

ISSN 2075-2954 (Print) Journal of Yarmouk available online at https://www.iasj.net/iasj/journal/239/issues

مجلة اليرموك تصدرها كلية اليرموك الجامعة

On Nano Generalized Delta Separation Axioms 1. Nedal Hasan Saliem , <u>nidalh302@gmail.com.</u> -2. Dr.prof .Ali Abdul Al Majeed. Shihab, .-<u>ali.abd82@yahoo.com</u>-,-<u>draliabd@tu.edu.iq</u> of Education for .Mathematics, College.^{1,2}Department of University .University, Tikrit, Iraq- .Sciences, Tikrit.Pure Iraq Salahaddin..of Tikrit,

Abstract:

This paper purposes to introduce a novel separation axioms in Nano topological space called N-g- δ -T_i space where I = 0, 1, 2, 3 and define some type of N-g- δ -T_i space such that Ng δ (semi-pre) T_i space where I = 0, 1, 2, 3. And introduce example explain the relation between this type.

Key Words: N-g- δ -T_i space, N-g- δ (semi-pre)-T_i space, N-g- δ -Reg space, N-g- δ (semi-pre) Reg space, N-g- δ -Normal space, N-g- δ (semi-pre) Normal space.

1. Introduction:

Levine Norman in 1970 [5] established the notion of Generalized-closed set. Arya [1] in 1990 define g-semi closed set, after that Maki and Noiri [6] in 1996 introduce definition the g-pre closed set. And in 2000, Dontechev [4] define g δ -closed set. The complement of g δ -closed set is known as g δ -open set. The notion of Nano generalized closed set by Bhuvaneswari[2] in 2014 and the notion of separation axioms (T₀, T₁) introduced by Mccartan[7] in 1968, in the same year Cullen [3] define Regular space, after that Willarad [10] define Normal space in 1970. Sthismohan [9] study (semi – pre) T_i space where i = 0, 1. The definition of the notion of N-g- δ as a closed (open) was set by Saliem and Shihab [8] in 2023.

2. Preliminaries:

Let's introduce the subsequent useful definitions:

Definition 2.1: [5]

"Let (X, T) be a topological space and $F \subseteq X$, then F is said to be generalized closed set (briefly, g-closed set) if $cl(F) \subseteq D$ where $F \subseteq D$ and D is open set in X. The complement of g-closed set is said to be generalized open set (briefly, g-open set)."

Definition 2.2:

"Let (X, T) be a topological space and $F \subseteq X$. then, F is said to be:

- 1- Generalized δ -closed set(briefly, g- δ -closed) if cl(F) \subseteq D where F \subseteq D and D is δ -open set in X. [4]
- 2- Generalized pre-closed set (briefly, g-pre-closed) if pre $cl(F) \subseteq D$ where $F \subseteq D$ and D is pre-open set in X. [6]
- 3- Generalized semi-closed set (briefly, g-semi-closed) if semi cl(F) ⊆ D where F⊆ D and D is semi-open set in X". [1]

The complement for those closed sets is an open set. **Definition 2.3:** [2]

"Let $(U, T_R(x))$ be a Nano topological space, a subset F of $(U, T_R(x))$ is said to be Nano Generalized closed set (N-g-closed) if Ncl(F) \subseteq D where F \subseteq D and D is N-open set in $(U, T_R(x))$ ". **Definition 2.4:[8]**

"Let $(U, T_R(x))$ be a Nano topological space, a subset F of $(U, T_R(x))$ is said to be

- 1. N-g- δ -closed set if Ncl δ (F) \subseteq D where F \subseteq D, and D is N-open in (U, T_R(x)).
- 2. N-g- δ -pre-closed set if N- δ -pre-cl(F) \subseteq D where F \subseteq D, and D is N-open in (U₁, T_R(x)).
- N-g-δ-semi-closed set if N-δ-semi-cl(F) ⊆ D where F ⊆ D, and D is N-open in (U₁, T_R(x))." The complement of these Nano closed sets is considered an Nano open set.
 Definition 2.5: [7]

A topological space (X, T) is:

- 1. T0 if $\forall a \neq b$, \exists open set G such that $a \in G$, $b \notin G$ or $a \notin G$, $b \in G$.
- 2. T_1 if $\forall a \neq b$, \exists open set G and D in which that $a \in G$, $b \notin G$ or $a \notin D$, $b \in G$.

Definition 2.6: [3]

"A topological space (U, T) is said to be Regular space if for any closed set D and a point K such that $K \notin D \exists a \text{ disjoint open sets } F_1 \text{ and } F_2 \text{ such that } D \in F_1 \text{ , } K \in F_2$."

