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Thin plate bending analysis is an important research subject due to the 
extensive use of plates in the different fields of engineering and the need for 
accurate solutions. This article uses the Ritz variational method and a 
superposition of trigonometric and polynomial basis functions to solve the 
Kirchhoff-Love plate bending problems (KLPBPs). The unknown 
displacement function in the Ritz variational functional (RVF) to be 
minimized is sought as linear combinations of basis functions Fm(x) and 
Gn(y) that are found by superposing sine series and third degree polynomial 
functions with the polynomial parameters determined such that all 
boundary conditions of deformation and force are satisfied. The 
displacement is thus expressed in terms of unknown displacement 
parameters Amn which are found upon minimization of RVF with respect to 
Amn. The minimization process gave a matrix stiffness equation in Amn with 
the stiffness matrix and force matrix found from Fm(x) and Gn(y) and their 
derivatives. The algebraic equation is solved, and the deflection and bending 
moments obtained. The problems considered were clamped (CCCC) plates 
under uniform and hydrostatic distribution of loads and plates with 
opposite edges clamped, the rest simply supported (CSCS) under uniformly 
distributed loading. Comparison of the solutions by Generalized Integral 
transform method, Levy-Nadai series method, and symplectic eigenfunction 
superposition confirms that the present results are accurate. 
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1. Introduction  

1.1. Preliminaries 

Plates are common parts of buildings, aeroplanes, naval vessels, machines, and spacecrafts that have 

transverse dimensions that are smaller than their in-plane dimensions. They are three-dimensional (3D) in 

isometric view, and can be subjected to transverse or axially applied forces. They are classified based on their 
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material properties as homogeneous or heterogeneous, isotropic or anisotropic, elastic or inelastic. Based on 

their geometry, plates are classified as: rectangular, circular, elliptical, oval, quadrilateral, skewed, 

parallelogramic or rhombic. They could be made of different materials or laminated or functionally graded 

material (FGMs) in which case they are composite plates, laminated plates or functionally graded material 

(FGM) plates.  They could have flat or curved surfaces. 

The plate geometry is commonly referenced using the middle plane, which is a plane surface equidistant 

from the top and bottom surfaces of the plate. The middle surface is thus the xy plane ( 0).z =  The plate 

behaviour is determined largely by the transverse dimension (depth or thickness) rather than the two in-plane 

dimensions (length and width). The ratio of least in-plane dimension, a, to the thickness, h, has been used to 

classify plates as thin when / 20,a h   moderately thick when 10 / 20,a h   thick when 3 / 10,a h   and very 

thick when / 3.a h   (Steele and Balch, 2009). 

1.2. Literature Review  

Early studies of plates were done by Kirchhoff, Germain, Love, Poisson and others who formulated 

equations that were valid for thin plates (Aginam et al., 2012). 

Kirchhoff’s plate theory (KPT) is a pioneering study using Kirchhoff-Love hypothesis of normality of cross-

sectional lines to the middle surface which impliedly meant the disregard of shear stresses (Ike et al., 2017). The 

normality hypothesis required that cross-sectional lines originally straight and normal to the middle plane before 

bending would remain straight and normal to the middle plane after bending determination (Ike et al., 2017; Ike, 

2023a, 2023b, 2023c; 2023d; Ike and Oguaghamba, 2023). Impliedly, shear stresses which are responsible for 

such cross-sectional distortions are neglected, and this restricts the scope of the resulting KPT to thin plates for 

which such shear stresses do not significantly affect the behaviours in flexure, vibration or buckling (Koc, 

2023), Nwoji et al. (2018a, 2018b, 2018c). 

Research efforts that are directed at improvement to plate theories yielded shear deformation theories 

developed by Reissner (1945), Mindlin (1951), higher order shear deformation theories developed by Reddy, 

(1984), Levinson (1980), Krishna Murty (1987), Ghugal and Gajbhiye (2016), Ghugal and Sayyed (2010), 

Soltaini et al. (2019), Nareen and Shimpi (2015). Refined shear deformation theories have been developed by 

Shimpi (2002), Shimpi et al. (2007), Rouzegar and Abdoli-Sharifpoor (2015), Ghugal and Shimpi (2002) among 

others. Recently, several researchers have worked on formulations for moderately thick and thick plates in 

bending, vibration and buckling. Such recent research efforts on the shear deformable plates include: Ike 

(2017a, 2017b, 2018a); Nwoji et al. (2018a, 2018c); Onah et al. (2020). 

This work is focused on thin plates. 

A review of literature shows that solution methods for thin plate analysis are broadly classified as 

approximate and analytical methods. 

The approximate methods seek to solve the governing partial differential equation (GPDE) in a non-exact 

manner such that the GPDE is satisfied at certain points on the domain and not at all points. In some 

approximate methods, all the boundary conditions may not be satisfied by the results. 

