;
if P(x,%2,.... Xm) =0, then (X, X, ..., X ) € P.
Multiplicity of all vectors(x,xy,...,Xy), satisfying
equation P(x, X,,..., ,)=1, forms of relation P, which is
called the truth domain of the predicate P . PeM
Predicate is called characteristic function of the relation
Pel. Any algebra, defined over a support is called

algebra of M predicates. The operations of disjunction,
conjunction and negation over predicates are defined by
the following congruencies:
VX € A,V X2 € Po,...., V Xm € A
(PvQ)(X, X2ty Xm) =
=P(X1, X2,y Xm) VvV Q(Xq, X2, .0y X );
(PAQ)(X, X2,.ey X)) =
=P(X1, X200y Xm) AQ(Xq, X240y X );
(=P)(X0, X2,-., Xm) =—(P(X1, X2,-.., Xm))-
Symbols Vv, A, =, standing to the left of the sign of
congruencies, mean operations on predicates, on the
right - operations on predicate values, that means, over
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Boolean elements.

2.3 Predicate interpretation of the classical category

Above we have considered the concepts of the
classical category and the predicate. Now let us turn to
the predicate interpretation of the classical category.
Such an interpretation will be called a predicate

category and will be denoted as Pred .

We choose some universe of objectsU . In the role
of objects A B,C,...categories Pred we use arbitrary
subsets of the universeU . AsObmultiplicity Pred
categories we take a system of all multiplicities of U
universe. As morphisms of the form f:A—B Pred
category we use linear logic operators of F; (P)=Q type.
Each such operator converts one-place predicates [9].
P in single predicates Q and is expressed as follows:

Ixe A(K¢ (%, Y)P(x))=Q(Y). 1)

In equation (1) predicates P and Q are variables.
Predicate P(x) are imposed on the set A , predicate Q(y)
on B multiplicity. Predicate P(x)on A we consider as
an instance of an object A , predicateQ(y)on B —as an
exemplar of B object. In this way, morphism f:A—B

converts instances of an object A to an object B . It
would be more natural to take not AB,C,..
multiplicities of universe elements, but multiplicities of
all predicates P(x), Q(y), R(2),...,given respectively on

A B,C,..., multiplicities, but this is optional.

Predicate K ; (x, y)is called the kernel of a linear
logical operator [10], It completely determines the type
of transformation (1). Predicate K (x, y) is fixed, it is
assumed onAxB. Morphism of f type (1) is fully
determined by K, (x,y) predicate. In the role of
Mor (A, B) multiplicity of all morphisms of f:A—B
type we take the system of all possible operations of the
type (1). InPred category each morphism fePred
corresponds to K (x, y)conversion kernel (1). Each

morphism f : A— B of Pred category can be assumed,
indicating the predicate corresponding to it K (x, y)on

AxB . Multiplicity Mor(Pred) we obtain a union of all
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multiplicities of the form Morp,4 (A, B) , where (A,B) —

all possible pairs of multiplicitiesABcU, or as a
multiplicity of transformations of the form (1) with all
possible kernels K(x,y), assumed on all possible

Cartesian intersections AxB of A, BcU multiplicity.

Predicate can serve as an example of a kernel

morphism of Pred category
by.1 .d, 2 3 3
K y)=(Cvy )y v (Y vy vy, (2)
Assumed on Cartesian intersection AxB of
A={a,b,c,d,e}and B={1,2,3, 4} multiplicities. On the fig.

(3) K(x, y) bipartite predicate graph is depicted.

2

A Ce B
d 3
e 'Y

Fig. (3): bipartite predicate graph
A linear logical operator with this kernel is written in
the form:
Q(y)=3xe{a,b,c,d,e}
((x@ v xB)yl v xd (y2 v y3) v xey3)P(x)).

@)

Let’s define, for example, reaction ofQ(x)
morphism (3) for a predicate
P()=x2 VX0V, (4)
By the formula (3) we find:
Q(y)=3xe{a,b,c,d,e}
(@ v xbyyv xd (y2 v y3) v ®)

vxey3)(xa v xb v xe))=ylvy3.

The same result can also be graphically obtained

(fig. (4)).
y/O
1

K(x )

Fig. (4): Graphical representation of bipartite
predicate
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To obtain Q multiplicity we collect all those ¥
elements together, which are connected by edges of the
K(x, y) graph with xelements, forming P multiplicity.
In the result we obtainQ={L3}. In this way, morphism
(3) converts multiplicity intoQ={L3}multiplicity (fig.
(4)).

