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Abstract

In order to have the best prediction of the non-linear viscoelastic
behaviour of solid polymers, a new constitutive relationship has been obtained
by inserting the stress invariants (1;) and (1’ ) into the formulation of multiple

integral representation (MIR). The analytical part for the uniaxial tensile
loading, it was found that creep could be separate into three components. First
and second components, represent the contributions of the hydrostatic and
deviatoric stresses respectively, while the third component represent the
contribution of the synergistic effect of the hydrostatic and deviatoric stresses.
Also, for the case of pure shear loading it was found that all components of
creep are dependent on the deviatoric stress. Thus, new kernels have been
obtained which called the hydrostatic, deviatoric and synergistic kernels, in
terms of power law. Good agreement has been obtained from the comparison
between the experimental of other studies and theoretical results of MIR under
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different types of loading for PP, PE and PMMA. This comparison proved that
MIR gives the prediction with an average error of 0.05%.

Notations

Fii A non-linear tensile function

t Time ()

e Strain

I, 15 Stress invariants

Ky, Ks, Kj Hydrostatic, deviatoric and synergistic tensile kernel functions
Gy, G, Deviatoric shear kernel functions
€11 Tensile strain

€12 Shear strain

n Time constant

PMMA Polymethyl methacrylate

PE Polyethylene

MIR Multiple integral representation
PP Polypropylene

tr Trace

Vo,..vzand m,,..m.

Time functions including the material constant
Shear stress

Time parameter (s)

Tensile stress (N/m?)

o

| Unit matrix
Oj; Stress tensor
e Strain tensor

1. Introduction:

Polymers are the fastest growing class of engineering materials in

volume of usage and now firmly established in many load-bearing duties. The
structure of polymers below glass transition is non-equilibrium
inhomogeneous!, so that the stress and strain analysis is complicated™ 2.
Also, the deformation behaviour of thermoplastics under mechanical loads
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depends to a great extent on time. The influence of time makes the
dimensioning of plastic components considerably more complicated than other
materialst!.

Different attempts of researchers investigated the creep behaviour of
plastics from different sights. The first attempt to study the effect of hydrostatic
(1;) and deviatoric ( 1% ) stresses was by Buckley and McCrum™! whose found

that the linear response of solid polymers is related to the hydrostatic stress
while the non-linear response is related to the deviatoric stress. Resenl™
designed a biaxial creep machine and performed many experiments under
tension, torsion and combined tension-torsion loading to study the separate
roles of (1;) and (l,). Also, for the same purpose, Jabbar® and Zai'bel™

performed many experiments under combined tension-internal pressure and
combined tension-torsion- internal pressure loading respectively. Also
Za’ibel'” proposed an analytical procedure by using the finite and boundary
element formulations to predicate the onset of non-linear creep, recovery and
stress relaxation. Oliveira and Creus® used a numerical method for modeling
the failure behaviour of composite laminates in the presence of large
displacements and creep. The modeling of material behaviour included
thermal, and viscoelastic effects, using an efficient state variable
representation. Thus, the procedure can be used to analyze buckling, creep,
buckling and creep including damage. Then they have been extended this
procedure to study the nonlinear viscoelasticity of thin-walled beams in
composites materials!®® and ageing in fiber reinforced polymer composites™!.
Resen and Faisal™*! used MIR to predict the creep response of PMMA under
combined tension-torsion loading. They found that MIR gives a good perdition
for long term of creep under combined loading.

As we knew (1;) represents the components of the applied stresses

which cause the linear response while (I’,) represents the components of the

applied stresses which cause the nonlinear response. Until now MIR is depend
on the applied stresses and don’t use the stress invariants. Also most researches
are limited to experimental study and to the linear and the onset of the
nonlinear range. Thus, the aim of this work is to insert (1;) and (I5) into the

relations of MIR and predict the non-linear creep of semicrystalline and
amorphous solid polymers which help us to separate the linear and nonlinear
response and know to which range of strain we should be used these materials
in engineering application.
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2. Theory:
2.1 Constitutive Relationship:

The strain of polymeric materials can be expressed in the form of
multiple integrals due to the dependency of the strain at any time on all stress
history [,

t
e(t) = Fi{dc;—(;)} (1)

where O and e are the stress and strain tensors respectively, Fj is a non-linear

—0o0

tensile function, and g is an arbitrary time.

