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When compact sets are g-closed 

Saheb1. K. Jassim and Haider2 G. Ali 

 
Abstract: This paper is devoted to introduce new concepts which are called K(gc), gK(gc), L(gc), 

gL(gc) and locally L(gc)-spaces. Several various theorems about these concepts are proved. Further 

more properties are stated as well as the relationships between these concepts and LC-spaces are 

investigated. 
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1-Introduction: It is known that compact subset of a Hausdorff space is closed, this 
motivates the author [7] to introduce the concept of KC-space, these are the spaces in 
which every compact subset is closed. Lindelof spaces have always played a highly 
expressive role in topology. They were introduced by Alexandroff and Urysohn back 
in 1929. In 1979 the authors [5] introduce a new concept namely LC-spaces, these are 
the spaces whose lindelof sets are closed. The aim of this paper is to continue the 
study of KC-spaces (LC-spaces).  
 
2-Preliminaries: The basic definitions that needed in this work are recalled. In this 
work, spaces always mean topological spaces on which no separation axioms are 
assumed unless explicitly stated, a topological space is denoted by (X, τ) (or simply 
by X). For a subset A of X, the closure and the interior of A in X are denoted by cl(A) 
and Int(A) respectively. A space X is said to be K2- space if cl(A) is compact, when-                      
ever A is compact set in X[6]. Also a subset F of a space X is g-closed if cl(F)⊂ U,  
whenever U is open and containing F[4], X is said to be gT1  if for every two distinct 
points x and y in X, there exist two g-open sets U and V such that x∈U and y∉U, 
also x∉V and y∈V  [3], and gT2 if for every two distinct points x and y in X, there 
exist two disjoint g-open sets U and V containing x and y respectively [3]. A space X 
is said to be g-regular if whenever F is g-closed in X and x∈X with x∉F, then there 
are two disjoint g-open sets U and V containing x and F respectively [3]. A space X is 
said to be gT3 if whenever it is gT1 and g-regular [3] and X is said to be g-compact if 
for every g-open cover of X has a finite subcover[2]. A function f from a space X into 
a space Y is said to be ∗∗g -continuous if )(1 Uf − is g-open, whenever U is g-open 

subset of a space Y. Also f is said to be ∗∗g -closed if f(F) is g-closed, whenever F is 
g-closed [3].    
 
3-Weak forms of KC-spaces: 

The author in [7] introduce the concept KC-spaces; in the present paper we 
introduce a generalization of KC-spaces namely K(gc) and gK(gc), also we study the  
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Properties and facts about these concepts and the relationships between this concepts 
and KC-space. 

 
Definition 3.1 A space X is said to be K(gc)-space if every compact set in X is g 
-closed. So every KC-space is K(gc), but the converse is not true in general.    
   
Example 3.1: Let X≠ φ  and Γ be the indiscrete topology on X. Then (X,Γ ) i s K(gc) 
but not KC-space. Since if B is a nonempty proper set in X. Clearly B is compact but 
not closed. Also it is g-closed, since the only open set which contains B is the whole 
space and cl(B) = X.   
      
Definition 3.2 A space X is said to be gK(gc)-space if every g-compact set in X is g 
-closed. So every K(gc)-space is gK(gc), but the converse is not true in general. 
 
Definition 3.3 A space X is said to be gK2 if g-cl(A) is compact, whenever A is 
compact set in X. 
  
Theorem 3.1: Every K(gc)-space is gK2. 
Proof: Let K be compact set in K(gc)-space X, then it is g-closed, that is, Clg(K) = K, 
which implies to Clg(K) is also compact. 
 
Definition 3.4 A space X is said to be locally g-compact if for each point in X has a 
neighbourhood base which is consisting of g-compact sets. So every locally compact 
space is locally g-compact, but the converse is not true in general. 
 
Lemma 3.1[1]: A space X is gT1 if and only if every singleton set is g-closed. 
 
Theorem 3.2 Every K(gc)-space is gT1. 
 
Proof: Suppose X is K(gc)-space and x∈X, since {x} is finite, then it is compact in 
X, which is K(gc)-space, then it is g-closed. So by lemma 3.1 X is gT1. 
  
Theorem 3.3 Every gT3-space is gT2. 
 
Proof: Let x and y be two distinct points in X, so {x} is g-closed, since X is gT1 and 
y∉{x}, but X is g-regular, then there exist two disjoint g-open sets U and V such that 
x ∈{x} ⊂ U and y∈V. Therefore X is gT2-space. 
  