The approximate solution techniques include: 

• Finite Difference Method (FDM) 

• Finite Element Method (FEM) (Karttunen et al., 2017) 

• Collocation Method (Guo et al., 2019) 

• Weighted Residual Method (Ike et al., 2020) 

• Ritz Variational Method (Lytvyn et al., 2018; Ike, 2021) 

• Galerkin Variational Method (Ike 2017c; Ike, 2015) 

• Meshless methods (Du et al., 2022) 

• Kantorovich method (Ike, 2023d; Ike and Oguaghamba, 2023) 

Analytical methods seek solutions to the GPDE for plates such that all boundary conditions are satisfied at 

the boundaries, and the GPDE is satisfied at all points on the domain. 

Commonly applied analytical methods for rectangular thin plates with two opposite edges on simple supports 

are series expansion methods (Fogang, 2023), Integral transform methods (Ike, 2022; Ike 2023a; Ike, 2024a; Ike 

et al., 2021; Mama et al., 2017, 2020), and Symplectic elasticity and eigenfunction superposition methods (Cui, 

2007; Ma, 2008; Lim et al., 2007; Zhong and Li 2009; Wang et al., 2016; Su et al., 2023; Zheng et al. 2021). 
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Evans (1939) presented moments and deflections for CCCC plates under uniformly distributed loads. Taylor 

and Govidjee (2004) presented accurate solutions of clamped thin plates by closed form solutions of the GPDE. 

Imrak and Gerdemeli (2007) have satisfactorily solved the isotropic rectangular thin plate with clamped edges. 

Xu et al. (2020) also solved thin plate bending problems. Rezaiee-Pajand and Karkon (2014) studied the finite 

element analysis of thin plates in bending using hybrid stress and analytical functions. They developed two 

different thin plate bending elements, a triangular thin plate bending element with 9 degrees of freedom (DoF) 

and a quadrilateral thin plate bending element with 12 degrees of freedom (DoF). They developed the thin plate 

bending elements using hybrid variational principle, and solved illustrative problems to verify the high accuracy 

of the finite elements. 

Rouzegar and Abdoli Sharipfpoor (2015) have developed a finite element formulation based on two variable 

refined plate bending theory (RPBT) for solving the flexural problems of isotropic and orthotropic plates. Their 

formulation predicted the vanishing of transverse shear stresses at the plate top and bottom surfaces and was 

found to apply to both thick plates as well as thin plates. 

Al-Ali (2016) used polynomial basis functions to derive accurate polynomial solutions for thin plate bending 

under different loadings, geometries and boundary conditions. Gao et al. (2019) investigated the bending 

problems of SCSF and CCCF Kirchhoff plates under hydrostatic loading distribution. 

Li et al. (2015) studied the bending and free vibration problems of Kirchhoff plates using a unified analytical 

method and presented accurate solutions for deflections, bending moments and natural vibration frequencies that 

agreed with previous solutions. Ibearugbulem et al. (2019) applied Taylor-Maclaurin series basis functions for 

finding solutions to the rectangular Kirchhoff plate bending problems (KPBPs) with simply supported edges. 

Aginam et al. (2012) and Oba et al. (2018) used the principle of minimum total potential energy to obtain 

accurate solutions for deflections in rectangular Kirchhoff plate bending problems (KPBPs). 

Recently, symplectic eigenfunction superposition methods have been investigated and used for solving a 

wide range of plate problems under flexure, vibration and buckling. Li et al. (2015) developed a new symplectic 

eigenfunction superposition method (SESM) to the static bending and free vibration analysis of KPBPs 

concerning cases of plates supported at the corner points. The SESM used the Hamiltonian system, and gave 

accurate solutions. Unlike conventional semi-increase methods, SESM does not need prior determination of the 

shape functions, which is a major advantage. The SESM is thus extensive in scope of utilization to plate 

problems. Their work was validated by comparison with previous solutions. They also obtained new solutions to 

previously unsolved plate problems. Wang et al. (2016) have also used SESM to develop new solutions for 

Kirchhoff plate buckling problems, but their work was not extended to flexural analysis. 

Su et al. (2023) studied SESM for unified solutions to KPBPs with all edges free. Fogang (2023) utilized the 

Fourier series expansion technique for finding accurate bending solutions to KPBPs subjected to edge bending 

moments. Ike (2015), Osadebe et al. (2016), Nwoji et al. (2017a), and Ike (2023b) have applied Galerkin’s 

methods to develop accurate solutions for deflections and bending moments in KPBPs for various boundary 

conditions. Nwoji et al. (2017b), Ike (2017c, 2021, 2023d), Onah et al. (2017) and Ike and Mama (2018) used 

various strands of the Kantorovich methodology to obtain accurate solutions for the flexural analysis of KPBPs 

under various boundary conditions. Integral transform methods have been used for KPBPs by Ike (2022), Ike et 

al. (2021), Mama et al. (2020) and Ike (2024a). Ritz variational method (RVM) has been studied for KPBPs by 

Ike (2018b) and Nwoji et al. (2018b). Musa et al. (2020) used RVM for the bending solutions of thin plates 

resting on nonhomogeneous variable foundations for cases of mixed boundary conditions. 