This behaviour could be described by containing the stress terms up to
third order. Thus, for the case of step loading, the strain tensor is given by the
following equation becomes 1:

e=l[ztro+z,tr(co) + mirotro + z,trotr (oo) + zirotrotro |

+[v0 +v1trc5+v2tr(c5cs)+v3trc5trc5]0 ...(2)
where e = gj; is the strain tensor.
miand v;are the time functions including the material constant A,

i=1,...,5
i=0,...,3
tr = trace

2.2 Loading Programs:

2.2.1 Uniaxial tensile loading:
For this case of uniaxial tensile loading, the stress tensor and it’s traces
are:

0
0|, troc=0y, troc= 6121 ...(3)
0

Where o;; =c and o is the tensile stress.
Also, the stress invariants for this case is given by:
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, ©
- ?1)1 ...(4b)

Substituting Egs. (3) and (4) into Eqg. (2), the tensile strain e, (t)can be
obtained as follows:
Vol +3vql5 +3v, 1115 +3vsl4 15
Where K1 =71, +V,
K, :3><(7z2 + 774 +v1)
K, =3x(7, + 7, +v, +v,)

Where K;,K,andKsare the hydrostatic, deviatoric and synergistic

tensile kernel functions respectively.
According to Eqg. (5), three pure tension tests at different stress levels are
required to determine the unknown kernels K;, K,andK;.

2.2.2 Pure shear loading:
For this case, the stress tensor and its traces are given by the following
equation:

., tro=0, troo = 212 ...(6)

Q
|
O a O
O O A4
o O o

Where 7 is the shear stress, but:

I, =0 ...(7a)

I, =t° ..(7b)



Substituting Egs. (6) and (7) into Eqg. (2), the shear e, (t) strain can be
obtained as follows:

e, (1) =(vo + 2V2|'2)\/E
=G |1y +G, (1) (8)
Where Gl =V,
GZ - 2V2

G;andG, are the deviatoric shear kernel functions.

It can be noted (from Eq. (8)) that two pure shear tests at different stress
levels are required to determine these unknown kernels.

3. Results and Discussion:

3.1 Uniaxial tensile loading:

The behaviour of semicrystalline PE and PP at 20°C and amorphous
PMMA at 30°C was studied over time range of 3, 30 and 3 hr respectively. The
block diagram of the program which has been written is shown in Fig 1. The
responses of three uniaxial tests at different stresses™ *?! (Table 1) have been
substituted into Eq. (5) to determine the hydrostatic K;, deviatoric K, and
synergistic K3 tensile functions by using Guassin elimination. Then, least
square method has been used for fitting these functions in terms of power law
as given in Table 2. It was found that time exponents for PE, PP and PMMA
are 0.125, 0.07 and 0.065 respectively which are similar to those found by
Faisal'*®!. These functions are presented in Fig. 2, 3 and 4.

Fig. 2 shows that K; and K; increase non-linearly with time while Kj
decrease non-linearly with time. In contract Figs. 3 and 4 show that K; and K3
increase non-linearly with time whereas K, decreases non-linearly with time.
These increasing or decreasing can be noted from the log scale of the time
which depend on the type of material if it is amorphous or semicrystalline. The
change is only in the behaviour of K, and K3 which can be attributed to the
decreasing of the degree of crystallization?.

Substituted these functions (Table 2) into Eqg. (5) to find the tensile
strains at different hydrostatic (1) and deviatoric (I";) stress level. These
determined strains were compared with experimental results®™ *2 as shown in
Figs. 5, 6 and 7. A good agreement between the experimental™ *? and MIR
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results has been obtained with a tensile error of 2.892835 x 10™. From these
figures it can be noted that tensile strain increase non-linearly with time and
increasing of I, and 1", caused a step shift in these curves because I, and I,
depend on the applied stresses. Since 1", depends on 1y, so this shift occurred
due to increment in Iy that can be consider the main factor for the case of
unaixial tensile loading which agree with the results of Resen®,

3.2 Pure shear loading

For the case of pure shear loading, the behaviour of PMMA at 30°C was
studied over the time range of 3 hr. by substituting the responses of two pure
shear tests ! at different stresses (Table 3) and by using block diagram of the
program which is shown in Fig 1. The deviatoric shear functions G; and G;
have been determine by using the same procedure that mentioned in section
3.1.