Definition 3.5: A set M is said to be g-neighbourhood of a point xX∈ if there exists a 
g-open set U such that x∈U ⊂ X. Clearly every neighbourhood is g-neighbourhood 
but the converse may be not true. 
 
Example 3.2: Let X≠ φ  and Γ be the indiscrete topology on X. Then in (X,Γ ) the 
one point set {x} is g-neighbourhood but not neighbourhood.  
 
Theorem 3.4 The following are equivalent for a space X: 

1) X is g-regular  
2) If U is g-open in X and x∈X with x∈U, then there is a g-open set V 

containing x such that g-cl(V)⊂ U. 
3) Each x∈X has ag-neighbourhood base consisting of g-closed sets. 
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Proof: (1)→  (2) Suppose X is g-regular, U is g-open in X and x∈U, then X-U is a g 
-closed set in X not containing x, so disjoint g-open sets V and W can be found with  
x∈V and X-U⊂ W. Then X-W is a g-closed set contained in U and containing V, so 
g-cl(V) ⊂ U. (2) → (3) if (2) applies, then every g-open set U containing x contains a 
g-closed neighbourhood (namely g-cl(V)) of X, so the g-closed neighbourhoods of x 
form a neighbourhood base. (3) → (1) suppose (3) applies and A is a g-closed set in X 
not containing x. Then X-A is a g-neighbourhood of x, so there is a g-closed 
neighbourhood B of x with B⊂ X-A. Then g-Int(B) and X-B are disjoint g-open sets 
containing x and A respectively, where g-Int(B) the set of all g-interior points. Thus X 
is g-regular. 
 
Theorem 3.5: Every T2-space is K(gc)space. 
 
Theorem 3.6 If X is locally g-compact and K(gc)-space, then X is gT2-space. 
 
Proof: Given X is locally g-compact, then every x∈X has a neighbourhood base 
consisting of g-compact sets, but X is K(gc), then these compact sets are g-closed and 
hence x has neighbourhood base consisting of g-closed sets, then by theorem 3.4, X is 
g-regular space and by theorem 3.2 X is gT1, then it is gT3-space, that is, X is gT2. 
 
Theorem 3.7: Every g-compact set in gT2-space is g-closed. 
 
Proof: Let A be a g-compact set in a gT2 –space X. If p∈X-A, so for each q∈A, there 
are two disjoint g-open sets U and V containing q and p respectively. The collection 
{U(q):q ∈A} is a g-open cover of A which is g-compact, then there is finite subcover 

of A, that is, A⊂  ∪
=

n

i 1
 U(qi). Put V1=∩

=

n

i 1

 Vqi(p) and U1=∪
=

n

i 1
 U(qi). Then V1 is a g-open 

set containing p. We claim that U1∩ V1=φ , so let x∈U1, then x∈ U(qi) for some i, so 
x∉ Vqi(p), hence x∉V1. Thus U1∩ V1=φ . Also A⊂ U1, that is, A∩ V1= φ  which 
implies V1⊂ X-A. Therefore A is g-closed. 
 
Corollary 3.1: Every gT2-space is gK(gc)-space. 
 
Theorem 3.8: The ∗∗g -continuous image of g-compact set is g-compact. 
 
Proof: Let f be ∗∗g -continuous function from a space X into a space Y and suppose B 

is g-compact set in X. To show that B is also g-compact, let { } Λ∈ααU be g-open cover 

of f(B), that is, f(B)=
Λ∈

∪
α αU . So B⊂ 1−f f(B)=  1−f (

Λ∈
∪

α αU )=
Λ∈

∪
α

1−f ( αU ), then 

{ 1−f ( αU )}is a g-open cover of  B, which is g-compact, then B⊆
n

i 1=
∪ 1−f ( iUα ). But 

f(B) ⊆ f
n

i 1=
∪ 1−f ( iUα )=

n

i 1=
∪ f 1−f ( iUα ) ⊂

n

i 1=
∪ iUα . Therefore f(B) is g-compact set. 

 
Theorem 3.9: Every continuous function from compact into a K(gc)-space is g-closed 
function. 
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Proof: Let A be closed set in X, which is compact, then A is compact. But f is 
continuous, then f(A) is compact in Y, which is K(gc)-space, then f(A) is g-closed. 
Therefore f is g-closed. 
 
Lemma 3.2[1]: Every g-closed subset of g-compact space is g-compact.  
Theorem 3.10: Every ∗∗g -continuous function from g-compact into K(gc)-space is 

∗∗g -closed function. 