Now we transit to the predicate interpretation of
morphism intersections. Let’s define morphism
f:A—B as operation (1) F; (P)=Q , amorphism g:B—C

— as operation F, (Q)=R , defined by the equation:

FyeB(Kq (¥, 2)Q(Y)=R(2). (6)

Variable predicate R(z)is asset on the multiplicity
C , and fixed predicate K, (y,z) —onBxC . Forming the
operation F,(P)=Rby superposition of operations
Fr (P)=Q and Fy (Q)=R: Fn(P)=Fy (Ff (P))=R.
Substituting (1) in (2), we obtain an expression for the
transformation F, :

JyeB(Kg(y, 2)(@xeA(K ¢ (X, Y)P(X))))=R(2),
Which the

predicate R(z)on C . After the identity transformations,
equation (7) acquires the form:

IeA(@yeB(Ks (X, Y)Kq (Y, ))P())=R(2). (8)

Equation (7) is a linear logical operator. The role
of its kernel is a predicate

Kh(x,2)=3yeB(K¢ (X, Y)Kq (Y, 2)) 9)
onAxCwithxeA  andzeCarguments.  Now
transformation (7) can be written in a shorter form:

Ixe A(Ky, (X, 2)P(X))=R(2). (10)

Transformation (10) will be understood as
morphism h:A—C of Pred category. We take it in a role
of intersections fg morphisms f and i.e. in this way,

fg=h.
Let’s find, for example, intersection of two any

(7)

transforms predicate  P(x)on A into

the

morphisms of Pred category.  Find K;, (x, z) graphically,
fig. (5):
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®

‘® 0 ‘®
@ _'._ Q ® ’.&. ®
3 L L
. 0
e ®

Kele,y) K n2) K (x2)

Fig. (5): Intersection morphisms f and{ categories
Intersection morphisms f and{ categories Pred
Bipartite graphs of k ; (x, y)and Ky (Y. 2) morphisms
kernels f and(are on the fig. (5)on the left. They can
be converted into bipartite kernel graph Ky, (x, z)
intersection fg morphisms f and{ as follows. At the
first stage K¢ (x, y)and K (y, z) . On the second stage
turn a pair of graphs K (x, y)and K (y, z) , which we
successively connected, in the equivalent one graph
Ky (x,2) . To form the edges of a graph Ky, (x, z) we
identify all the paths from the points of the multiplicity
A to the points of the multiplicity C in the chain of
graphs K (x, y)and K (y, z) . To each of these paths
we associate an edge of the graph Ky, (x, z) . Obtained as
a result of these actions graph K, (x, z) is shown on the
fig. (5) on the right side.

It is possible to obtain the same Ky (x, z) kernel

morphismh for the explored example also analytically,
making calculations using formula (9). We have:
A={a,b,c,d}; B={1,2,3};C={5,6,7,8,9};

Kt (% )=y vy vy?); (11)
Kg (Y, z):ylz6vy2(z6vz7v29). (12)
Find K, predicate:
Kp(x,2)=3y{L, 2,3}
(VY VX (P vy A
Ay vy @Oyl vat))= (13)

=(((Cvx®) 28 v xS (28 vz v ) v Xt 0=
=(Cvx?)2BvxC(8 vz v o).
We got the same K, (x, z) kernel, which is depicted
on the fig.(5), in the form of a bipartite graph.
Let’s define reaction reviewed in the above

example  fg morphism intersections andhmorphism

equivalent to it. Let, for example, P(x):xavxc. First
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we find the reaction of fg morphism on P(x) predicate.
CalculateQ(y) reaction  of f morphism  onP(x)
predicate by the formula (1):
Q(y)=3xe{a,b,c,d}(Ky (x, y)P(x))=
=3xefa,b, ¢, a3 v X2)y v xE (Y2 v y3) A
/\(Xavxc)zyl-lvyl~0v(y2vyS)-lv0~0=
=y'vy?vy?=Q(y).
Calculate R(z) morphism§ on a predicate

Qy)=y' vy’ vy?
by the formula (7):
R(x)=3ye{l, 2,3}(K ¢ (y, 2)Q(Y))=3y<{L 2,3}
(P2 @Oy vyt vy vyd)=
el -lv(z6 vz'v 29)~1v0-1=z6 vz'vi®.
So:

(14)

(15)
(16)

9

R(x)=26vz7vz . (17)

Now calculate reaction R(z) morphismhby the
formula (7):
R(z)=3xe{a,b,c, d}(Kh(x z)P(x))_
_HXE{a b, c,d}(((x* v x )z vx%(z 6v2'v® )’\(18)

AV X)) = z® lv26v0v(26vz7vz )-1v0-0=
9

—26V27VZ .