Definition 2.7: [10]

"A space X is said to be normal space iff \forall two disjoint closed sets D_1 and D_2 subset of X, \exists disjoint open sets W_1 and W_2 such that $D_1 \subseteq W_1$ and $D_2 \subseteq W_2$."

Definition 2.8: [9]

The topological space (X, T) is:

- 1. (Semi-pre) T₀ space i`f $\forall a \neq b \in X \exists$ (semi pre) open sets D in which that $a \in D$, $b \notin D$ or $a \notin D$, $b \in D$.
- 2. (Semi pre) T₁ space if $\forall a \neq b \in X \exists$ (semi–pre) open sets G and D in which $a \in G$, $b \notin G$ or $a \notin D$, $b \in D$.

3. On Nano Generalized Delta Separation Axioms Definition 3.1:

"A Nano topological space (U, $T_R(X)$) is said to be:

- **1.** N-g- δ -T₀ if $\forall a \neq b \in U$. \exists N-g- δ -open set D such that $a \in D$, $b \notin D$ or $b \in D$, $a \notin D$.
- **2.** N-g- δ -pre-T₀ if $\forall a \neq b \in U$. \exists N-g- δ -pre-open set D such that $a \in D$, $b \notin D$ or $b \in D$, $a \notin D$.
- **3.** N-g- δ -semi-T₀ if $\forall a \neq b \in U$. \exists N-g- δ -semi-open set D such that $a \in D$, $b \notin D$ or $b \in D$, $a \notin D$."
- **Remark 3.2:** The next diagram explain the relation between N-g- δ -T₀ spaces.

Diagram 3.1: explain the relationship between some types N-g-\delta-T₀ spaces

Example 3.3: Let U = { 1, 2, 3, 4 } with U/R = {{1}, {2, 4}}, and let X = {1, 2}, so that $T_R(x) = \{ U, \emptyset, \{1\}, \{2, 4\}, \{1, 2, 4\}\}$ Then, N-g- δ is an open set = { U, $\emptyset, \{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{1, 2, 4\}\}$ N-g- δ -semi-open set = { U, $\emptyset, \{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$ N-g- δ -pre-open set = { U, $\emptyset, \{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{1, 2, 4\}, \{1, 2, 4\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$ N-g- δ -pre-open set = { U, $\emptyset, \{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{1, 2, 4\}, \{1, 2, 4\}, \{1, 3, 4\}\}$ Example 3.4: From example 3.3, we have:

- **1.** N-g-δ-T₀ Let a = 2, b = 4 then ∃ N-g-δ an open set that {1, 2} in which $2 \in \{1, 2\}$, {4} ∉ {1, 2} or ∃ {1,4} open set in which that 2∉ {1, 4}, 4∈ {1, 4}
- **2.** N-g-δ-pre-T₀ Let a = 1, b = 4, then ∃ N-g-δ-pre-open set {1, 2, 3} in which $1 \in \{1, 2, 3\}, 4 \notin \{1, 2, 3\}$.
- **3.** N-g- δ -semi-T₀

Let a =4, b = 2 then, \exists N-g- δ -semi-open set {1, 3, 4} in which a \in {1, 3, 4}, b \notin {1, 3, 4} **Remark 3.5:**

Based on the former example, we can say that:

- 1. Every N-g- δ -T0 is N-g- δ -preT0 ,but the converse may not be true.
- 2. Every N-g- δ -T0 is N-g- δ -semi-T0 ,but the converse is not true. **Definition 3.6:** "A Nano topological space (U, T_R(X)) is said to be:
- **1.** N-g-δ-T₁ if \forall K ≠ L ∈ U, ∃ N-g-δ-open set D and F such that K ∈ D , L∉ D and L ∈ F, K ∉ F.
- **2.** N-g- δ -pre-T₁ if $\forall K \neq L \in U$, $\exists N$ -g- δ -pre-open set D and F such that $K \in D$, $L \notin D$ and $L \in F$, $K \notin F$.
- **3.** N-g- δ -semi-T₁ if $\forall K \neq L \in U$, \exists N-g- δ -semi-open set D and F such that $K \in D$, $L \notin D$ and $L \in F$, $K \notin F$." **Example 3.7:**Base on example 3.3, we have
- **1.** K = 2, L = 4, then $2 \in \{1,2\}$, $2 \notin \{1,4\}$ and $4 \notin \{1,2\}$, $4 \in \{1,4\}$, then, U is N-g- δ -T₁.
- **2.** U is N-g- δ -pre-T₁ for {1, 2, 3} and {1, 3, 4}.
- 3. U is N-g- δ -semi-T₁ for {2, 3, 4} and {1, 3, 4}. **Remark 3.8:** From the previous example, we have:
- **1.** Every N-g- δ -T₁ is N-g- δ -pre-T₁ but the converse not be true.
- **2.** Every N-g- δ -T₁ is N-g- δ -semi-T₁ but the converse not be true
 - **Remark 3.9:**The next diagram explain the relationship between some type of N-g- δ -T₁ spaces.

