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ABSTRACT  

This paper investigates the ability of utilizing the artificial neural network (ANN) in calculating 

the forced convection characteristics coefficients from internal flow of air inside a pipe 

subjected to constant heat flux. The heat transfer characteristics such as Nusselt number (Nu), 

Stanton number (St) and friction factor (f) which are calculated using the empirical correlations 

have high deviation from that obtained from the experiments. So, the ANN method is proposed 

for predicting these characteristics coefficients more close to the experimental results. The 

training and testing data for optimizing the ANN structure are based on the experimental data 

obtained from the experiments performed on a forced convection apparatus. Three training 

algorithms for the training of the ANN were used and the presented ANN is implemented by 

using such MATLAB program. For the preferable ANN structure acquired in the current work, 

an acceptable mean square error was achieved for the training and test data, using the Trainlm 

algorithm. The results reveal that the estimated results are very close to the experimental data. 

Also, a new Graphical User Interface (GUI) is implemented for the application of ANN in the 

calculation of the attempted heat transfer parameters. 

KEYWORDS: Pipe flow; Forced convection; Heat transfer characteristics; Neural networks; 

Graphical User Interface (GUI). 
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1. INTRODUCTION 

Many heat transfer analysis is of significant practical interest because of a large number of 

heating and cooling processes associated with industrial applications. Equipment such as heat 

exchangers and boilers in power producing plants require the knowledge of surface temperature 

distribution within the geometries. Recently the Artificial Neural Networks (ANN) have been 

used in numerous engineering thermo-fluid applications. There are a lot of researches applied 

ANN to train many of heat transfer characteristics in order to achieve reasonable results. 

Jambunathan et al., 1996 used ANN to show one-dimensional transient heat conduction from 

measurements utilizing liquid crystal thermography. Neural systems were prepared to anticipate 

the heat transfer quantities at a point in a duct heated by a stream of hot air. Bittanti and Piroddi, 

1997 used neural networks with a comprehensive smallest inconsistency control approach for 

heat exchanger uses. Diaz et al., 1999 conducted ANN to various problems of difficulty which 

involved conduction, convection, and the calculation of experimental data of cross-flow heat 

exchanger. 

Chaobin and Eiji, 2008 employed ANN established on a lot of practical data to build a semi- 

prediction approach for flowing stream of supercritical carbon dioxide with a little quantity of 

entrained greasing oil in tubes. They proposed a procedure contains an input-output three-layer 

neural network with the tube diameter, Prandtl number, Reynolds number, heat flux, thermal 

conductivity and oil quantity as the input parameters and the heat transfer coefficient as the 

output parameter. Their practical data utilized reference to an extensive number of experimental 

conditions with various parameters such as tube diameter, heat flux, oil quantity, pressure and 

mass flux. They concluded that the heat transfer coefficient increases linearly with the mass 

flux, while an increase in the heat flux leads to only a slight increase in the heat transfer 

coefficient. Gerardo and Antonio, 2009 collected results for turbulent forced convection for the 

internal flow of binary mixtures in tubes. They used a completely associated back-propagation 

ANN to acquire the form of Nusselt number as a function of Reynolds and Prandtl numbers. 

Their obtainable results are divided into two subgroups to train and examine the neural network. 

They utilized interpolation abilities of ANN to estimate Nusselt number for numerous scopes 

of Prandtl and Reynolds numbers. These quantities are utilized to produce an overall heat 

transfer correlation that covers the endeavored scope of Reynolds in mix with a large Prandtl 

with uncertainty ±25%.  

Ahmed, 2016 examined the effect of transfer functions and training algorithms using artificial 

neural networks (ANN) on experimental data for friction factors, entropy generation numbers, 
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Nusselt numbers and irreversibility distribution ratios for nine different baffle plates embedded 

tubes. MATLAB code was utilized to find better network configuration by utilizing general 

multilayer feed-forward neural networks (MLFNN) with back proliferation (BP) learning 

algorithm with thirteen diverse training functions. Eighteen data tests were utilized in a 

sequence of simulations for every nine specimens of baffle embedded tube. His results 

demonstrate that the dependability of the ANN as a robust device for anticipating the behavior 

of transient forced convective heat transfer applications. 

