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رة اللاتنغيم وتردد رابي على سلوك السوليتون لليزر الأليافسيط  

قسم العلوم كلية التربية ألأساسية/ جامعة ميسان / - يونس محمد عطية الزاهي  

 

 الملخص:
يستعرض هذا البحث سلوك  السوليتون  في وسطط الليطزر المعطنن مطن ليطج زجطاجي  المطعطم بايونطا   

لبعريا  الكمية ونظطام الطث ث مسطتويا  دنبطدأ مطن معادلطة الحركطة اليربيوم  باستخدام نموذج يستعمل ا
تنغطيم وتطردد رابطي  والتي تضم عامل الال خطية  رلمؤثرا  الكثافة الالكترونيةدنشتق معادلة شرود نك

دنسططتعمل حططل تحليلططي لتوضططيو أن الموجططا  السططوليتونية ممكططن أن والتشططت  اللي ططي وال خطيططة لليج 
ستقرة بعد أربن دورا  فطي المرنطان الحلقطي ومحعطلة الكسطم تعتمطد علطغ ال تنغطيم تتواجد وان تكون م

                                                                            وتردد رابيد
 

Abstract : 
This research explore the behavior of soliton   in Er 

+3
 fiber laser 

medium by using a model that use the Quantum optics  and three levels system 

. Starting from the equation of motion of the density operator, the researcher 

derive the nonlinear Schrödinger equation which include the detuning , Rabi 

frequency , the group velocity dispersion coefficient of the host fiber and  γ the 

host nonlinearities and use analytic solutions to show that solitary waves can 

exist and be stable after four loops in ring cavity  and the  net gain depends on 

detuning and Rabi frequency  .  

 

Introduction: 
The interaction of a strong bichromatic field with three levels atomic 

transition is fundamental to a number of research disciplines, including 

nonlinear optics, quantum optics, and laser theory, one of this research is 

behavior  of  laser pulse in  Erbium-doped fiber which  is consisted of a short 

section of fiber that has a small amount of the rare earth element (Erbium 

)added to it. The principle involved here is that Erbium ions are able to exist in 

various electronic energy states .Now the question arises, why this Erbium 



 

 

 

 

 

 

 

 

 

 

 

 

 

2 

doped Fiber was chosen as a candidate for these applications. The main reason 

lies there in, that this material shows suitable transition at 1550 nm, and this 

wavelength is of extraordinary importance for the communication technology 

with glass fibers. This wavelength falls in the so-called second absorption 

window.  Such pulses propagate unchanged over long distances in the absence 

of loss. However, optical fibers are inherently lossy, and some types of gain 

mechanism are required to compensate for the loss. A common technique 

consists of doping the silica fiber with rare-earth ions and pumping them 

optically to realize the optical gain.  

For the past few years, R.-J. Essiambre and G. P. Agrawal(1995), have 

analytically expressed two conditions for periodic amplification of short 

solitons (TFWHM from 1 to 5 ps) and numerically solved this set of coupled 

nonlinear equations in terms of the soliton width and mean frequency for 

different amplifier spacings and gain bandwidths[1]. L.W. Liou and G. P. 

Agrawal  (1996), use numerical simulations to show that solitary waves can 

exist provided there is enough broadband loss such that the net gain is negative 

far away from the gain peak[2]. G. Shaulov  et. al. (1999),  found that for a 

specific parameter range the solitary wave-type solutions exist and can be 

expressed in analytic form, including a new gray-pulse solution[3]. Thomas 

Carruthers et. al. (2000), have used Harmonically mode-locked Er-fiber 

soliton lasers as a source of high-repetition-rate picosecond pulses in high-

speed communications[4], Eduardo J. S. Fonseca et. al. (2002),  have 

investigated the interaction between a pair of solitons that originate from the 

breakup of a high-order soliton propagating through a cylindrical waveguide in 

the presence of three-level resonance associated with a dopant[5].. Hojoon Lee. 