Diagram 3.2: explain the relationship between some types N-g- δ -T1 spaces

Definition 3.10: "A Nano topological space $(U, T_R(X))$ is said to be:

- **1.** N-g- δ -T₂ if $\forall K \neq L \in U$, \exists a disjoint N-g- δ -open sets D and F such that $K \in D$ and $L \in F$.
- **2.** N-g- δ -pre-T₂ if $\forall K \neq L \in U$, \exists a disjoint N-g- δ -pre-open sets D and F such that $K \in D$ and $L \in F$.
- **3.** N-g- δ -semi-T₂ if $\forall K \neq L \in U$, \exists a disjoint N-g- δ -semi-open sets D and F such that $K \in D$ and $L \in F$." **Example 3.11** Based on example 3.3, we can have
- **1.** U is N-g- δ -T₂ for {1} and {2}
- **2.** U is N-g- δ -pre-T₂ for {4} and {1, 2, 3}
- **3.** U is N-g-δ-semi-T₂ for {2} and {1, 3, 4} **Remark 3.12:**Based on the previous example, we can say that:
- **1.** Every N-g- δ -T₂ is N-g- δ -pre-T₂ but the converse is not true.
- Every N-g-δ-T₂ is N-g-δ-semi-T₂, but the converse is not true.
 Remark 3.13: The next diagram explain the relation between some type of N-g-δ-T₂ spaces.

Diagram 3.3: explain the relationship between some types N-g- δ -T₂ spaces

Theorem 3.14:Every N-g- δ -T₂ space is N-g- δ -T₁ space.

Proof: Let U be N-g- δ -T₂ space and K,L be a two distinct points of U, then \exists disjoint N-g- δ -open sets D and F in which K \in D, thus K \notin F, likewise L \in F and L \notin D, so U is N-g- δ -T₁ space.

Theorem 3.15: Every N-g- δ -T₁ space is N-g- δ -T₀ space.

Proof: Let U be N-g- δ -T₁ space, and K \neq L \in U, \exists two N-g- δ - open sets D and F in which K \in D, then L \notin D. so, U is N-g- δ }T₀ space.

Remark 3.16: The next diagram explain the relation between N-g- δ -T_i spaces, where i=0, 1, 2 **Diagram** 3.4:

relationship N-g- δ -T_i, where i=0, 1, 2

Theorem 3.17: Every N-g- δ -pre-T₁(represent N-g- δ -semi-T₁) spaces is N-g- δ -pre-T0 (represent N-g- δ -semi-T₀) spaces.

Proof: Based on Theorem 3.15, Remark 3.5, and Remark 3.8, we could get the results.

Theorem 3.18 Every N-g- δ -pre-T₂(respresent N-g- δ -semi-T₂) spaces is N-g- δ -pre-T₁(respresent N-g- δ -semi-T₁) spaces.

Proof: Based on Theorem 3.14, Remark 3.12, and Remark 3.8, we could get the results.

Remark 3.19: The next diagram explains the relation between N-g- δ -pre-T_i(resp. N-g- δ -semi-T_i) spaces, where i=0, 1, 2.

Diagram 3.5: relationship N-g-δ-pre-T_i(resp. N-g-δ-semi-T_i) spaces, where i=0,1,2

Definition 3.20: "A Nano topological space (U, $T_R(X)$) is said to be Nano generalized δ Regular space (briefly, N-g-Reg space) if for any N-g- δ -closed set D and a point K such that $K \notin D$ there exist a disjoint N-g- δ -open sets F_1 and F_2 such that $D \in F_1$, $K \in F_2$."

Definition 3.21 " A N-g- δ -Reg space which also N-g- δ -T₁ space is said to be N-g- δ -T₃ space."