Lytryn et al. (2018) developed a computer algorithm for solutions to the fourth order inhomogeneous 

equation for plate. Xi and Li (2021) used RVM to solve thin plate flexural analysis problems with complex 

boundary configurations. Zerfu and Ekaputri (2017) utilized the RVM for the approximate deflection solutions 

of thin quadrilateral plates under applied headings. 

This study develops using first principles, systematic, step by step approach, the RVM for solving CCCC and 

CSCS KPBPs using displacement basis functions that are derived by superposing sinusoidal and polynomial 

functions. The study extends the work of Ding Zhou (1993) who applied the dimensionless variant of the 

method to thin plates with three simply supported edges and one clamped edge. This study is a continuation of 

the previous work of Ike (2024b) which applied the “Ritz variational method for the analysis of thin rectangular 

plate bending problems with adjacent edges clamped and simply supported using the superposition of 

trigonometric series and polynomial basis functions”. However, unlike the study presented in Ike (2024b), this 

study applies the superposition of trigonometric and trigonometric basis functions to the bending analysis of 
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fully clamped thin plates under uniformly distributed loads and hydrostatic load distribution. It also studies 

plates with opposite sides clamped and the remaining sides simply supported for the case of uniformly 

distributed loading. 

 

2. Ritz Variational Functional (RVF) for the Flexural Analysis of Thin Plates 

2.1. Thin Plate Flexural Problem Investigated 

The thin plate flexural problems investigated are shown in Figures 1 and 2. 
 

 

Fig. 1 Clamped Kirchhoff plate subjected to uniformly distributed load of intensity, q 

 

 

Fig. 2 Clamped Kirchhoff plate under hydrostatically distributed loading 𝒒(𝒙, 𝒚) =
𝒒𝟎𝒙

𝒂
  

 

 

Fig. 3 CSCS Kirchhoff plate subjected to uniformly distributed load q 
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Kirchhoff Plate Theory (KPT) 

KPT is a classical thin plate theory based on the Kirchhoff-Love’s hypothesis which are assumptions similar 

to the Bernoulli-Navier’s hypothesis used for the classical theory of thin beams. It is a small-deflection theory. 

Fundamental Assumptions 

The fundamental assumptions of KPT for homogeneous, isotropic, linear elastic plates are (Gujar and 

Ladhare, 2015) 

(i) Straight lines that are initially normal to the middle surface of the plate remain straight and normal 

to the deformed middle surface of the plate and unstretched. 

(ii) The transverse displacement is very small compared to the plate thickness. The slope of the 

deflected middle surface is small; hence the square of the slope is negligible compared to unity. 

(iii) The normal stresses and in-plane shear stress are zero at the middle surface for small deflection 

cases (where the maximum deflection wmax is much smaller than the thickness, h).  

(iv) The transverse normal stress zz is very small relative to other stress components and can be 

neglected without significant errors 
( ). 0zz   

(v) The middle surface is unstrained after deformation and it is a neutral plane.  

These assumptions reduce the 3D plate problem to a two-dimensional (2D) approximate theory. The 

non-vanishing stresses are reduced to xx, yy and xy, and other stresses vanish. 

Disadvantages of KPT 

KPT is governed by a fourth order PDE associated with two edge conditions rather than three edge 

conditions required in a 3D problem. This raises the Poisson-Kirchhoff boundary conditions paradox. 

Despite the disadvantages, KPT is still commonly used for thin plate bending analysis because of the 

simplicity of the governing equations. The results have been found to be accurate for thin plates KPT is the 

theoretical plate model for this work. 
 

2.2. Deriving Ritz Variational Functional and Total Potential Energy Functional  

Displacement Field Components 

The displacement field components are: 

,
w

u z
x


= −


 ,

w
v z

y


= −


 ( , )=w w x y                             (1) 

where u, v, and w are the displacement field components in the x, y and z Cartesian coordinate directions 

respectively. 

Strains 

The normal strains xx, yy, and shear strains xy are found from the displacement field components using the 

strain-displacement relations of the linear elasticity theory. 

Thus,  


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Stress-Strain Relations 

For linear elastic homogeneous, isotropic materials, and plane stress the material constitutive relations are: 

( )  


= +
− 21

xx xx yy

E
  

( )  


= +
− 21

yy yy xx

E
 

( )2 1
xy xy xy

E
G= =

+
  


 

                    (3) 

wherein xx and yy are the normal stresses, xy is the shear stress. 

E is the Young’s modulus of the plate material. 

 is the Poisson’s ratio, G is the shear modulus. 

Stress-Displacement Equations 

Substituting the strain-displacement equations in the stress-strain relations give the stress-displacement 

equations as follows: 

 


 −  
= + 

−   

2 2

2 2 21
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Ez w w

x y
  

 

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= + 

−   

2 2

2 2 21
yy

Ez w w

y x
 




 − 
= − =

  +  

2 2

2
1

xy

w Ez w
Gz

x y x y
 

                    (4) 

Internal Force Resultants 

The bending moments Mxx, Myy and twisting moment Mxy are found as integration problems across the plate 

thickness. 
Thus, 

/

/

 
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/
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2
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2
6

h

xy xy

h
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where 
( )

=
−

3

212 1

Eh
D                              (6) 

D is the modulus of flexural rigidity of the plate. 