and Agrawal G.P. (2003), studied numerically the nonlinear switching 

characteristics of optical pulses transmitted through fiber Bragg gratings. The 

nonlinear coupled-mode equations were solved numerically for pulse widths 

ranging from 50ps to 10ns or more[6]. J. Swiderski  et.al(2004), have built two 

experimental laser set-ups based on neodymium- and ytterbium-doped active 

media. A Yb3+-silica fiber laser has been cladding pumped at 937 nm by a 

InGaAs semiconductor laser diode and generated 4 W cw output power with 

slope efficiency of 73 ±3%. However, Nd
3
doped fiber laser generated over 10 

W cw output power with a slope efficiency of 63%[7] Lai 

W.J.,at.al.(2004),investigated bi-directional optical wave propagations in a 

dual-pumped Erbium doped fiber ring laser without isolator, and observe 

optical bistabillity behavior[8]. Erin Hammond (2005) studied operation of 

single mode and multimode fiber lasers. The advantages of fiber lasers over 

traditional solid-state lasers are discussed along with fairly recent advances in 
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higher output powers associated with fiber lasers.[9] Lixin Xu, (2006)  

demonstrated a 40-GHz actively mode-locked Erbium-doped fiber laser that 

incorporates an electro-absorption modulator and a linear optical amplifier. 

Stable pulses with peak power of 46 mW and pulse width of 2.8 ps are 

obtained when pumped with 100 mw[10]. Younis  Al-zahy (2006) studies 

some of nonlinear effects as self phase modulation (SPM), cross phase 

modulation (XPM) ,four wave  mixing (FWM) in passively mode locking and 

generation soliton from noise [11]. S. A. Ponomarenko1 and G. P. Agrawal  

(2007) obtain exact self-similar solutions to an inhomogeneous nonlinear 

Schrödinger equation, describing propagation of optical pulses in fiber 

amplifiers with distributed dispersion and gain[12]. My goal ,it is found 

analytic solution applies to nonlinear gain medium. By modeling the doped 

optical fiber as a gain medium with equation of motion of the density operator. 

 
Problem formulution: 

 When an Erbium ion is in an excited energy state, a photon of light can 

stimulate it to give up some of its energy to the light beam and return to a more 

stable lower energy state. This is called stimulated emission. In such 

applications, a pump laser diode generates a high powered beam of light at a 

wavelength such that the Erbium ions will absorb it and jump to an excited 

state. The amplification process is as follows: First, the ions at the ground level 

are excited by the pump to a transition energy level. Due to this level’s short 

lifetime, the ions spontaneously transit to the metastable level E2, which has a 

long lifetime in the order of 10 ms. The metastable band is narrow enough to 

be roughly homogenously populated even at ambient temperature. As a 

consequence, any ion used for stimulated emission is quickly replaced by 

another ion, which typically results in homogenous gain broadening. 

 
                  Fig. 1 Energy-levels of Erbium in Silica Glass 

 Fig. (1 ) shows the well known level system, the pump transition occurs    

between the states 
4
I 15/ 2              

4
I 11/ 2 ,   followed  by  a  quick  transfer  

between  the  states
 4

I 11/ 2            
   4

I 13/ 2 and  finally  as  irradiative  transition 

E3 

E2 

E1 
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  back  to  the  ground state 
4
I 15/ 2 ,with a comparatively extremely long life 

time of 14 msec, this system fulfils the requirements for the production of the 

desired population inversion[13,14 and 15]. Fig. 2 shows the basic operation of 

a forward-pumped EDF, with signal amplification, pump absorption, and ASE 

generation simultaneously taking place within each incremental cylinder of the 

EDF core. 

 

 

 
 

 

 

 
                                           Fig. 2 Basic EDFL Operation 
The equation of motion of the density operator is generally given by Eq. (2) as 

R
HHHH ˆˆˆˆ \

0
                                                                      (1) 

0
Ĥ is the Hamiltonian in the absence of external forces, \Ĥ is the interaction 

Hamiltonian  being linear in the applied electric Field of the light, and where 

the new term
R

Ĥ
 describes the various relaxation processes that brings the 

system into the thermal equilibrium whenever external forces are 

absent[16,17]. 

Equation (1) can be analyzed by means of the equation of motion of the density 

operator ̂ . 

  ˆ,ˆ1ˆ
H

idt

d




                                                                         (2)                                                                                                                                                             













  

 ˆ,ˆˆ
0

ˆ
ˆ

\
R

HHH
i

dt

d



                                               (3)                                                        

The relaxation process of the medium towards thermal equilibrium can be 

described 

By: 

   


  ˆˆˆˆ,ˆ i
R

H                                             (4)                                               

where 


̂ is the thermal equilibrium density operator of the system. This 

phenomenological introduced operator ̂  describes the relaxation of the 

medium, and can be considered as being independent of the interaction 
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Hamiltonian. Here the operator ̂  has the physical dimension of an angular 

frequency, and its matrix elements can be considered as giving the time 

constants of decay for various states of the system. 