Proof: Let f be ∗∗g -continuous function from g-compact X into K(gc)-space Y. Also 
let B be g-closed set in X. So by lemma 3.2 B is g-compact also by theorem 3.8 f(B) 
is g-compact, which implies it is compact in Y, which is K(gc), then f(B) is g-closed. 
Therefore f is ∗∗g -closed. 
 
Corollary 3.2: Every ∗∗g -continuous function from g-compact space into gK(gc) 

-space is ∗∗g -closed. 
 
Remark 3.2: The continuous image of K(gc)-space is not necessarily K(gc). 
 
Example 3.3: Consider IR: (R, uΓ ) → (R, Γ ), where IR is the identity function, 

uΓ and Γ  are usual and cofinite topologies respectively. Clearly (R, uΓ ) is K(gc)-

space.. Since every compact set in R is closed and bounded, this implies it g-closed. 
But IR(R) = R and (R,Γ ) K(gc)-space. Since if given [0, 1], which is compact and 
U=R-{5}, so U∈ Γ , then [0, 1] ⊂  U, but cl([0, 1])=R⊄ U. So (R, Γ ) is not K(gc). 
 
Theorem 3.11: Let f be ∗∗g -continuous injective function from X into a gK(gc) –
space Y, then X is also gK(gc). 
 
Proof: Let W be any g-compact subset of X, then by theorem 3.7 f(W) is g-compact 
set in Y, which is gK(gc), then f(W) is g-closed also f is ∗∗g -continuous, so 

1−f (f(W))=W. Therefore X is gK(gc)-space.  
 
Theorem 3.12: The property of space being K(gc) is a hereditary property.  
 
Proof: Let Y be a subspace of K(gc)-space X and A be any compact subset of Y, then 
A is compact in X, which is K(gc), then A is g-closed in X. But A= A∩ X, then A is 
g-closed in Y. Therefore Y is also K(gc). 
 
Theorem 3.13: Let f be a homeomorphism function from a space X into a space Y, if 
U is g-open set in X, then f(U) is also g-open. 
 
Proof: Let F be any closed subset of f(U), so 1−f (F)⊂  1−f f(U)=U, but U is g-

closed, then 1−f (F)⊂ Int(U), which implies F= f( 1−f (F))⊂ f(Int(U))=Int(f(U)). 
Therefore f(U) is also g-open.  
 
Corollary 3.3: Let f be a homeomorphism function from a space X into a space Y, if 
U is g-closed set in X, then f(U) is also g-closed. 
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Corollary 3.4: Let f be a homeomorphism function from a space X into a space Y, if 
M is g-compact set in X, then f(M) is also g-compact. 
 
Theorem 3.14: The property of space being K(gc) is a topological property. 
 
Proof: Let f be a homeomorphism function from a K(gc)-space X into a space Y and 
B be compact set in Y, then 1−f (B) is compact in X, which is K(gc), then 1−f (B) is 

g-closed and by corollary 3.3  f( 1−f (B))=B is g-closed set in Y. 
 
Corollary 3.5: The property of space being gK(gc) is a topological property. 
 
4. Further type of LC-spaces:   
        In 1979 the authors [5] introduce a new concept namely LC-spaces, these are the 
spaces in which every lindelof sets are closed. In the present paper we introduce a 
new concept namely L(gc)-spaces which is a weak form of LC-spaces.  
 
Definition 4.1 A space X is said to be L(gc)-space if every lindelof set is g-closed. So 
every LC-space is L(gc) but the converse is not true in general.  
 
Example 4.1: Let R with the indiscrete topologyΓ . Clearly (R,Γ ) is L(gc), since for 
every Lindelof set difference from R and φ  is g-closed but not closed.  
 
Theorem 4.1 Every L(gc)-space is gT1. 
 
Theorem 4.2 Every locally g-compact L(gc) is gT2. 
 
Proof: Let X be a locally g-compact and L(gc)-space, then X is K(gc). So by theorem 
3.6 X is gT2-space. 
 
Theorem 4.3 The property of space being L(gc) is a hereditary property. 
 
Proof: The proof is similar to theorem 3.12. 
 
Theorem 4.4: If X is L(gc) and 

2
1T  -space, then every compact set in X is finite. 

