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ABSTRACT  

In many applications, including radar, radio and television, medical, industrial, and others, 

frequency estimate of a periodic sinusoidal signal is a crucial step in the signal processing 

process. Due to its simplicity of usage in digital systems, the interpolation-based signal 

frequency estimation algorithm is now frequently employed. Because of its performance speed, 

interpolation methods in the analysis rely on the fast Fourier transform (FFT). This paper 

proposes an approach for single-tone frequency estimate utilizing DFT interpolation with 

Parzen windowing in order to increase the accuracy of frequency estimation. In addition, 

compared to Li and Dian algorithm, the proposed method has a lower computing complexity 

and more steady performance. To minimize undesirable effects brought on by spectrum leakage 

from the FFT procedure, suitable windows have been investigated. To investigate the viability 

of the suggested method, three windows Flattop, Parzen, and Bohman, were applied to the 

simulation signal. When compared to the other windows, the Parzen window with the proposed 

algorithm outperformed them with a maximum frequency estimation error of 0.00003 

compared to 0.0001 and 0.0002 for the Dian and Li algorithms, respectively, when the Sample 

Size was 8192. 

KEYWORDS: Frequency estimation, windowing function, FFT, interpolation, algorithm, 
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1. INTRODUCTION  

An important task of frequency estimation in modern signal processing in many applications 

such as radar, radio and television channels, medical and industrial fields, and others (Dan, et 

al., 2012; Vaseghi, 2008). Current frequency estimation tools can be basically divided into two 

classifications:  algorithms of the time-domain and algorithms of the frequency-domain. First 

classification involve algorithms of the maximum likelihood (ML) (Chen and Braga-Neto, 

2013; Agüero, et al., 2010), algorithms of the autocorrelation (Tu and Shen, (2017); Cao 

(2012)), algorithms of the linear prediction (Alku, et al., 2013), and algorithms of the least 

squares (Nandi, 2012). However, due to the large number of calculation requisite, these 

algorithms are tough to use in real-time implementations. Second classification usually 

performed on the basis of discreet Fourier transform DFT (Fan and Qi, 2018; Belega and Petri, 

2015; Belega and Petri, 2014; Fan et al., 2021; Serbes, 2019; Aboutanios and Mulgrew, 2005; 

Candan, 2013; Fang et al., 2012). These algorithms ordinarily have teeny calculation requisite. 

Hence, they are convenient for real-time implementations. Frequency estimates based on DFT 

typically have two stages: rough search and accurate search. Rough search is utilized to locate 

the maximum strength of the DFT of samples using an easy maximum search steps. The 

accurate search allows a relative variance of the signal frequency from rough estimation by 

definite methods of the interpolation. The variance between various algorithms of the 

interpolation fall only in the second stage. The real sine wave model is too recurrently used in 

empirical implementations, and real sine wave frequency estimation is more complex than 

complex sine wave because of the issue of a spectrum leak from a component of the negative 

signal spectrum. Plenty of researchers offered its algorithms to real sine wave (Dutra et al., 

2014; Li and Kui, 2008; Ding et al., 2010). Dutra et al., 2014) Offers an estimator such as ML 

build by matching of the spectrum. The algorithm bypass the spectral leakage problem by 

including it in the model of the spectrum. However, this algorithm requires a comprehensive 

search that requires a lot of computation. 

Li and Kui, (2008) introduced a new interpolation method, pertinent to the complex spectrum 

of many windows, a complex formula for obtaining the frequency of the component shown in 

equation (1) and (2). This complex spectral approach (CSBA) is less sensitive to spectral 

leakage than the modular approach. Frequency correction amount δ is respectively 

 𝛿 = ±
𝛼

𝛼−1
                                                                                                                                                         (1) 

 𝛿 = ±
2𝛼+1

𝛼−1
                                                                                                                                                      (2) 
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Where 

 𝛼 = {

𝑈𝑘−1

𝑈𝑘
, 𝑖𝑓     𝑈𝑘−1 ≥ 𝑈𝑘+1

 
𝑈𝑘

𝑈𝑘+1
, 𝑖𝑓     𝑈𝑘−1 < 𝑈𝑘+1        

                                                                                            (3) 

𝑈𝑘, 𝑈𝑘−1 𝑎𝑛𝑑 𝑈𝑘+1 : are spectral lines with the maximum amplitudes and two spectral lines left 

and right with the largest amplitudes respectively, That is, the complex ratio of the two spectral 

lines with the largest amplitudes.  𝛿 - The offset of the normalized fractional frequency, 𝛿 = (-

0.5, 0.5).  