Strain Energy of Thin Plate 

The strain energy Ub of thin plate under plane stress bending deformation is the volume integral over the 

plate domain given by: 
/

/

( )     

−

= + + 
2

2 0 0

1

2

h a b

b xx xx yy yy xy xy

h

U dxdydz                       (7) 

since , 0zz   = = 0xz yz    (8) 
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Hence, 
/
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Simplifying the integrand gives: 
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It is observed that 
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Hence, 
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The work done (Wa) by the applied load ( , )q x y  is the double integral. 

( , ) ( , )= 
0 0

a b

aW q x y w x y dxdy                            (17) 

Total Potential Energy Functional  

The total potential energy functional  is expressed in terms of Ub and Wa as: 

 = −b aU W   
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The method adopted in the work seeks to minimize the functional  with respect to ( , )w x y . 
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3. Method of Superposing Sinusoidal and Polynomial Basis Functions 

3.1. General Form of the Basis Functions 

 The general forms of the basis functions Fm(x) and Gn(y) are (Ike, 2024b): 
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( )
     

= + + +     
     0 1 2 3

2 3

n n n n n

y y y
P y B B B B

b b b
                      (21c) 

 ,
0mA  ,

1mA  ,
2mA  

3mA are the four coefficients of the polynomial coordinate function Pm(x) which are found 

to render Pm(x) a suitable shape function that satisfies the deformation and force boundary conditions at the plate 

edges ,= 0x  and .=x a   

 Similarly, ,
0nB  ,

1n
B  ,

2nB  and 
3nB are the four coefficients of the polynomial function Pn(y). The polynomial 

constants are found such that Gn(y) satisfies the deformation and force boundary conditions at the plate edges 

= 0y  and .=y b   

3.2. Basis Function Coefficients for Clamped (CCCC) Plates and CSCS Plates 

 The edge conditions investigated are: 

(i) Plate is clamped at the four edges x=0, x=a, y=0, and y=b.    

(ii) Plate is clamped at two opposite edges y=0, and y=b; simply supported at the other opposite edges 

x=0 and x=a. 

(iii) Plate is clamped at edges x=0 and x=a.  

 Figure 4 presents the cross-sectional view of thin plate clamped at x=0 and x=a. 

 

 

Fig. 4 Cross sectional view of thin plate clamped at x=0 and x=a 

 

The boundary conditions are 

( , ) ( ) ( )= =0 0 0mn m n

m n

w y A F G y                          (22) 

( , ) ( ) ( )= =0 0mn m n

m n

w y A F a G y                          (23) 

( , ) ( ) ( ) = =0 0 0mn m n

m n

w y A F G y                         (24) 
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( , ) ( ) ( ) = = 0mn m n

m n

w a y A F a G y                         (25) 

Hence, 

( ) ( )= =0 0m mF F a   

( ) ( ) = =0 0m mF F a  
                   (26) 

( ) sin= + + =
0 1

0 0 0 0m m mF A A                            (27) 

=
0

0mA                                   (28) 

( ) cos
  

 = + + + 
  1 2 3

2

2 3

1
2 3m m m m

m m x x x
F x A A A

a a a a a
                    (29) 

( ) cos


 = + + + =1

2 3
0 0 2 0 3 0 0

m

m m m

Am
F A A

a a
                      (30) 


+ =1 0

mAm

a a
                                (31) 

= −
1mA m     (32) 

( ) sin( ) ( ) = + − + + =
2 3

0m m mF a m m A A                        (33) 

sin( )  + = − =
2 3m mA A m m m                           (34) 

( ) cos( ) ( )


 
   

 = + − + + =   
   2 3

1 1 1
2 3 0m m m

m
F a m m A A

a a a a
                  (35) 

Multiplying by a gives: 

cos( )  − + + =
2 3

2 3 0m mm m m A A                          (36) 

( cos( )) + = −
2 2

2 3 1m mA A m m                           (37) 

From Equation (34) 

+ =
2 3

2 2 2m mA A m                               (38) 

Hence, 

cos( )   = − −
3

2mA m m m m                           (39) 

cos( )  = − −
3mA m m m                             (40) 

( cos( )) = − +
3

1mA m m                             (41) 

( ( ) )= − + −
3

1 1 m
mA m                              (42) 

Then, 

( ( ( ) )  = − = − − + −
2 3

1 1 m
m mA m A m m                        (43) 

( ( ) )= + −
2

2 1 m
mA m                              (44) 

Hence, 

( ) sin
       

= + + +       
       1 2 3

2 3

m m m m

m x x x x
F x A A A

a a a a
                    (45) 

where = −
1mA m   

( ( ) )= + −
2

2 1 m
mA m  

( ( ) )= − + −
3

1 1 m
mA m  

                   (46) 