It was found that time exponent of these functions is the same as that
found for the tensile functions of PMMA (Table 2). These functions are also
present in Fig. 8, which indicate that both G; and G, are increase nonlinearly
with time.

Substituting G; and G; into Eq. (8) to find the shear response at different
values of 1,. Fig. 9 shows the comparison between the experimental ! and
MIR results. A good agreement between these results has been obtained with a
shear error of 1.219314 x 107, Also it can be noted that the increasing of I,
caused of step shift in the curves of shear strains, which indicate that 1”2 is the
main factor for the case of pure shear loading.

From the comparison shown in Figs. 5, 6, 7 and 9, it can be noted that a
good agreement was obtained by using the formulation that derived in this
paper. Also the total error in tensile and shear strains was 0.05%.

4.Conclusions:

New constitutive equations have been obtained by inserting I; and I"; into
the MIR. For the case of uniaxail tensile, the functions have been obtained are
the hydrostatic, deviatoric and synergistic functions for PE, PP and PMMA.
While only the deviatoric functions have been obtained for the case of pure
shear loading. Also it was found that tensile strain depends on I; while shear
strain in highly dependent on I’,. The obtained error in the first case was
2.892835 x 10 and 1.219314 x 107 for the second case. The total error in
tensile and shear strains was 0.05%.




Fig. 1 The block diagram of MIR

'

| Input Exponent |

A

| Stress invariant

| Time strain i‘—l

l | Time increment |

| Gaussion elimination |7$

| Least square

’ Exponent increment

v
| Error l

| Properties |

Main subroutine

Function

Stress invariants

To enter stresses ivariants date required for calculation of Gaussian
elimination

Time, Strain

To enter time and a corresponding strain at stresses given in stress
subroutine

Gaussian

To find kernel functions

Time increment

To control increments if time is intended to be in incermental form.

Least square

To find the kernel functions in the form of power law

Error To calculate the error between the experimental and MIR results.
To obtain creep compliance and compressibility function in terms of
Properties power law. Also, to calculate their values and Poisson's ratio at any

required time and stress.




Table 1 The hydrostatic and deviatoric stresses

that used to fined K; , K, and K;

Material No. Of Test

[EEN

0.5071040
0.4055360
0.9130080
0.6326910
5.7021650
15.856203 |
|

N

49.996336
195.97200
399.05300

Table 2 Hydrostatic, deviatoric and synergistic tensile
functions for different materials.

‘ N Tensile functions \
Material

K;=0.1809797E-3 + 568.7743E-3 t"
K= 100.40550E-3 + 276.9348E-3 t"

Ks = 49.481490E-3 + 38.00241E-3 t"

Ky =-14.1241E-3 + 132.25400E-3 t"

K, = 6.960681E-3 — 27.102280E-3 t"

K3z = -1.556835E-3 + 4.621695E-3 t"

K; = 0.52972650E-3 + 2.0826460E-3 t"
K, = 0.70489650E-3 - 0.6110778E-3 t"
K3z =-0.03216576E-3 + .03867906E-3 t"

NFR|WINFPW

Table 3 Hydrostatic and deviatoric stresses that used to
find G; and G, for PMMA.

No. of Test I; (MPa) I, (MPa®)
Material

PMMA 1 0 299.29
2 0 49.985

Table 4 Deviatoric shear functions for PMMA.
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Fig. (2) Hydrostatic, deviatoric and synergistic tensile kernel functions of

PF at 20°C
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Fig. (4) Hydrostatic, deviatoric and synergistic tensile kernel functions of
PMMA at 30°C.
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Fig. (5) Creep curves of PE for different hydrostatic and deviatoric stress at 20°C.
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Fig. (6) Creep curves of PP for different hydrostatic and deviatoric stress at 20°C.
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Fig. (7) Creep curves of PMMA for different hydrostatic and deviatoric
stress at 30°C.
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