By taking the perturbation series for the density operator as: 

)(ˆ.........)(
2

ˆ)(
1
ˆˆ)(ˆ t

n
ttt 


                                                        (5)                                                     

From Eqs.(3 and 5) we obtains the system of equations 






 
 ˆ,ˆ1

ˆ
H

idt

d
i


  

)(
1
ˆ,ˆ)(ˆ,ˆ1)(

1
ˆ

ˆ t
I

HtH
idt
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i i 



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
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


  



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2
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1

)(,ˆ)(
2

ˆ,ˆ1)(
2

ˆ
ˆ tt

I
HtH

idt

td
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













  



 

. 

. 

)(ˆ)(
1

,ˆ)(ˆ,ˆ1)(ˆ
ˆ t

n
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nI
Ht

n
H

idt

t
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d
i i 


















 




                      (6)                             

 
For the three-level system, the equation of motion can be expressed in terms of 

the matrix elements of the density operator as: 

 
aaR

H
aa

tt
I

H
aa

tH
idt

aad
i 

 ˆ,ˆ)(),(ˆ)(ˆ,ˆ1













 


        (7)               

 
abR

H
ab

tt
I

H
ab

tH
idt

abd
i 

 ˆ,ˆ)(),(ˆ)(ˆ,ˆ1













 


          (8)               

 
bbR

H
bb

tt
I

H
bb

tH
idt

bb
d

i 


ˆ,ˆ)(),(ˆ)(ˆ,ˆ1













 



         (9)              

 
ccR

H
cc

tt
I

H
cc

tH
idt

ccd
i 

 ˆ,ˆ)(),(ˆ)(ˆ,ˆ1













 


           (10)                 

aa , bb  and cc , the density of atoms in states a, b and c  respectively. 

Starting with the thermal-equilibrium part of the commutators in the right-hand 

sides(first term) of Eqs. (7, 9 and 10), the diagonal elements given by: 

aHaaHa
aa

tH  





 )(ˆ,ˆ  

                            


jk

aHjjaakkHa  
 

                    
aaaa aa                     

                       
0)(ˆ,ˆ)(ˆ,ˆ 














cc
tH

bb
tH 

                  (11)                 

The commutator in the right-hand sides(first term) of Eq. (8),  the off-diagonal 

elements given by: 

bHabHa
ab

tH  





 )(ˆ,ˆ  



 

 

 

 

 

 

 

 

 

 

 

 

 

6 

                            


jk

bHjjabkkHa  
 

                            
abababbaba

                                                 (12)                 

For the commutators in the right-hand sides of Eqs.(7,9 and 10),(second term) 

involving the interaction Hamiltonian, similarly have for the diagonal 

elements: 
  atraatra

aa
tt

I
H ),(ˆˆ),()(ˆ),(ˆ    

                         j ajjak akkatr ),(  

                       
bb

tt
I

H
baabbaab

trE )(ˆ),(ˆ),(                       (13)                                       

btrabtra
ab

t
I

H t ),(ˆˆ),()(ˆ,ˆ )( 





 
 

                      j bjjak bkkatr ),(  

                      ),( trabaabb                                                                        (14)                                           

η is the transition dipole moment 

For the commutators describing relaxation processes last term in Eqs.(7,9,and 

10), the diagonal elements are given as: 

                           
aaR

H ̂,ˆ =   
a

Ta
aa

i

                                       (15)   

                           
bbR

H ̂,ˆ =   
b

Tb
bb

i

                                       (16)                                   

                            
ccR

H ̂,ˆ =   
c

Tc
cc

i

                                       (17)                              

where Ta , Tb and Tc are the decay rates towards the thermal equilibrium at 

respective level, and where  a ,  b and  c  are the thermal equilibrium 

values of aa , bb  and cc , respectively(i. e. the thermal equilibrium 

population densities of the respective level). The off-diagonal elements are 

similarly given as: 

                               
abR

H ̂,ˆ =   2Ti ab                                                 (18)                                                       

                               
baR

H ̂,ˆ =   2Ti ba                                                (19)                                               

T2 is the time constant for loss of phase coherence between individual atoms of 

the ensemble when E (r,t) is turned off or dephasing time of the dipole 

moment.  