Ding et al., (2010) execute also a fine search using the maximum spectral line and two spectral 

lines to the left and right of the maximum as shown below:  

 𝛿 =  
 𝑈𝑘+1−𝑈𝑘−1

𝑈𝑘+ 𝑈𝑘−1+𝑈𝑘+1 
                                                                                                                    (4) 

This paper proposes an accurate frequency evaluation of the real sine wave based on DFT. The 

proposed estimator is depend on interpolation of the three maximum point of the DFT spectral 

line and its suitable with most windows, Flat top, Parzen and Bohman windows were tested and 

compared. Computer simulation results show that the behavior of proposed algorithm is 

superior to that of Ding and Li algorithms. The algorithm analysis was performed showing that 

the calculations complexity are lower and the performance is more stable depending on the 

frequency evaluation error. The rest of this paper is as follows. In the second section the 

proposed algorithm described. In the third section the results and discussion are described, 

Conclusions presented in the last section. 

2. PROPOSED MODEL 

The general procedure of the interpolation estimator are shown in Fig. 1. 

Consider a sine wave as a discrete sequence: 

          𝑝[𝑛] =  𝐴 𝑠𝑖𝑛(2𝜋 𝐹0 𝑛 𝑡 + ȹ)        𝑛 = 0,1,2, … . . , 𝑁 − 1                                                          (5)            

Where N is the Sample Size. A,𝐹0 and ȹ are the amplitude, frequency, and initial phase of sine 

wave, respectively. 

If the number of period of the signal are integer, then the frequency of the signal can be 

expressed as 
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 𝐹0 = (𝐾max
 𝐹𝑠

𝑁
 )                                                                                                                           (6) 

Where 𝐾max is the index value of the discrete frequency of the maximum component in 

spectrum of DFT (see Fig. 2) and Fs is the sampling frequency. The frequency resolution: 

  𝛥𝐹 =   
𝐹𝑠

𝑁
                                                                                                                               (7) 

𝛥𝐹 : is the distance between two spectral lines. 

Applying the windowing function on p[n]: 

P[n] =   p[n] ∗ w[n]                                                                                                              (8) 

The following windowing function are used in this paper: Flattop, Parzen, and Bohman 

window: 

2.1. Flattop Window  

Flattop window have very low passband ripple. This window drawbacks gives the broad 

bandwidth and poor frequency resolution. Flat top windows are summations of cosines shown 

in eq. 5 (Gade and Henrik, 1987) [20]: 

 𝑤(𝑛) = 𝑎0 − 𝑎1𝑐𝑜𝑠 (
2𝜋𝑛

𝑁−1
) + 𝑎2𝑐𝑜𝑠 (

4𝜋𝑛

𝑁−1
) − 𝑎3𝑐𝑜𝑠 (

6𝜋𝑛

𝑁−1
) + 𝑎4𝑐𝑜𝑠 (

8𝜋𝑛

𝑁−1
)                                   (9) 

The coefficients for this window are: 

𝑎0= 0.21557895, 𝑎l= 0.41663158, 𝑎2= 0.277263158, 𝑎3= 0.083578947, 𝑎4= 0.006947368 

2.2. Parzen window  

Parzen windows are piecewise-cubic approximations of Gaussian windows. This window 

usually using to minimize side lobe levels, but they tend to have a heavy scalloping. The Parzen 

(Harris, 1978) window is defined as: 

         𝑤(𝑛) =

{
 
 

 
 1 − 6(

| 𝑛|
𝑁

2

)

2

± 6(
| 𝑛|
𝑁

2

)

3

, 0 ≤ | 𝑛|  ≤
N−1

4
 

2 (1 −
| 𝑛|
𝑁

2

)

3

,              
N−1

4
< | 𝑛|  ≤

N−1 

2
         

                                                      (10)                         

Where n= 0, 1, 2, ... N-1. The periodic window is N-periodic.   



Kufa Journal of Engineering, Vol. 14, No. 3, July 2023               97 

 
 

 

Fig. 1. Procedure of the general interpolation method. 
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Fig. 2. The three points in the DFT spectrum used for interpolation. 

2.3. Bohman window  

This window is a product of two cosine lobes of half the duration. In the time domain, it is the 

product of a triangular window and a single cycle of a cosine with a term added to set the first 

derivative to zero at the boundary. The window is defined in equation (Harris, 1978): 

            𝜔(𝑥) = (1 − |𝑥|)𝑐𝑜𝑠(𝜋|𝑥|) +
1

𝜋
𝑠𝑖𝑛(𝜋|𝑥|) ,   − 1 ≤ 𝑥 ≤ 1                                                   (11) 

Where x is a length vector of linearly spaced values. 