 Using similar procedure for thin plate with clamped edges at = 0y  and ,=y b   

( ) sin
       

= + + +       
       1 2 3

2 3

n n n n

n y y y y
G y B B B

b b b b
                    (47) 

where  

= −
1n

B n                          (48) 
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( ( ) )= + −
2

2 1 n
nB n   

( ( ) )= − + −
3

1 1 n
nB n  

 

(ii)Plate is clamped at ,= 0y =y b  and simply supported at = 0x  and =x a   

 

 

Fig. 5 CSCS plate 

 

 For simply supported edges = 0x  and =x a  the boundary conditions are 

( ) ( )= =0 0m mF F a   

( ) ( ) = =0 0m mF F a  
                    (49) 

( ) sin
        

 = − + +       
       2 3

2

2 3

1
2 6m n m

m m x x
F x A A

a a a a
                   (50) 

( ) sin
   

 = − + =   
   2

2

2

1
0 0 2 0m n

m
F A

a a
                        (51) 

=
2

0mA                                   (52) 

( ) sin= + =
0

0 0 0m mF A                              (53) 

=
0

0mA                                   (54) 

( ) sin  = + + =
1 3

0m m mF a m A A                           (55) 

= −
1 3m mA A                                 (56) 

( ) sin



   

 = − + =   
   3

2

3
6 0m m

m a
F a m A

a a
                       (57) 

sin



 

− + = 
 

3

2

2

6
0

mAm
m

a a
                           (58) 

=
3

0mA                                   (59) 

=
1

0mA                                   (60) 

Then, ( ) sin
 

=  
 

m

m x
F x

a
                            (61) 

For clamped edge ,= 0y  ,=y b   

( ) sin
       

= + + +       
       1 2 3

2 3

n n n n

n y y y y
G y B B B

b b b b
                    (62) 

= −
1n

B n   

( ( ) )= + −
2

2 1 n
nB n  
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( ( ) )= − + −
3

1 1 n
nB n                              (63) 

 

3.3. Ritz Variational Functional (RVF) 

 RVF is expressed using the basis functions as: 

( ) ( ) ( ) ( ) ( ) *
     − −   =          

 
22

2

2

0 0

2 1
2

a b

mn m n mn m n

m n m n

D
A F x G y A F x G y

x
  

 ( ) ( )( ) ( )
     − −  

           


2
22

2 mn m nmn m n

m nm n

A F x G yA F x G y dxdy
x yy

  

 ( , ) ( ) ( )
0 0

a b

mn m n

m n

q x y A F x G y dxdy                        (64) 

Simplifying, 

( ( ) ( )) ( ) ( ( ) ( ) ( ) ( ))



 =   − − −


 
2 2

0 0

2 1
2

a b

mn m n m n m n

m n

D
A F x G y F x G y F x G y   

  ( , ) ( ) ( )( ( ) ( ))  −    2

0 0

a b

mn m nm n

m n

dxdy A q x y F x G y dxdyF x G y                (65) 

 

3.4. Minimization of the Ritz Variational Functional 

 The principle of minimization of the total potential energy functional is equivalent to equilibrium. For 

minimization of RVF, the first variation of  would vanish. 

 = 0                                   (66) 

The following system of algebraic equations result: 

= ij
mn mn ij

m n

K A F                               (67) 

Here, 
ij
mnK  is the stiffness matrix 

Fij is the force matrix 

( )( ) ( ( ) ( ) ( ) ( ))( ( ) ( ) ( ) ( ) ( )  = +  − − 
2 2

0 0

1

a b

ij
mn m i n jm n i jK D F x F x G y G yF x G y F x G y   

 ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )     − 2i m j n i m j nF x F x G y G y F x F x G y G y dxdy                  (68) 

 ( , ) ( ) ( )= 
0 0

a b

ij i jF q x y F x G y dxdy                          (69) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

a b

ij
m i n j m n i j m n imn j m n i j

F x F x G y G y F x G y F x G y F x G y FK D x G y F x G y F x G y     + +  = + −  
0 0

 

 ( )( ( ) ( ) ( ) ( )n i j nF x F x G y G y  − +1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ))     −2i m j n i m j nF x F x G y G y F x F x G y G y dxdy       (70) 

For uniformly distributed load with intensity ( , ) ,= 0q x y q   

( ) ( ) ( ) ( )= = = 0 0

0 0 0 0

a b a b

ij i j ij i jF q F x G y dxdy F q F x G y dxdy                    (71) 
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For hydrostatic load distribution, ( , ) / ,= 0q x y q x a   

( ) ( ) ( ) ( )= =  
0 0

0 0 0 0

a b a b

ij i j i j

q x q
F F x G y dxdy x F x dx G y dy

a a
                   (72) 

 

4. Results 

4.1. Results for CCCC Clamped KPBP 

KPBP with CCCC boundaries as shown in Figure 6, is considered. 

 

 

Fig. 6 CCCC Kirchhoff plate 

 

The functions Fm(x) and Gn(y) are given by Equations (45) and (47). 

 The centre deflections and bending moments are presented in Tables 1 and 2 for uniformly distributed and 

hydrostatic load distributions respectively. 