We obtained coincidence of fg andhmorphisms
reactions, demonstrating their identity.

Let’s introduce, further, identical morphisms in

Pred category. In the role of the kernel of the identity

morphisme,:A— AinPred category accept predicate

congruencies Dy (x,y) on AxA:

Da(X, Y)= \/Axaya. (19)

Give an example of the identity morphism in Pred
category. Let A={1,2,3}. By the formula (19) we find:

Da(X, y)=x1y1vx2 y2 vx3y3. (20)
There are many identity morphisms in predicate
category. They are of the same quantity as, Da(x,Y)

congruencies predicates. Each A subset of U universe
has its own identity morphisme,:A—A. For each

morphism f : A— B of Pred category single right

identitymorphism e and single left identity morphism e’
, such, that fe=f ande'f="f , along with thise=egand
e'=epexist. Any identity morphismeof the predicate
category has the propertyee=e. Intersection of fg

morphisms f:A—Band g:B—CinPred category always
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exists, along with this domf =4 and codf =C. The law of

associativity for morphisms multiplication in predicate
category is performed. Its fairness can be visually
demonstrated on bipartite graphs. We attach to the right
side the second bipartite graph to the first and then we
attach the third graph to the obtained chain of graphs.
As a result, we obtain a bipartite graph. We obtain
exactly the same graph, if we add to the right side of
second graph the third and then add obtained graph
chain to the right side of the first graph.

Predicate category meets all requirements,
specified to the classical category. In Congruencies (1)
and (6-10) we defined fg intersection f morphisms

and{in the predicate category only for cases when
f:A—>Bandg:B—»C. The question is, if fg
intersection ofmorphisms f:A—B and g:C—Dexist or

not in general, whenB.C, remained without answer.
However, no matter what the answer for this gquestion
is, no one can forbid us from making a decision not to
form intersections for f:A—B and g:C—D morphisms

in all those cases, whenB=C . If to do so, then we
obtain predicate category that subjects all the
requirements, for the classical category. If it turns out,
that morphism intersections of such kind are impossible
to form, then this decision will be forced. And if it is
possible. Then the way for another, alternative
definition of the predicate category that does not fit the
notion of classical category will open.

Lets’ try to answer the raised question. First we
take two identical morphisme,:A—Aandeg:B—B (

A+ B).From the definition of the classical category it
follows that intersectione,eg does not exist. And what

about the predicate category? For example. Let
A={a,b,c,d}, B={b,c,d,e}. Try to obtain intersection
eaeg morphismse, andeg, graphically, as described

above. (Analytical method cannot be applied, because
we do not have the morphisms multiplication
definitions in mathematical terms for the given case in
the predicate category yet). It turns out that the
graphical method successfully works and without any
complications and results in a well-defined morphisms
intersection. On the fig. (6)from the left side bipartite
kernel graphs of morphisms e and eg are depicted. We

introduce horizontal links between the same points, but
now not the same, but different A and B multiplicities,
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located next to each other, marked with symbols e, and
eg. Next, we convert a pair of graphs esandeg,

which we have connected consecutively, into a single
graph equivalent to them, marked with a symbol eag .

In the result we obtain intersectione,g =eseg . Graph
eap IS depicted on the fig. (6) on the right side. It is
necessary to note, that obtained morphismeag is not
identical

A A B B A B
i Y. y z & z
be——f __ be b p* *h
co— > “ ¢ ¢
g————d__ Go—ed go—ed

€a ¢ ég €a "¢

Fig. (6): Morphisms kernel graphse, and eg
It is clear, that it is possible to obtain intersection
of any morphisms f:A—Bandg:C—Din exactly the

same way in all those cases, whenB#=C. The
corresponding example is shown on the fig. (7).