The aims of the present work are to build an ANN for predicting the heat transfer coefficients, 

Nu, St and f for turbulent internal flow in a pipe subjected to fixed heat flux at the external 

surface. These values of heat transfer coefficients which are calculated using the empirical 

correlations indicates a large deviation from the experimental results. So, the ANN method is 

proposed to predict values more close to the experimental results. The experimental data used 

for testing and training the ANN are obtained by using forced convection apparatus. Various 

values for Reynolds number and surface heat flux are taken for the experiments. The heat 

transfer coefficients Nu, St and f predicted by the ANN are compared with their values obtained 

from the empirical heat transfer correlations. Also, to make the proposed ANN easy to be used 

for users, the MATLAB graphical user interface is used.   

 

2. EXPERIMENTAL SETUP 

 

The experimental data attempted for training and validating the ANN is obtained by performing 

eighteen experiment test using forced convection apparatus which shown in Fig. 1. The 

apparatus gives the ability to examine the theory and related formula linked to forced 

convection in pipes. The measured data can be used to calculate heat transfer coefficients, the 

pipe friction factor and numerous non-dimensional sets involving Re, Nu and St. 

The device constructed of an electrically driven centrifugal fan, which guides air over a control 

valve and releases through a U-shaped pipe. The fan speed kept fixed throughout. A British 

Standard orifice plate is held in this pipe to determine the air flow rate. This pipe is connected 

to a copper test pipe that discharges into the atmosphere. The examination pipe is electrically 

heated by a heating tape enveloped around the external pipe. The power input to the tape is 

changed by tuning of power control on the apparatus, the input levels are determined via a 

voltmeter and ammeter on the device panel. The examination pipe is insulated by fiberglass 

lagging. The test length, situated within the heated section of the test pipe, has pressure 

measuring tapping at each end, which is connected to manometers on the instrument panel 
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measure fan discharge and the orifice pressure drop. A thermometer is existed to measure the 

air temperature at the inlet to the test pipe. 

The mimic diagram (see Fig. 2) on the front panel displays the locations of the thirteen 

thermocouples of type T; seven are attached to the test length, and six are located in the lagging 

wrapped around the test length. The output from any thermocouple may be chosen with a 

selector switch fitted to the instrument panel and measured with the electronic thermometer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.  2. Schematic for the locations of thermocouples (Dimensions in mm). 

 

Fig.  1. Forced convection heat transfer apparatus. 
 

 Air 

Flow 8 
9 

195 

400 305 180 170 165 150 
65 

1 2 3 4 5 6 7 

1525 

380 760 
30 

10 

11 

12 

13 

275 

Heating 

Tape 

Pipe 

32 mm Internal Diameter 

1.2 mm Wall Thickness 

 

Lagging 

73 mm Outside Diameter 

Tapping 

Points 

Datum of Measurement 



Kufa Journal of Engineering, Vol. 10, No. 3, July 2019               77 

 
 

3. HEAT TRANSFER CALCULATIONS 

In this section, the relations that used to predict the heat transfer parameters are mentioned. The 

air volume flow rate is calculated using the following equation: 

𝑄𝑣 = 𝑎 𝐶𝑑√2𝑔𝐻𝑜                                                                                            1 

The heat flux transferred to the air is given by the equation below: 

q =
Qn

A
                                                                                                                               2 

Where Qn is the actual heat transfer rate to the air is given by: 

Qn = Q − Qc                                                                                                                3 

In which the total heat supplied to the heating tape (Q) is given by: 

Q=IV                                                                                                            4 

and the heat loss to the surrounding through the insulation layer (Qc) is: 

Qc =
2πLkθ

ln
ro
ri

                                                                                                        5 

Where θ is the temperature difference through the insulation layer: 

θ = Ti − To                                                                                                        6 

and, 

Ti =
(T8+T10+T12)

3
                                                                                            7 

To =
(T9+T11+T13)

3
                                                                                                       8  

The heat transfer coefficient is calculated from: 

h =
q

(Tw,m−Tb,m)
                                                                                             9  

where the mean wall temperature Tw,m is given by: 

Tw,m =
(T1+T2+T3+T4+T5+T6+T7)

7
                                                    10 

and the mean bulk temperature of air Tb,m is given by: 

Tb,m =
(Ta1+Ta2)

2
                                         11 

It is possible to evaluate each of Nu, St and f by the following relations: 

Nu =
hDi

Kf
                                                                                      12 

St =
h

ρaUCp
                                         13 

f =
2Di g Hl

4LU2                                          14 
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also, Nu, St and f can be calculated using the following empirical relations for turbulent flow 

(Holman, 1989): 

Nu = 0.023Re0.8Pr0.4                                 15 

St = 0.023Re−0.2Pr−0.6                                     16 

f = 0.046Re−0.2                                                    17 

Where Re and Pr are given by the following relations: 

Re =
ρUDi

μ
                                                                                                                            18 

and, 

Pr =
μCp

Kf
                                                                                                                  19 

The experimental values of Nu, St and f are calculated using Eqs. (12), (13) and (14) 

respectively which they are compared with their values that predicted by using ANN. 