Proof: Let A be compact set in X. If A is finite, then the proof is finished, if A is 

infinite, then either A is countable or uncountable. Suppose A is countable and U is 

any set in A, then U is countable, so U is lindelof in A, which implies it is lindelof in 

X, which is L(gc), then U is g-closed in X. But X is
2
1T , and then U is closed in X. But 

U ∩ A=U, then U is closed in A, that is, A is discrete but A is compact, then A is 

finite, which is a contradiction. If A is uncountable, then there exists a subset K of A 

is countable and so K is lindelof in A, so it is lindelof in X, which is L(gc) and 
2
1T -

space, then K is closed. Put K= {a1, a2 . . .}. Let U1=
cK , now a1∈U2=A-{a1, a2,…} 
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and a2∈A-{a3, a4…}…, then { }∞
=1iiU  is an open cover of A, which has no finite 

subcover, which is a contradiction. Then A is finite. 

Definition 4.3: A space X is said to be g-lindelof if for every g-open cover of X has a 

countable subcovre. Clearly every g-lindelof-space is lindelof but the converse may 

be not true. 

Example 4.2: Let R with the indiscrete topologyΓ . Clearly every subset of R is 

lindelof, since the only open cover of any set is just R. But (R, Γ ) is not g-lindelof, 

since if given cQ =R-Q , then it is not g-lindelof, since {{x}}:x∈ cQ } is a cover of 

cQ consisting of g-open sets, which can not be reduce to a countable subcover. 

Theorem 4.5: The ∗∗g -continuous image of g-lindelof set is also g-lindelof.  

Proof: Let f be ∗∗g -continuous function from a space X into a space Y and let K be g-

lindelof set in X. To show that f(K) is also g-lindelof, let { } Λ∈ααU be a g-open cover of 

f(K), that is, f(K)⊆  
Λ∈

∪
α

{ }αU , then K⊂ 1−f f(K) ⊆  1−f  
Λ∈

∪
α

{ }αU = 
Λ∈

∪
α

{ }αUf 1− , 

which is also g-open cover of K, but K is g-lindelof, then it is has a countable 

subcover, that is, K⊆
∞

≡
∪

1i
{ }iUf α

1− , which implies to f(K)⊆  
∞

≡
∪

1i
{ }iUα . Therefore f(K) 

is g-lindelof.  

Theorem 4.6: The property of space being g-lidelof is a topological property. 

Proof: Let f be a homeomorphism function from a g-lindelof space X into a space Y. 

Suppose { } Λ∈ααU be g-open cover of Y, that is, Y=
Λ∈

∪
α

{ }αU , then X= 1−f (Y) 

= 1−f  
Λ∈

∪
α

{ }αU . So by theorem 3.13 { }αUf 1−  is g-open cover of X, which is g-

lindelof, then X=
∞

≡
∪

1i
{ }iUf α

1− , which implies to 

Y=f(X)=f(
∞

≡
∪

1i
{ }iUf α

1− )=
∞

≡
∪

1i
f { }iUf α

1− =
∞

≡
∪

1i
{ }iUα . Therefore Y is also g-lindelof. 

 

Definition 4.3: A space X is said to be gL(gc)-space if every g-lindelof set in X is g-

closed. So every LC-space is gL(gc) and every L(gc)-space is gL(gc) but the 

converses are not true in general. 
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Theorem 4.7: Let f be a homeomorphism function from a space X into a space Y if X 

is gL(gc)-space, then Y is also is gL(gc).  

  Proof: Let B be a g-lindelof set in Y, then 1−f (B) is g-lindelof in X, which is 

gL(gc)-space, then it is g-closed, but f is a homeomorphism. So by theorem 3.13 

f( 1−f (B))=B is g-closed in Y. Therefore Y is also gL(gc).     

Definition 4.4: A space X is said to be locally L(gc)-space if every point in X has 

L(gc)-neighbourhood. So every L(gc)-space is locally L(gc). 

 

Lemma 4.1[3]: If (Y, YΓ ) is a g-closed subspace of a space (X, XΓ ), then if B is g-

closed in Y, then it is g-closed in X. 

 

Theorem 4.8: A space X is an L(gc)-space if and only if each point has closed 

neighbourhoood which is an L(gc)-subspace. 

Proof: If X is L(gc)-space, then for each x∈X, X itself is a closed neighbourhood of 

x, which is L(gc). Conversely, Let L be a lindelof set in X and a point x∈X such that 

x∉L. Choose a closed neighbourhood xW  of x, which is L(gc)-subspace, then  

xW ∩ L is closed in L, which is lindelof, then xW ∩ L is lidelof in xW , but xW  is 

L(gc)-subspace, then xW ∩ L is g-closed in xW , which is closed so it is g-closed. So 

by lemma 4.1  xW ∩ L is g-closed in X. Then xW -( xW ∩ L) = xW -L is a g-open set 

containing x and disjoint with L. Therefore L is g-closed set in X. 
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