When compact sets are g-closed
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Abstract: This paper is devoted to introduce new conceptshwhre called K(gc), gK(gc), L(gc),
gL(gc) and locally L(gc)-spaces. Several variousotems about these concepts are proved. Further

more propertie are statedas well as theelationships between these concepts and LC-spaees

investigated

Key words: g-closed KC-spaces and LC-spaces.

1-Introduction: It is known that compact subset of a Hausdordicgpis closed, this
motivates the author [7] to introduce the concép{©-space, these are the spaces in
which every compact subset is closed. Lindelof spdmave always played a highly
expressive role in topology. They were introducgd\exandroff and Urysohn back

in 1929. In 1979 the authors [5] introduce a newoept namely LC-spaces, these are
the spaces whose lindelof sets are closed. Thefihis paper is to continue the
study of KC-spaces (LC-spaces).

2-Preliminaries: The basic definitions that needed in this workragalled. In this
work, spaces always mean topological spaces orhwidseparation axioms are
assumed unless explicitly stated, a topologicatspsdenoted by (X&) (or simply

by X). For a subset A of X, the closure and therior of A in X are denoted by cl(A)
and Int(A) respectively. A space X is said to be gpace if cl(A) is compact, when-
ever A is compact set in X[6]. Also a subset F gpace X is g-closed if cl(F)U,
whenever U is open and containing F[4], X is saite gT, if for every two distinct
points x and y in X, there exist two g-open setsnd V such thatxU and y]1U,

also XV and y 1V [3], and ghif for every two distinct points x and y in X, tleer
exist two disjoint g-open sets U and V containingnxl y respectively [3]. A space X
is said to be g-regular if whenever F is g-cloged iand XX with x(OF, then there
are two disjoint g-open sets U and V containingnd & respectively [3]A spaceX is
said to be g7if whenever it is gT andg-regular [3] and X is said to be g-compact if
for every g-open cover of X has a finite subcoverf2function f from a space X into
a space Y is said to bg™-continuous if f (U )s g-open, whenever U is g-open
subset of a space Y. Also f is said todp€-closed if f(F) is g-closed, whenever F is
g-closed [3].

3-Weak forms of K C-spaces:
The author in [7] introducthe concept KC-spaces; in the present paper we
introduce a generalization of KC-spaces namely Kégel gK(gc), also we study the
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Properties and facts about these concepts anéltteonships between this concepts
and KC-space.

Definition 3.1 A space X isaid to be K(gc)-space if every compact set in ¥ is
-closed. So every KC-space is K(gc), but the casés not true in general.

Example 3.1: Let X# ¢ andTl be the indiscrete topology on X. Then [X,i s K(gc)
but not KC-space. Since if B is a nonempty progeirs X. Clearly B is compact but
not closed. Also it is g-closed, since the onlyropet which contains B is the whole
space and cl(B) = X.

Definition 3.2 A space X issaid to be gK(gc)-space if every g-compact set ia
-closed. So every K(gc)-space is gK(gc), but theveose is not true in general.

Definition 3.3 A space X is said to be ght g-cl(A) is compact, whenever A is
compact set in X.

Theorem 3.1: Every K(gc)-space is gK
Proof: Let K be compact set in K(gc)-space X, then it-daged, that is, GIK) = K,
which implies to GJ(K) is also compact.

Definition 3.4 A space X is said to be locally g-compact if fack point in X has a
neighbourhood base which is consisting of g-compeats. So every locally compact
space is locally g-compact, but the converse igrmetin general.

Lemma 3.1[1]: A space X is g7if and only if every singleton set is g-closed.
Theorem 3.2 Every K(gc)-space is gT

Proof: Suppose X is K(gc)-space and X, since {x} is finite, then it is compact in
X, which is K(gc)-space, then it is g-closed. Sddoyma 3.1 X is gT.

Theorem 3.3 Every gTz-space is g4.

Proof: Let x andy be two distinct points in X, so {x} is g-closednse X is g and
y{x}, but X is g-regular, then there exist two digjbg-open sets U and V such that
x L{x} OU and y1V. Therefore X is gFspace.