As the above matrix elements of the commutators involving the various terms 

of the Hamiltonian are inserted into the right-hand sides of Eqs. (7,8 , 9and 10), 

one obtains the following system of equations for the matrix elements of the 

density operator: 

       
a

Ta
aa

itr
ababbadt

t
aa

d
i





  ),(

)(
                (20)                                        
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   
2

),(
)(

T
ab

itr
abaabbababdt

t
ab

d
i 


               (21)                            

       
b

Tb
bb

itr
ababbadt

t
bb

d
i





  ),(

)(
                      (22)                            

     
c

Tc
cc

i
dt

t
cc

d
i





 

)(                                                              (23)                                   

Assume the light to be linearly polarized and quasimonochromatic, of the 

form: 

)cos()(),( trtr                                                                          (24)                                    

    
a

Ta
aa

t
abba

i
dt

t
aa

d





 )cos(

)(                               (25)                                        

   
2

)cos(
)(

T
ab

t
aabb

i
abab

i
dt

t
ab

d



                         (26)                                      

    
b

Tb
bb

t
baab

i
dt

t
bb

d





 )cos(

)(                             (27)                                     

  
c

Tc
ccdt

t
cc

d







)(                                                                       (28)                                       

where the Rabi frequency μ, defined in terms of the spatial envelope of the 

electrical field and the transition dipole moment as: 

                                    )(r                                             (29)                                    

The equations of motion by taking a new variable 
ab

  according to the 

variable substitution: 

                                        t
ab

i
abab

)(exp                                      (33)                                   

where 
ab

is the detuning of the angular frequency of the light from 

the transition  frequency )(
abab

  

 
  

a
Ta

aa

tt
ab

i
ab

t
ab

i
abdt

t
aa

d
i









 )cos()(exp))(exp(
)(

         (31)    

                                                                                                                        

   
2

])(exp[)cos(
)(

T
ab

t
ab

i
aabb

ti
ab

i
dt

t
ab

d



         (32)    

                                                                                                                                             

 
  

b
Tb

bb

tt
ab

i
ab

t
ba

i
badt

t
bb

d
i









 )cos()(exp])(exp[
)(

      (33)                                                                                                                                                
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  
c

Tc
ccdt

t
cc

d







)(
                                                                        (34)                                                                       

The idea with the rotating-wave approximation is now to separate out rapidly 

oscillating terms of angular frequencies  
ab

  and -  
ab

  and neglect 

these terms, compared with more slowly varying terms.[17, 18 and 19] 

The second term in Eqs.(31 and 33) are  approximated as : 

  t
ab

ititit
ab

it




 )(exp)(exp)exp(
2

1
)(exp)cos( 

 

                                        =  
2

1
)2exp(1

2

1
 ti                                            (35)                                                                                                                                                        

The second term in Eq.(32 ) is  approximated as : 

   
















 t
ab

ititit
ab

it




 )(exp)(exp)exp(
2

1
)(exp)cos(

 

                                           =  
2

1
)2exp(1

2

1
 ti   

By applying this rotating-wave approximation, the equations of motion 

(31,32,33 and 34) hence take the form: 

    
a

Ta
aaababdt

aa
d i







2

                                           (36)                                               

   
22

T
abaabb

i

ab
i

dt

ab
d




                                         (37)                                               

  
b

Tb
bbababdt

bb
d i













 

2

                                            (38)                                             

  
c

Tc
ccdt

cc
d





                                                                            (39)                                           

Form equations (36 and 38) and let Ta=Tb=T1 we get: 
 

    
1

])([)( Ta
baabbababdt

aabb
d

i







    (43)                           

By first adding Eq. (37) and its complex conjugate and then subtracting them, 

we obtain: 
 

   
2

T
baabbaab

i
dt

baab
d







                                      (41)                                                 

   
2

)(
)]([

T
baab

i
aabbbaabdt

baab
id







      (42)                       

Let   
aabb

   ,  )(
abba

i    ,  ))()(( 
 ab

   and   
baab

   

Eq.(44)becomes: 
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  
1

T
dt

d


 

                                                                                 (43)                                                                              

Eq.(41)becomes: 

 
2

T
dt

d



                                                                                        (44)                                                                              

Eq.(42)becomes: 

       
2

T
dt

d



                                                                                    (45)                                                                            

In these equations, the introduced variable ( ) describes the population 

inversion of the three-level system, while   and   are related to the dispersive 

and absorptive components of the polarization density of the medium. 