 

Table 1 – Deflections and Bending Moments at the Centre of CCCC KPBP under Uniformly Distributed 
Load. 

a/b Method/Reference ( . , . )
4

0 5 0 5Dw a b

qb
 

( . , . )
2

0 5 0 5xxM a b

qb
 

( . , . )

2

0 5 0 5yyM a b

qb
 

1 Present 0.00126541 0.0229074 0.0229062 

Batista (2011) 0.00126532 0.0229051 0.0229051 

Cui (2007) 0.00126532 0.0229054 0.0229052 

Ike (2022) 0.00126725 0.0231 0.0231 

Timoshenko & Woinowsky-Krieger (1959) 

Evans (1939) 

0.00126 0.0231 0.0231 

1.2 Present 0.00172495 0.0228416 0.0299727 

Batista (2011) − − − 

Cui (2007) 0.00172487 0.0228406 0.0299717 

Ike (2022) 0.0017283 0.0288 0.0299 

Timoshenko & Woinowsky-Krieger (1959) 

Evans (1939) 

0.00172 0.0288 0.0299 

Imrak and Gerdemeli (2007) 0.00172833   

1.5 Present 0.00219658 0.0202682 0.0367722 

Batista (2011) 0.00219652 0.0202680 0.0367714 

Cui (2007) 0.00219653 0.0202681 0.0367715 

Ike (2022) 0.002203 0.0203 0.0368 

Timoshenko & Woinowsky-Krieger  0.00220 0.0203 0.0368 
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(1959) 

Evans (1939) 

Imrak and Gerdemeli (2007) − − − 

1.7 Present 0.00238207 0.0182691 0.0392702 

Batista (2011) `− − − 

Cui (2007) 0.00238203 0.0182692 0.0392697 

Ike (2022) 0.002382 0.0182 0.0392 

Timoshenko & Woinowsky-Krieger  

(1959) 

Evans (1939) 

0.00238 0.0182 0.0392 

Imrak and Gerdemeli (2007) − − − 

2 Present 0.00253298 0.0158078 0.0411553 

Batista (2011) − − − 

Cui (2007) 0.00253296 0.0158080 0.0411550 

Ike (2022) 0.002536 0.0158 0.0412 

Timoshenko & Woinowsky-Krieger  

(1959) 

Evans (1939) 

0.00254 − − 

Imrak and Gerdemeli (2007) 0.00253297 0.0158 0.0412 

3 Present 0.002615 0.012690 0.04190 

Batista (2011) 0.00261723 0.0126928 0.0419013 

Cui (2007) − − − 

Ike (2022) − − − 

Timoshenko & Woinowsky-Krieger  

(1959) 

Evans (1939) 

− − − 

Imrak and Gerdemeli − − − 

4 Present 0.002607 0.01247 0.0417 

Batista (2011) 0.00260659 0.0124713 0.0416988 

Cui (2007) − − − 

Ike (2022) − − − 

Timoshenko & Woinowsky-Krieger (1959) 

Evans (1939) 
− − − 

Imrak and Gerdemeli (2007) − − − 

5 Present 0.002604 0.0125 0.0417 

Batista (2011) 0.00260423 0.0124941 0.0416666 

Cui (2007) − − − 

Ike (2022) − − − 

Timoshenko & Woinowsky-Krieger (1959) 

Evans (1939) 
− − − 

Imrak and Gerdemeli (2007) − − − 

10 Present 0.002605 0.0125 0.0417 

Batista (2011) 0.00260417 0.0125000 0.0416667 

Cui (2007) − − − 

Ike (2022) − − − 

Timoshenko & Woinowsky-Krieger (1959) 

Evans (1939) 
− − − 

Imrak and Gerdemeli (2007) − − − 
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Table 2 – Deflections at the Centre of CCCC KPBP under Hydrostatic Load Distributed Over the Entire 
Domain. 

Aspect ratio 

b/a 

Centre deflection ( )/ 4
cw D qa  

 Present study Ike (2022) Timoshenko and Woinowsky-Krieger 

(1959) 

0.5 0.000080 0.000080 0.000080 

2/3 0.000217 0.000217 0.000217 

1.0 0.00063 0.00063 0.00063 

1.5 0.0110 0.0110 0.0110 

 0.0130 0.0130 0.0130 

 

Table 3 – Bending Moments at the Centre of CCCC KPBP under Hydrostatic Load Distribution Over the 
Entire Plate (for µ=0.30). 