Xy 5o %
6 b 6
c 7 c 7
>
de 8 de 8
A
9 9
K{x ) C D A D
K, 2 Ki(x% 2
h=1fy

Fig. (7): Morphisms intersection f andJ

So, we got a clear answer to the question. There
are no limits for forming of any morphism intersections
in predicate category. This means, that multiplication in
it can be considered everywhere defined. This fact, on
the other hand, does not prevent from considering the
multiplication in the predicate category to be partial.
This means, that two different definitions of a predicate
category are possible. One of them uses partial
morphisms multiplication; it is covered by the concept
of the classical category. Such a predicate category is
called classical. The second definition of a predicate
category uses an everywhere defined multiplication. It
is not covered by the notion of the classical category.
Such predicate category is called modified. Each of the
variants of the predicate category deserves attention,

66

may be of interest for theoretical development and
practical applications. We also suppose that there is a
sense to summarize from the concept of a modified
predicate category and as a result, as alternative to the
general concept of the classical theory to form the
general concept of a modified category. There is a sense
to develop both the theory of classical categories and
the theory of modified categories.

Now we give a mathematical definition of the
multiplication of morphisms in a modified predicate
category. The same result, as we obtained graphically
on arbitrary graphs (fig. (6)), is obtainable also
analytically by the following formula:

Kn(x,2)=3yeBNC(K¢ (x, ) AKg (¥, 2)). (21)

f:A—»B, gC-D, AB,C,D- are

arbitrarily chosen subsets of the universeU . Predicate

Hereh=fg,

K¢ (x,y)is set onAxB, predicate k (y,z)— onCxD,

and predicate K, (x,z) — onAxD. Define intersection fg
morphisms f and{in the modified predicate category
for the example shown on the fig. (7). Accept

A={a,b,c,d}, B={1,2,3,4},C={2,3,4,5}, D={5,6,7,8,9} .
Morphisms kernels f and{ are written in the form:
Kt (% )=y v (Y vy ) v (P vy vy (22)
(23)
Kernel Ky, (x, z) of intersections h= fg found by the
formula (21):

Kp(x 2)=3ye{2,3 43y vx° (y' v y?)v
VX (v vy Ay vy vy
w3 @ v vy = (P v x9) 28 v xC (2" v ).

Kg (Y, z):(y2 % y3)v A y3(z7 vzg)v y528.

(24)

As we see, the result of calculations by the formula
exactly corresponds to the graphKj(x,z), which was

obtained before by the graphic method (fig. (7)).

It is our task to compare the properties of the
modified predicate category with the properties of
classical category. In classical category multiplication
of morphisms is partial, in modified category it is
everywhere defined. In both categories for each
morphism f unique identity morphisme exists, which

satisfies the equation fe=f, and the only equal

morphism €', which satisfiese' f = f equation. In both

categories any identical morphism satisfies the equation
ee=e. The notion of a classical unit, as it is represented
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in the monoid, is defined as follows: the unit is one, and
it has properties fe=f andef=f at any f . Both in
classical and modified predicate categories the concept
of unit is somewhat deformed. In both categories
instead of one, appears many units. In the classical
category of identity fe=f andef =f remain unchanged
for any unitseand for any morphism f , but only then,
when intersections fe and ef exist. In modified category
but
congruencies fe=f andef = f are not always performed.
Everything that can be detected in the classical category
can be observed also in the modified category. In the
modified category, the area of the observation is wider;
there you can find something that does not exist in the

classical category. In this way, in some sense, modified
category is an extension of the classical category.

intersections feandef exist at anyeand f ,

2.4 General modified category

Now passing from a particular modified predicate
category to the general concept of modified category. In
the beginning we give a definition to the common

notion of modified non-subject category. LetM
multiplicity be defined. Its elements, designated by the
symbols f,g,h,...,are morphisms. Let, besides, a single-

valued and everywhere defined correspondence fg=h

with the area of departure MxM and the area of arrival
M be defined. It is called multiplication of morphisms
f and{. Morphismhis called morphisms intersection
f and{. Morphisms multiplication is associative: at
any f,g,heM the equation (fg)h=f (gh) holds true. Let,
finally, E subset of M subset is defined. Its elements,
called single morphisms, are defined by the condition:
at any f,geM e,e'eE, for which congruencies fe=f
ande'g=gare performed exist. Set of morphisms M