At steady state Eqs.(41,44 and 45) become:  

2
Ti                                                                                                       (46)                                                                                      

1T                                                                                                 (47)                                                                                   

  22 TT                                                                                           (48)                                                                                  

Form equations (46,47and 48) we get: 

21
22)

2
(1

)2)
2

(1(

TTT

T




                                                                                (49)                                                                      

where  sg                                                                                                 (50)                                                                             

where g is the gain realized by pumping the dopants, s is the transition cross 

section . 

Form equations (49 and 50  ) we get: 

21
22)

2
(1

)2)
2

(1(

TTT

Tg
g










                                                                             (51)                                                                         

 where    sg                                                                                            (52)                                                                              

Using nonlinear Schrödinger equation which describe propagation the pulse 

through doping fiber[11]. 

    

).(
2

12
  

2

2

2
2
2222 n

g
nn

i
nn

ngT
i

B
i

z

n 





















      (53)                      

α is the optical loss of the host fiber, B2 is the group velocity dispersion 

coefficient of the host fiber, γ is the complex parameter accounts for the host 

nonlinearities responsible for SPM .Fig.(3) describes schematic diagram for 

theoretical   model. 



 

 

 

 

 

 

 

 

 

 

 

 

 

10 

    
2

) ( )
)

21
22)

2
(1(2

)2)
2

(1(
(

2

2

)
21

22)
2

(1(2

2
2

)2)
2

(1(

22

nn
i

n
TTT

Tg

n

TTT

TTig
B

i

z

n

















































 


                            (54)                                                                                                                

    

2
) ( )

)1(2

)1(
(

2

2

)1(2

)1(

22 nn
i

nv

vg
n

v

vvig
B

i

z

n 











































    (55)    

        Where 
2

2Tv  , 21

2 TT    .                                                                     

 

 

 

 

 
                                        
Fig. (3)schematic diagram for theoretical   model WDM, wavelength division multiplexer.                                                                              

                                      

The solution is given by: 

    imzesec, nhaz                                                                              (56)                                                                           

Where n=(1+iq),q is chirp  parameter 

 Substituting Eq.(56)in Eq.( 55) we get: 
 

 


,
,

zim
z

z




                                                                                       (57) 

   
 

   



,tanh)1(

,
ziq

z





                                                             (58)                                                          

 
     

       












 





 












,2sec2,2sec2                   

 ,2sec2212,2212
2

,.2

zhiqzh

zhqiqzqiq
z

      (59)                                                                            

Substituting Eqs.(57) and (59)in Eq.( 55) we get: 

       







 









 










 
























2sec)(2sec22sec22sec2212          

  2212)
)1(2

)1(
(2221

)1(2

)1(

22

hihiqhhqiq

qiq
v

vig
qiq

v

vvig
B

i
im 

   

                                                                                                                        (60)                                       

 


















 21

2)1(2

)1(
2 qB

v

vqvig
m


                                                             (61) 
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 
2

1

)1(2
2

221)1(

)1(2)1(


























vqBqvvig

vvig



                                          (62) 



















 

2
2

)1(2

)1(3
2

2

2
2

2
B

v

qvvg
qBap


                                             (63) 

 
21

2

)1()1(
2

)1()1(
2

)1()1(
2

)1()1(
2 2

4

9

2

3
































































vvgv

vvgv

vvgv

vvgv

B

B

B

B
q






















         (64) 

   Equations (61 ,62,63 and 64) are  the parameters of equation(56)  which 

describe of propagation equations for a three -energy-level laser system and 

these equation used for continuous wave lasers in the sense that they describe 

how the pulse parameters m, q ,Ω and p change with different value υ  and ζ. 
 

 

 

Results and discussion: 

1-Effect of the detuning υ:To study the effect of the detuning (υ) on the 

solitary waves, standard parameters used in our formulations are shown in 

Table 1[20]. Using Matlab5.3 to draw the figures.  
                           