Definition 3.5: A set M is said to be g-neighbourhood of a pointXxif there exists a
g-open set U such thatdJ LI X. Clearly every neighbourhood is g-neighbourhood
but the converse may be not true.

Example 3.2: Let X# ¢ andTl be the indiscrete topology on X. Then in [X,the
one point set {x} is g-neighbourhood but not neighthood.

Theorem 3.4 The following are equivalent for a space X:
1) Xis g-regular
2) If Uis g-open in X and X X with x[JU, then there is a g-open set V
containing x such that g-cl(\\) U.
3) Each xUX has ag-neighbourhood base consisting of g-clesésd



Proof: (1) » (2) Suppose Xs g-regular, U is g-open in X andXJ, then X-Uisag
-closed set in X not containing x, so disjoint geosets V and W can be found with
xV and X-ULUW. Then X-W is a g-closed set contained in U anadt@aing V, so
g-cl(V)UU. (2) - (3)if (2) applies, then every g-open set U contgjrx contains a
g-closed neighbourhood (namely g-cl(V)) of X, se thclosed neighbourhoods of x
form a neighbourhood base. (3) (1) suppose (3) applies and A is a g-closed set in X
not containing x. Then X-A is a g-neighbourhoodp$o there is a g-closed
neighbourhood B of x with B X-A. Then g-Int(B) and X-B are disjoint g-open sets
containing x and A respectively, where g-Int(B) #& of all g-interior points. Thus X

is g-regular.

Theorem 3.5: Every T,-space is K(gc)space.
Theorem 3.6 If X is locally g-compact and K(gc)-space, thensXgil,-space.

Proof: Given X is locally g-compact, then every/X has a neighbourhood base
consisting of g-compact sets, but X is K(gc), thegse compact sets are g-closed and
hence x has neighbourhood base consisting of g@dlssts, then by theorem 3.4, X is
g-regular space and by theorem 3.2 X ig, @gfien it is gE-space, that is, X is gT

Theorem 3.7: Every g-compact set in g'pace is g-closed.

Proof: Let A be a g-compact set in ag¥pace X. If pIX-A, so for each glA, there
are two disjoint g-open sets U and V containinghd p respectively. The collection
{U(q):q LIA} is a g-open cover of A which is g-compact, thaere is finite subcover

of A, thatis, ALl [ ] U(g). Put\Vi= n Vgi(p) and Y=[] U(g). Then V is a g-open
i=1 i=1 i=1

set containing p. We claim that J Vi=¢, so let x1U;, then X1 U(qg) for some i, so

xO Vi(p), hence XIV;. Thus U n Vi=¢. Also ALIU;, that is, An V1= ¢ which

implies V, LU X-A. Therefore A is g-closed.
Corollary 3.1: Every gT-space is gK(gc)-space.
Theorem 3.8: The g™ -continuous image of g-compact set is g-compact.

Proof: Let f be g™-continuous function from a space X into a spa@n¥ suppose B
is g-compact set in X. To show that B is also g-pant, Iet{Ua}am be g-open cover

of f(B), that is, f(B)=0] U, . So B f *f(B)= (0 U,)=1 f™*(U,), then
{ f *(U,)}is a g-open cover of B, which is g-compact, ttgein 61 f*(U,). But

#(B) Df@l F(U, )=ﬁlf £(U,)0 Dl U . Therefore f(B) is g-compact set.

Theorem 3.9: Every continuous function from compact into a K¢gppace is g-closed
function.



Proof: Let A be closed set in X, which is compact, thers Bompact. But f is
continuous, then f(A) is compact in Y, which is KJgpace, then f(A) is g-closed.
Therefore f is g-closed.

Lemma 3.2[1]: Every g-closed subset of g-compact space is g-aotmp
Theorem 3.10: Every g™ -continuous function from g-compaiato K(gc)-space is

g™-closed function.