The analysis algorithm examined the spectral characteristics of the signal. In a lot of 

applications and for the purpose of spectroscopy. DFT is also often referred to as (FFT) and is 

the algorithm that achieves DFT. In DFT first the sliding window mechanism is applied to the 

input signal p[n]. That is, the signal will be soft at its ends. The choice of analysis window is a 

well-developed topic and affects the spectral resolution of the analysis. The DFT for signal p[n] 

is given by: 

          𝑋(𝑘) =
1

𝑁
∑ 𝑃(𝑛)𝑁−1
𝑛=0 ∙ 𝑒−𝑗(

2𝜋𝑘𝑛

𝑁𝑇
)
                                                                                                        (12) 

 

Where T is sampling period and k is the DFT bin number with 0 ≤ k ≤ N − 1. The important 

step in the analysis stage is to assign the detected peaks and amplitude. The different formula 

available of the Li, Dian and proposed algorithms are the main scope of in this paper. 
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As shown in Fig. 1, the block diagram of the computational steps begins with generating a 

signal and take the sampling process for it with a number of samples (16-8192), then applying 

the time window to this sampled signal to reduce spectral dispersion, after that calculate the 

(FFT) of the output, subsequently find the sample that carries the highest amplitude, which that 

falls desired frequency. But if the number of cycles taken in the sampling process is an integer 

number of cycles, therefore this means that the required frequency is Located between two 

samples that carry the highest amplitude, as shown in Fig. 2. After this, compute 𝛿 the difference 

between 𝐾max and k + 1 or k -1 according to the highest amplitude by equation (13) to sum it 

with the k and we find the required frequency and evaluate the error according to equation (15)  

              𝛿 =  
𝑈k+1 − 𝑈k−1 

𝑈k 
 

                                                                                                           (13) 

The signal frequency is calculated by:                                                     

            𝐹𝐸𝑠𝑡 =
( 𝛿+𝐾max

 )𝐹𝑠

𝑁
                                                                                                                                 (14) 

Where K′
 
= ( 𝛿 + 𝐾max) 

Estimate of the error of the frequency estimation by: 

             𝐸𝑟𝑟𝑜𝑟 =
(𝐹𝐸𝑠𝑡 − Fc)

Fc
                                                                                                                        (15) 

3. RESULT AND DISCUSSION 

The parameters for computer simulations for result in Figs. 3-5 are as follows: The value of 

phase elected between [−ᴨ, ᴨ] with step =10o,  Fs/Fc=4, Sample size is (16,32,64,.....,8192) 

respectively, sampling frequency = (16,32,64,.....,8192) respectively and the used windows are 

Flattop, Parzen, and Bohman respectively , All the presented results in Figs. 3-5 compared 

between three algorithms Li, Dian and proposed algorithms with relative maximum frequency 

estimation error and Sample size. The optimum result of simulations are when Parzen window 

used. The performance of this algorithms is similar when using a Flat top window, but the 

difference is clear when using the Bohman and Parzen windows. The systematic maximum 

errors reach (0.0002, 0.0001 and 0.00003) for Flat top, Bohman and Parzen windows 

respectively when sample size = 8192.Further, the results shows that our algorithm is better 
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than other algorithms for all sample size. The error decreases gradually with increasing sample 

size. 

Fig. 3. Relation between relative maximum frequency estimation error and Sample Size for Flat-

top window. 

 

Fig. 4. Relation between relative maximum frequency estimation error and Sample Size for 

Parzen window. 
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Fig. 5. Relation between relative maximum frequency estimation error and Sample Size for 

Bohman window. 

 

Fig. 6. Relation between relative error and Fc at 16 samples (Flat top window). 
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Fig. 7. Relation between relative error and   Fc at 32 samples (Parzen window). 

To illustrate the effects of the non-integer number of signal period especially when closely to 

3.5 Hz, we have generated compare with a signal length N = 16 and 32, frequency spacing 

between each components equal to 1 Hz with signal frequency = (3 to 4) Hz. Figs. 6-7   plots 

this effect of the Flat top and Parzen windows respectively with respect to frequency estimation 

error with Fc. The Figures clearly shows that when the signal frequency near from 3.5 Hz the 

highest frequency error occurs. Furthermore, it is also shown that Parzen window reduce this 

error. Where the errors at N=16 were 0.14, 0.13 and 0.10 for Li, Dian and proposed algorithms 

respectively when Flat top window used, Where errors become (0.14, 0.07 and 0.02) using the 

Barzen window for Li, Dian and proposed algorithms respectively. This means that the times 

of error reduction is 5 times in the proposed algorithm and twice in the Dine algorithm. 

4. CONCLUSION 

In this paper, we propose a fine and effective algorithm based on three-point interpolation of 

DFT samples to evaluate the fundamental frequency. The results shows that our algorithm 

performs better than all the other algorithms, especially when the Parzen window used. Our 

algorithm also shows high efficiency when the number of samples is 8192 and the error drops 

to (3.0 * 10 -5) using the Parzen window.  

We recommend that our approach can also be used as a configuration for other iterative 

algorithms, improving overall performance in frequency evaluation. Future work will be 

interesting to combine this weighted algorithm with other algorithms to achieve more accurate 

results.          
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