Example 3.22: Let $U = \{k, l, m, n\}$ with $U/R = \{\{k, l\}, \{m, n\}\}$ and $X = \{k, l, m\}$. Then, $T_R(X) = \{\emptyset, U, \{k, l\}, \{m, n\}\}$, $T^c_R(X) = \{U, \emptyset, \{m, n\}, \{k, l\}\}$, therefore, U is N-g- δ -T₁ for $\{k, l\}$ and $\{m, n\}$, and U is N-g- δ -Reg space. So, U is N-g- δ -T₃ is space for $\{k, l\}$ and $\{m, n\}$.

Definition 3.23: "A space U is said to be N-g- δ -normal space iff \forall two disjoint N-g- δ -closed sets D₁ and D₂ subset of U, \exists disjoint N-g- δ -open sets W₁ and W₂ such that D₁ \subseteq W₁ and D₂ \subseteq W₂."

Definition 3.24: "A Nano generalized δ topological space (U, $T_R(X)$) is said to be (N-g- δ -pre and N-g- δ -semi) Normal space if for any two disjoint N-g- δ (pre and semi) closed set D_1 and D_2 , \exists two disjoint N-g- δ (pre and semi) open sets W_1 , W_2 such that $D_1 \subseteq W_1$ and $D_2 \subseteq W_2$."

Theorem 3.25: If $U = U_R(X)$, $L_R(X) \neq U_R(X)$ and $L_R(X) \neq \emptyset$. Hence, U is N-g- δ is a normal space.

Proof: When $U = U_R(X)$ and $L_R(X) \neq \emptyset$. Then, $T_R(X) = \{\emptyset, U, L_R(X), B_R(X)\}$ and $T^c_R(X) = \{U, \emptyset, [B_R(X)]^c$, $[L_R(X)]^c$, let $D_1 = [B_R(X)]^c$ and $D_2 = [L_R(X)]^c$, then $D_1 \cap D_2 = \emptyset$, since $D_1 \subset L_R(X)$ and $D_2 \subset B_R(X)$,

 $L_R(X)$, $B_R(X)$ are disjoint N-g- δ - is an open set. So, U is N-g- δ is a normal space.

Theorem 3.26: \forall N-g- δ -extremely is disconnected space, the following statements are true:

- 1. Every N-g-δ-Normal space then N-g-δ-pre is Normal space.
- 2. Every N-g-δ-Normal space then N-g-δ-semi is Normal space.

Proof:

- **1.** If U be an extremely disconnected space, and U is N-g-δ-Normal(via theorem 3.25) and every N-g-δ-open set is N-g-δ-pre is an open set. Then, U is N-g-δ-pre is Normal space.
- **2.** Based on (1), we could prove that.

Definition 3.27: "A N-g- δ -Normal space which also N-g- δ -T₁ space said to be N-g- δ -T₄ space."

Definition 3.28: "A N-g- δ -pre-Normal space (resp. N-g- δ -semi-Normal space) which also N-g- δ -pre-T₁ space (N-g- δ -semi-T₁ space) said to be N-g- δ -pre-T₄ space(resp. N-g- δ -semi-T₄ space)".

References:

[1] Arya S.P. and T. Nour characterization of S-normal Space, Indian J. Pure APPI. Math 21 (1990) 717-719

[2] Bhuvaneswari, K, and Mythili, K. Gananapriya 2014 on Nano Generalized closed seresearch publication, Volum 4, ISSue 5.

[3] Cullen , H.F., "Regular spaces" , in introduction to General topology., Bosto, MA: Heath, PP.133 – 118, 1968.

[4] Dontchev J.Arokiarani I. and Balachandran K., 2000 on. 18. PP. 17-30.

[5] Levine, N. Generalized closed sets in topology, Ren. Cire. Mat. Parermo, 19(1970), 89-96. http://dx.doi.org/10.1007/bf02843888

[6] Maki, H. J. Umehara and T. Noiri, Every topological space is $pri-T_{1/2}$, mem, Fac. Sci. Kochi Univ. Math 17(1996), 33 - 42.

[7]Mccartan, S.D., 1968, "Separation Axioms for Topological ordered spaces Mathematical proceedings of the Cambridge Philosophical society 64:965 – 973.

[8] Saliem N. H., Shihab A.A.,"On Nano Generalised Delta open set and Nano. Generalised delta Continuous function", Journal of. Aeronautical Materials (2023), Isson: 1005-5053.

[9] Sathishmohan P. Rajendran V. Devika and Vani R. (2017), "on nano semi – continuity and nano pre – continuity ", International Journal of Applied Research, Volume 3, No 2, PP76 – 79.

[10] Willarad, S., "Normal spaces in General topology " Reading Ma: Addison – Wesley , PP.99 – 108, 1970.