with units, which meet the above condition, taken
together with multiplication of morphisms, satisfying

the above conditions is called K objectless modified
category. As in the classical category, the identity
morphisme, satisfying the condition fe=f is called
right identical morphism f . Identical morphisme",
satisfying the conditione'f =f , is called left identical
morphism f . Morphismseand €' for any f and{are
unique.
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There are two differences of classical and modified
categories-in the definition of multiplication of
morphisms and in the definition of identical morphism.
For the classical definition of category partial
multiplication is used, for modified — everywhere
defined. We know, that when using everywhere defined
multiplication of morphisms, the standard definition (as
for monoid) of a unit cannot be maintained due to the
appearance of a contradiction in the definition of a
category. And in modified category weakened
definition of a unit is used. This is not a real unit, but
aquasi-unit. In appearance, the definition of identical
morphism remains as if it were the same: still for any
morphism f single right eand single lefte’ identical
morphisms, satisfying the conditions fe=f ande'f =f
exist. In the definition of the classical category it is not
mentioned that such identical morphisms are unique.
But it does not mean anything, since this uniqueness
follows logically from the definition of the classical
category. Both for classical and modified categories this
statement is fair for any morphism f . So where are the

differences and limitations on the identical morphisms?
In order to answer this question, first we will have to
reformulate both definitions so that their texts differ
only where semantic differences take place, and then
the differences in definitions will become clearly
visible, and it will be possible to understand which side
has increased and what weakened.

We formulate the definition of the classical

category. LetM be a set of all morphisms. Morphisms
multiplication, which is unambiguous, generally
speaking partial, correspondence fg=h with the area of

departure MxMand the area of arrival M is set.
Morphisms multiplication is associative: at any
f,g,heM , for which intersections(fg)h, f(gh)eM

exist, equation (fg)h=f(gh)holds true. LetE be a

multiplicity of all single morphisms E (E =M ). For
eachecE intersectioneeeM exists. At any f,geM and
anye,e'eE, for which intersections fe,e'geM exist,

congruencies fe=f ande'g=gare performed.

Multiplicity M , on which the morphisms multiplication
described above is defined, all single morphisms which

meet properties listed above is K objectless classical
category.
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Formulating the definition of the modified

category. LetM be a multiplicity of all morphisms.
Morphisms multiplicity, representing single-valued and
everywhere defined correspondence fg=hwith the area

of departure MxM and the area of arrival M is defined.
Multiplication of morphisms is associative: at any

f,g,heM the equality (fg)h=f(gh)is fair. Let E — be

a subset of all single-unit morphisms E (E <M ). At
any f,geM existe,e'eE , for which congruencies fe=f

ande'g=g performed, existed. M Multiplicity, on which

the multiplication of morphisms described above is
defined, single-unit morphisms of which satisfy
properties listed above is called non-objective classic

K category.

The result of comparing the definitions of the
classical and modified categories is as follows: at
transition from a classical category to a modified one
morphisms multiplicity is intensified, and units are
weakened. This means, that the classical category is not
a special case of a modified one, and the modified
category is not a special case of a modified one. These
algebras are different; none of them logically follows
the other. None of them can be obtained from the other
as a result of generalization or concretization.

3. Results
3.1Logical Networks

The result of a formal description of any object in
the language of the predicate algebra is always a
predicate P(x, Xo,..., Xy ). It must express some kind of

definite relation P , which is a multiplication of all
objects SetS X, X2, ..., Xm » satisfying equation
P(X, Xo,...,Xn) =1. Namely this relation that expresses

the structure of the described object.

Addressing the result of a formal object description
which is taken for example, we see, that it is
represented differently, namely by the system of six
predicates R(i,x), E(xx%), Ex(x,X%), F(s %),
F> (s, %2), G(s,t) . How to reconcile this result with just

stated statement? And where is that single predicate
P(x.%2,.... Xm), Which should describe the structure of

our object? The answer to these questions is very
simple: from predicates R yE1, Eo, B, B, Gitis
possible to form not only a system, but also a
conjugation which will be precisely that predicate P,
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which describes the structure of the object under
consideration:
R(i, X) A E1(X, %) A Eo (X, %X2) A F(S, %) A
F (s, %) AG(s,t) = P(i, X, X, X2, S, 1).
In fact, for the described object space S relations R
Ei, Ep, R, Fp, andG should be simultaneously

performed, and this conjugation  of
correspondent predicates.

leads to

To obtain P predicate of P, P;, ..., B, predicates of
the system{P;, P»,..., B }is its composition. The inverse
transformation of the predicate P to the system
{P,P,,....B}of P, Py,..., B predicates is a

decomposition. Composition and decomposition of
predicates are inextricably linked to each other.