 

 

Table 1. Numerical Values of the System Parameters. 

Saturable absorber parameter δ 0.1 

Wavelength λ 1550 nm 

Fiber length 4m 

Fiber attenuation  α 0.1 dB\m
-1

 

Dispersion B2 -0.01ps
2
/m 

Nonlinearity γ 0.02Wm
-1
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The block diagram (1) shows the input parameter and output parameter soliton. 
 
 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INPUT   B2 , γ ,  δ, , z, , α , gο      
                     
 

 

2

1

)1(2
2

221)1(

)1(2)1(



















vqBqvvig

vvig



  

 


















 21

2)1(2

)1(2 qB
v

vqvig
m


     

2 2
2

)1(2

)1(3
2

2

2
2



















  B

v

qvvg
qBap




 

OUTPUT     imzesec, nhaz     
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


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



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
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
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Fig. 4.Evolution toward the steady-state soliton over 4 loops for γ=0.02Wm
-1

 α=0.1dB\m
-1 

δ=0.1, B2=-0.01ps
2
/m,  ζ=0.1 and τ =1ps (a) υ =0.1(b) υ =0.2 (c) υ =0.4 (d) υ =0.6. 

  

Fig(4),shows the behavior of the pulse through fiber laser for different value of 

detuning parameter(0.1,0.2,0.3 and 0.4) with a constant values for ζ =1,κ=0.1 ,We 

note that the amplitude of the pulse grows exponentially with distance and the 

power signal  increase with decreasing the υ as shows in fig.(5).This is because 

the frequency of the pump pulse close to  the frequency of the transition  and 

leads to the higher net gain which  causes pulse compression where  the soliton 

becomes narrower as υ decreases. Fig.(6) shows the pulse width of the soliton 

varies with the υ. The amount of chirp is increases with decreases υ, the results 

shown in Fig. 7. The  amount of chirp is large at  a small value of detuning  and 

a 
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then  rapidly decreases  for anther values . The reason for this behavior is that 

the chirp increases with increasing the gain .  

 

 

 

 

 
 

 

 
 

 

Fig. (5,6and7).The power P , width and chirp of soliton as a function of  

different values of υ  respectively .  

2-Effect of ζ:In this sub section we discuss  effect of  the parameter  ζ on the 

behavior of the pulse in fiber laser .In Fig. 8. we show how the laser power and 

width of the soliton varies with the number of loops for different value  ζ . First 

,we note that also amplitude of the pulse grows exponentially with the number 

of loops. Second ,the soliton close to steady state  over 4 loop. Third , the width 

of soliton increase with the number of loops.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

  Fig. 8.Evolution toward the steady-state soliton over 4 loops for 

γ=0.02Wm
-1

 α=0.1db\m
-1      

δ=0.1, B2=-0.01ps
2
/m,  υ=0.1 and τ =1ps (a) ζ 

=0.1(b) ζ =0.2 (c) ζ =0.4 (d) ζ =0.6. 
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In the anomalous –dispersion region , an increase in the  ζ  reduces 

exponentially the power while  the width of the soliton increases exponentially 

as shown in figs.(9 and 10). This is because the dipole momentum  μ  depends 

on   the frequency of the transition , this phenomenon leads to increase the gain 

also. the chirp parameter reduce exponentially with increase ζ  as shown in 

Fig.(11)   .Comparing Figs.4 and 8 it is found that the power of the soliton 

increase with increasing  the  detuning parameter   υ and   ζ  and both solitons 

have  a same  behavior .Comparing  Figs.( 5,6 and 7) with figs.( 9, 10 and 11), 

I observe that the power ,width and chirp of the soliton also have the same  

behavior.  

 

 

 

 

 

 

 

 

 

  
  

 

Fig. (9,10and11).The power P , width and chirp of soliton as a function of  

different values of ζ  respectively .                             
 

The behavior of soliton is agreed with reference [2 and 5] 

 

Conclusion; 
This solution shows that for a pulse to propagate undistorted in an amplifying 

medium, the soliton must be chirped in addition to satisfying a certain 

relationship between the peak power and the width of the pulse.The stability of 

the soliton depends on the amount of the nonlinearity,sign and amount of the 

GVD, the power of the soliton depend on the amount of the ζ and υ. 
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