Aspect ratio 

b/a 

Present study Ike (2022) Timoshenko and 

Woinowsky-Krieger (1959) 

 / 2
xxM qa  / 2

yyM qa  / 2
xxM qa  / 2

yyM qa  

0.5 1.98  10−3 5.15  10−3 1.98  10−3 5.15  10−3 

2/3 4.51  10−3 8.17  10−3 4.51  10−3 8.17  10−3 

1.0 11.5  10−3 11.5  10−3 11.5  10−3 11.5  10−3 

1.5 18.4  10−3 10.2  10−3 18.4  10−3 10.2  10−3 

 20.8  10−3 6.3  10−3 20.8  10−3 6.3  10−3 

 

Table 4 – Deflection and Bending Moment Parameters for CSCS KPBP under Uniformly Distributed 
Loading (for µ=0.30). 

b/a Method/Reference ( . , . )
4

0 5 0 5Dw a b

qa
 

( . , . )
2

0 5 0 5xxM a b

qa
 

( . , . )

2

0 5 0 5yyM a b

qa
 

1 Present 0.00192 0.0244 0.0332 

Timoshenko & Woinowsky-Krieger (1959) 0.00192 0.0244 0.0332 

Batista (2011) 0.00191714 0.0243874 0.0332449 

1.5 Present 0.00532 0.05849 0.0460 

Timoshenko & Woinowsky-Krieger (1959) 0.00531 0.0585 0.0460 

Batista (2011) 0.00532645 0.0584804 0.0459444 

2 Present 0.08445 0.08687 0.04736 

Timoshenko & Woinowsky-Krieger (1959) 0.00844 0.0869 0.0474 

 Batista (2011) 0.00844500 0.088681 0.0473622 

3 Present 0.01168 0.011436 0.0421 

Timoshenko & Woinowsky-Krieger (1959) 0.01168 0.01144 0.0419 

Batista (2011) 0.01168129 0.01143571 0.0421263 

4 Present 0.01267 0.12225 0.039 

Timoshenko & Woinowsky-Krieger (1959) − − − 
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Batista (2011) 0.01266531 0.01222547 0.0389927 

5 Present 0.01293 0.1243 0.038 

Timoshenko & Woinowsky-Krieger (1959) − − − 

Batista (2011) 0.01293098 0.1243191 0.0379205 

a/b Method/Reference ( . , . )
4

0 5 0 5Dw a b

qa
 

( . , . )
2

0 5 0 5xxM a b

qa
 

( . , . )

2

0 5 0 5yyM a b

qa
 

1.5 Present 0.02476 0.0178 0.04063 

Timoshenko & Woinowsky-Krieger (1959) 0.00247 0.0179 0.0406 

Batista (2011) 0.00247571 0.0178003 0.0406276 

2 Present 0.00261 0.01417 0.0421 

Timoshenko & Woinowsky-Krieger (1959) 0.00260 0.0142 0.0420 

Batista (2011) 0.01261080 0.0141717 0.0420629 

3 Present 0.00215 0.0125 0.04183 

Timoshenko & Woinowsky-Krieger (1959) − − − 

Batista (2011) 0.00261488 0.0124986 0.0418311 

4 Present 0.00261 0.0125 0.04168 

Timoshenko & Woinowsky-Krieger (1959) − − − 

Batista (2011) 0.00260519 0.0124751 0.0416780 

5 Present 0.0026 0.0125 0.04167 

Timoshenko & Woinowsky-Krieger (1959) − − − 

Batista (2011) 0.00260412 0.0124974 0.0416654 

 

5. Discussion 

 This paper has developed the solutions for CCCC and CSCS Kirchhoff plate bending problems using the 

superposition of sinusoidal and third order polynomial basis functions in the Ritz variational method. The 

problems studied were: 

(i) CCCC thin plate under uniformly distributed load. 

(ii) CCCC thin plate under hydrostatic load distribution. 

(iii) CSCS thin plate under uniformly distributed load. 

 The results for deflections and bending moments at the plate centre for CCCC thin plate under uniformly 

distributed load for a/b ranging from 1.0 to 10, and for . = 0 30  are presented, in Table 1, along with previous 

results by Batista (2011), Cui (2007), Ike (2022) and Timoshenko and Woinowsky-Krieger (1959). Table 1 

illustrates that the present results are identical with results by Timoshenko and Woinowsky-Krieger (1959), 

Batista (2011), Cui (2007) and Ike (2022). 

 Table 2 shows the present results for centre deflections of CCCC KPBP under hydrostatic load distribution 

for aspect ratios (b/a) ranging from / . ,= 0 5b a  2/3, 1.0, 1.5 and . Table 2 also compares the results with results 

from Timoshenko and Woinowsky-Krieger (1959) and Ike (2022). Table 2 illustrates that the present results are 

identical with previous results by Timoshenko and Woinowsky-Krieger (1959) and Ike (2022). 

 Table 3 presents the bending moment coefficient values for Mxx, M yy at the plate centre for hydrostatically 

loaded CCCC KPBP for . = 0 30  and aspect ratios / . ,= 0 5b a  2/3, 1.0, 1.5, . Table 3 confirms that the present 

results for bending moments at the plate centre for hydrostatically loaded CCCC KPBPs are almost identical 

with results by Timoshenko and Woinowsky-Krieger (1959) and Ike (2022), with differences that are less than 

0.1%. 
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 Table 4 presents the centre deflections and bending moments Mxx, M yy coefficient values for CSCS KPBPs 

subjected to uniformly distributed load over the entire domain; for values of / . ,=1 5b a  1.5, 2, 3, 4, 5 and for 

/ . ,=1 5a b 2, 3, 4, 5. Table 4 illustrates that the present solutions are almost identical with previous solutions by 

Timoshenko and Woinowsky-Krieger (1959) and Batista (2011), with differences that are less than 0.1%. The 

differences are attributed to approximations and round off errors during calculations  
 

6. Conclusion 

 This article has derived the solutions of CCCC and CSCS KPBPS using the superposition of sine and third-

degree polynomial basis functions in the Ritz variational method (RVM). The derived basis functions used in 

the RVM satisfied all boundary conditions and the resulting Ritz variational functional (RVF) became expressed 

in terms of the displacement parameters Amn. RVF was minimized with respect to Amn to obtain the equilibrium 

equations in stiffness form. 