Operation of obtaining a predicate P of predicates
P, P>,..., B is considered to be a composition in that

case and only if there is an inverse operation, allowing

restoring the same predicates by the predicate P .
Similarly, the predicate transformation operation in the
predicate system P, P,,..., B,can be called
decomposition only, when there is an inverse operation,
restoring predicate P at predicates P, P,,..., R,.
Getting the predicate P in the form of a
conjunction of predicates P, P,,...,Bis called its
conjunctive of the

predicate P in the conjunction of the same predicates
P, P>,..., Bis called its conjunctive decomposition. An

composition.  Decomposition

important special case of decomposition is the so-called

binary predicate decomposition P , characterized in
that each predicate in the system{P, P;,..., B }has

exactly two important arguments. Conducting a formal

description of theS space object, we, unwittingly,
incidentally  produced a binary  conjunctive

decomposition of the predicate P, which led us to the
concept of a logical network. Now we can give a formal
definition of a logical network [11, 12], which is
meaningfully understood as the device by which man
thinks today, and tomorrow a brain-like computer will
think in the same way. A logical network is a graphical
representation of the result of a multi-place predicate
binary conjunctive decomposition.

Each model has its own logical network. Any
logical network consists of poles and branches. Each
pole of the logical network is assigned its own model
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object variable, which is called the attribute of this pole.
Each pole is denoted by its subject variable. With each
pole we connect its domain, that is the area of the
attribute change of this pole. Any pole of a logical
network at any given time carries some knowledge
about the meaning of its attribute. This knowledge is
called the state of the pole. It is one of the subsets of the
domain of the pole. When pointing the states of all
poles of the network at a given time, we will get the
network state at the same time. The poles of the
network are divided into two classes — external and
internal. Each outer pole is connected to only one
branch, each internal pole to more than one branch.

Each branch of the logical network is assigned its
binary relation of the model, which is called the ratio of
this branch. Each branch is denoted by its relationship
number. It connects two poles that correspond to those
subject variables that are connected by a relation
corresponding to a given branch.

Each logical network can be turned into an
electronic circuit for the automatic solution of a certain
class of tasks, determined by the model for which the
network was built.

4. Conclusions

The concepts of classical and modified categories
can be generalized; as a result we obtain an algebra that
is called a quasicategory. From the classical category it
uses weakened multiplication of morphisms, and from
the modified one - weakened units. The definition of a

quasicategory is given below. LetM be the set of all
morphisms. The multiplication of morphisms, which is
a  single-valued, generally speaking partial

correspondence fg=hwith the area of departure MxM
and the area of arrival M is defined. Multiplication of
morphisms is associative: vf,g,heM, for which
intersections exist, the equality (fg)h=f(gh) holds true.

Let E be the set of all single morphisms E (E<M).
For eachecE intersectioneeeM exists. At any f,geM
existe,e'eE, for which congruences fe=f ande'g=g
are performed. M multiplicity, on which the

multiplication of morphisms described above is defined,
all single morphisms of which satisfy the properties
listed above, is called a quasicategory M .

The modified category is located above the
monoid, but below the semigroup. It is located in a

series of algebras with an everywhere defined principal
operation. Classical category, as well as modified,
generalizes the concept of a monoid, but in a different
way. It is not a special case of a semigroup. Its
introduction can be regarded as a departure to the side
from the mainstream of the development of
mathematics. Introduction of modified category returns
the notion of a category in a family of algebras with an
everywhere defined principal operation. Now it is
possible to develop a theory of modified categories in
parallel with the theory of classical categories. Perhaps
the theory of modified categories will prove to be an
interesting object for theoretical research and an
important tool for practical applications. It turns out that
the diagrams of the theory of modified categories after
their predicate interpretation coincide with the logical
networks of brain-like computers. This gives us hope
that the theory of modified categories will eventually
become the theoretical basis for constructing of brain-
like computers of parallel action.
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