Proof: Let f be g™-continuous function from g-compaxtinto K(gc)-spacer. Also

let B be g-closed set in X. So by lemma 3.2 B ogipact also by theorem 3.8 f(B)
is g-compact, which implies it is compact in Y, wihis K(gc), then f(B) is g-closed.
Therefore f isg™-closed.

Corollary 3.2: Every g™-continuous function from g-compact space into gi(g
-space isg-closed.

Remark 3.2: The continuous image of K(gc)-space is not neceg3&igc).

Example 3.3: Consider &: (R, I',) - (R, '), where k is the identity function,
r,andl are usual and cofinite topologies respectivelga@y (R,I",) is K(gc)-

space.. Since every compact set in R is closedandded, this implies it g-closed.
But Ir(R) = R and (RI[ ) K(gc)-space. Since if given [0, 1], which is camspand
U=R-{5}, so ULIT , then [0, 1]LI U, but cl([0, 1])=RJU. So (R,I") is not K(gc).

Theorem 3.11: Let f beg™-continuous injective function from X into a gK(ge)
space Y, then X is also gK(gc).

Proof: Let W be any g-compact subset of X, then by thedentf(W) is g-compact
set in Y, which is gK(gc), then f(W) is g-closedalf is g™-continuous, so
f 1 (f(W))=W. Therefore X is gK(gc)-space.

Theorem 3.12: The property of space being K(gc) is a hereditaoperty.

Proof: Let Y be a subspace of K(gc)-space X and A be anypact subset of Y, then
A is compact in X, which is K(gc), then A is g-clmkin X. But A= An X, then A is
g-closed in Y. Therefore Y is also K(gc).

Theorem 3.13: Let f be a homeomorphism function from a spacet¥ aspace Y, if
U is g-open set in X, then f(U) is also g-open.

Proof: Let F be any closed subset of f(U), §6'(F)J f f(U)=U, but U is g-
closed, thenf ™ (F) U Int(U), which implies F= f(f ™ (F)) U f(Int(U))=Int(f(U)).
Therefore f(U) is also g-open.

Corollary 3.3: Let f be a homeomorphism function from a spacet¥ aspace Y, if
U is g-closed set in X, then f(U) is also g-closed.



Corollary 3.4: Let f be a homeomorphism function from a spacet¥ aspace Y, if
M is g-compact set in X, then f(M) is also g-comipac

Theorem 3.14: Theproperty of space being K(gc) is a topological .

Proof: Let f be a homeomorphism function from a K(gc)-spXdnto a space Y and
B be compact set in Y, theh™(B) is compact in X, which is K(gc), theh™(B) is
g-closed and by corollary 3.3 fi((*(B))=B is g-closed setin Y.
Corollary 3.5: Theproperty of space being gK(gc) is a topologicalpemy.
4. Further type of L C-spaces.

In 1979 the authors [5] introduce a newasgt namely LC-spaces, these are the
spaces in which every lindelof sets are closethdpresent paper we introduce a
new concept namely L(gc)-spaces which is a weak fofr LC-spaces.

Definition 4.1 A space X is said to be L(gc)-space if every linflskt is g-closed. So
every LC-space is L(gc) but the converse is na inugeneral.

Example4.1: Let R with the indiscrete topolody. Clearly (RJ" ) is L(gc), since for
every Lindelof set difference from R amdis g-closed but not closed.

Theorem 4.1 Every L(gc)-space is gT
Theorem 4.2 Every locally g-compact L(gc) is gT

Proof: Let X be a locally g-compact and L(gc)-space, thkaa K(gc). So by theorem
3.6 X is g-space.

Theorem 4.3 The property of space being L(gc) is a hereditaioperty.
Proof: The proof is similar to theorem 3.12.
Theorem 4.4. If X is L(gc) andT, -space, then every compact set in X is finite.