In conclusion, 

(i) The present solutions for CCCC plates were identical with previous solutions obtained using Levy-

Nadai series method, Generalized Integral Transform Method and Symplectic Eigenfunction 

Superposition Method. 

(ii) The present solutions for CSCS plates under uniform load are identical with previous solutions that 

used the Levy-Nadai series method. 

(iii) The present results for deflections at the center of the fully clamped KPBP under uniformly 

distributed load are close to the previous symplectic elasticity results by Cui (2007), Levy-Nadai 

trigonometric series expansion results by Timoshenko and Woinowsky-Krieger (1959) and 

Generalized Integral transformation method results by Ike (2022) for aspect ratios, of 1, 1.2, 1.5, 

1.7, 2, 3, 4, 5, 10.  

(iv) For fully clamped KPBP, the present results for center bending moments Mxx and Myy (for all 

aspect ratios considered) are also almost identical to the previous results obtained by symplectic 

elasticity methods, by Cui (2007), Levy-Nadai methods by Timoshenko and Woinowsky-Krieger 

(1959), and Evans (1939), and GITM by Ike (2022). 

(v) For fully clamped KPBP under hydrostatic load, the present results for center deflections and 

bending moments Mxx, Myy (for b/a = 0.5, 2/3, 1, 1.5, and ) are identical with previous results 

obtained by Ike (2022) and Timoshenko and Woinowsky-Krieger (1959).  

(vi) For uniformly loaded KPBP clamped along y = 0, y =b and simply supported along x = 0, x = a, 

the present results for center deflections and center bending moments Mxx, Myy (for b/a = 1, 1.5, 

2, 3, 4, 5, and, a/b = 1.5, 2, 3, 4, 5) are almost identical with previous results by Timoshenko and 

Woinowsky-Krieger (1959) and Batista (2011).    

Notations 

xy    in-plane coordinates 

z    transverse coordinate 

q    intensity of uniformly distributed load 

a, b   in-plane dimensions of plate 

a    in-plane dimension in the x direction 

b    in-plane dimension in the y direction 

u    displacement component in x direction 

v    displacement component in y direction 

w    displacement component in z direction 

    total potential energy functional 

xx    normal strain in x direction 

yy    normal strain in y direction 

zz    normal strain in z direction 

xy    shear strain 

xz, yz   transverse shear strain 
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xx    normal stress in x direction 

yy    normal stress in y direction 

zz    normal stress in z direction 

xy    shear stress 

xz, yz  transverse shear stress 

    Poisson’s ratio 

E    Young’s modulus of elasticity 

G    shear modulus 

Mxx   bending moment 

Myy   bending moment 

Mxy   twisting moment 

h    plate thickness 

D    flexural rigidity of plate 

Ub    strain energy of thin plate under bending deformation 

2    Laplacian operator 

wxx   second partial derivative of ( , )w x y  with respect to x 

wyy   second partial derivative of ( , )w x y  with respect to y 

wxy   partial mixed derivative of ( , )w x y  with respect to x and y 

Wa    work done by applied load 

sin    sine function 

Pm(x)   third-order polynomial in terms of x 

Pn(x)   third-order polynomial in terms of y 

Fm(x)   basis function in the x direction 

Gn(y)   basis function in the y direction 

,
0mA  ,

1mA  ,
2mA  

3mA  unknown coefficients (parameters) of Pm(x) 

,
0nB  ,

1n
B  ,

2nB  
3nB  unknown coefficients (parameters) of Pn(y) 

m, n   integers 

Amn   generalized displacement parameters of ( , )w x y   


m n

double summation 

    first variation of 
ij
mnK     stiffness matrix 

Fij    force matrix 

( )
0 0

a b

dxdy   double integration over the plate domain with respect to x and y 

C    clamped support 

S    simple support 

CCCC  thin plate with all four edges clamped 

CSCS  thin plate with two opposite edges clamped and the other two opposite edges simply supported 

KPT   Kirchhoff Plate Theory 

2D   two-dimensional 

3D   three-dimensional 

GPDE  Governing Partial Differential Equation 

PDE   Partial Differential Equation 

RVF   Ritz Variational Functional 

RVM   Ritz Variational Method 

SESM  Symplectic Eigenfunction Superposition Method 

KPBP(s)  Kirchhoff Plate Bending Problem(s) 
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