Proof: Let A be compact set in X. If A is finite, theretproof is finished, if A is
infinite, then either A is countable or uncountal8eppose A is countable and U is
any set in A, then U is countable, so U is lind&hoA, which implies it is lindelof in
X, which is L(gc), then U is g-closed in X. But Xﬁ%, and then U is closed in X. But

Un A=U, then U is closed in A, that is, A is discréitat A is compact, then A is
finite, which is a contradiction. If A is uncountabthen there exists a subset K of A

is countable and so K is lindelof in A, so it isdelof in X, which is L(gc) and, -

space, then K is closed. Put Km{a . . .}. Let U=K°®, now a|U,=A-{a1, &,...}



and a(JA-{as, &...}..., then {Ui}i"‘;1 is an open cover of A, which has no finite

subcover, which is a contradiction. Then A is &nit

Definition 4.3: A space X is said to be g-lindelof if for everyppgen cover of X has a
countable subcovre. Clearly every g-lindelof-spadendelof but the converse may
be not true.

Example 4.2: Let R with the indiscrete topolody. Clearly every subset of R is
lindelof, since the only open cover of any setis R. But (R,[") is not g-lindelof,

since if givenQ°=R-Q , then it is not g-lindelof, since {{x}}:kl Q°} is a cover of
Q°consisting of g-open sets, which can not be retlu@ecountable subcover.
Theorem 4.5: The g™-continuous image of g-lindelof set is also g-litede

Proof: Let f beg™-continuous function from a space X into a spaa¥ let K be g-

lindelof set in X. To show that f(K) is also g-lieldf, let {Ua} be a g-open cover of

alA
. -1 -1 — -1

f(K), thatis, f(K)D 0 {u,}, thenkU f* ()0 f* O {u,}= O {t7u,},

which is also g-open cover of K, but K is g-lindelinen it is has a countable

subcover, that is, K @1 {t U}, which implies to f(K)J @1 {u.}. Therefore f(K)

is g-lindelof.
Theorem 4.6: The property of space being g-lidelof is a topatajproperty.

Proof: Let f be a homeomorphism function from a g-lindedpice X into a space Y.

SupposeU .}, be g-open cover of Y, thatis, Y2 {U,}, then X=f *(Y)

=f* 0 {U,}. So by theorem 3.1§f U, } is g-open cover of X, which is g-
lindelof, then x:@l {f7U,,}, which implies to

Y=f(X)=F( El {1 'lum.})z,@l tH{f,}=0{u,}. Therefore Y is also g-lindelof.

Definition 4.3: A space X is said to be gL(gc)-space if everyngldilof set in X is g-
closed. So every LC-space is gL(gc) and every Lépace is gL(gc) but the

converses are not true in general.



Theorem 4.7: Let f be a homeomorphism function from a spacet® amspace Y if X
is gL(gc)-space, then Y is also is gL(gc).

Proof: Let B be a g-lindelof set in Y, thefi ™ (B) is g-lindelof in X, which is
gL(gc)-space, then it is g-closed, but f is a homeiphism. So by theorem 3.13
f( f (B))=B is g-closed in Y. Therefore Y is also gL(gc)

Definition 4.4: A space X is said to be locally L(gc)-space if gvgoint in X has
L(gc)-neighbourhood. So every L(gc)-space is lgca{gc).

Lemma4.1[3]: If (Y, I',) is a g-closed subspace of a spacel{y), then if B is g-

closed in Y, then it is g-closed in X.

Theorem 4.8: A space X is an L(gc)-space if and only if eachmpbias closed
neighbourhoood which is an L(gc)-subspace.

Proof: If X is L(gc)-space, then for eachX, X itself is a closed neighbourhood of
X, which is L(gc). Conversely, Let L be a lindeks#t in X and a pointxX such that
xOL. Choose a closed neighbourhod of x, which is L(gc)-subspace, then

W, n Lis closed in L, which is lindelof, thew, n L is lidelof in W, butW, is
L(gc)-subspace, thew, n L is g-closed inW,, which is closed so it is g-closed. So
by lemma 4.1W, n L is g-closed in X. ThefW, -(W, n L) =W, -L is a g-open set

containing x and disjoint with L. Therefore L iscfpsed set in X.
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