The experimental procedure was done by estimating the Reynolds number by adjusting the 

control valve at the fan inlet, and then the power input to the heating tape is estimated. After 

the steady state period is finished, the measurements of the temperatures along the test pipe 

length (T1 to T7), along the insulation layer (T9 to T13) and the temperature of the air inlet to 

test section and exit from it are recorded. Also, the pressure drop through the orifice plate (Ho), 

the test pipe length (Hl) and the fan pressure head are measured. Eighteen experiments are 

performed with various values for Reynolds number and the heat flux. The air properties for 

each experiment are calculated at the air mean temperature. 

4. ANALYSIS OF UNCERTAINTIES  

Many types of experimental errors may occur during the implementation of most experiments. 

These errors can be classified as systematic and random errors. The first type such as instrument 

errors (backlash, mounting, assembled, etc) cannot be avoided. However, other types of error 

which named random error or internal error may be reduced depending on many factors such 

as the experience of the expert. Human error, environmental error, sample representative error, 

reading error, ...etc are some of this kind of errors. In this study the main error that can be 

considered are the resolution error and thermocouple error which can be listed as in Table 1.  
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Table 1. Main sources of individual errors. 

        Item 

No. 
Parameter Type of error 

Magnitude of 

error 

1 Volt resolution ± 5 V 

2 Current resolution ± 0.1 A 

3 Ho resolution ± 0.5 mm 

4 Hl resolution ± 0.5 mm 

5 
Inlet and outlet 

temperatures 

Resolution & 

Thermocouple 

± 0.5 oC 

±0.03 oC 

6 T1  to T13 Thermocouple ±0.03 oC 

 

From Eq. (12) the standard error in Nusselt number (Nu) can be given as: 

𝑁𝑢 =  [(
∂Nu

∂h
ℎ)

2
]

1
2⁄

                                                                         20                                             

Where the above equation is considered by (Moffatt, 1988) and (Bolton, 1996). However, h is 

a function of such variables; therefore its error (h) can be written as: 

h =  [(
∂h

∂q
q)

2
+ (

∂h

∂Tw,m
Tw,m)

2

+ (
∂h

∂Tb,m
Tb,m)

2

]

1
2⁄

                                                            21 

Also, q,Tw,m and Tb,m are functions of another independent parameters as they given in Eqs.  (2), 

(10) and (11) respectively. The errors in these factors can be derived as follows (Bolton, 1996): 

𝑞 =  [(
𝜕𝑞

𝜕𝑄𝑛
𝑄𝑛)

2
]

1
2⁄

                                                     22 

For any dependent factor represented by a formula involves algebraic summation of an 

independent factor the standard error can be given as the root of summation of the square errors 

in these factors, see (Bolton, 1996). Therefore the error in Tw,m and Tb,m can be formulated as: 

𝑇𝑤,𝑚 = (𝑇1
2 + 𝑇2

2 + 𝑇3
2 + 𝑇4

2 + 𝑇5
2 + 𝑇6

2 + 𝑇7
2)

1
2⁄
                                             23 

𝑇𝑏,𝑚 = (Ta1
2 + Ta2

2)
1

2⁄
                                                                                                     24 

Based on Eq. (3) the error in Qn which named as (Qn) in Eq. (22) can be derived as: 

Qn =  [(
∂Qn

∂Q
Q)

2
+ (

∂Qn

∂Qc
Qc)

2
]

1
2⁄

                                                                    25 

From Eqs. (4) and (5), Q and Qc can be calculated as follows : 

Q =  [(
∂Q

∂V
V)

2
+ (

∂Q

∂I
I)

2
]

1
2⁄

                  26 
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Q𝑐 =  [(
𝜕Q𝑐

𝜕
)

2
]

1
2⁄

                                        27 

The error in temperature difference () can be derived from Eq. (6) as follows: 

 = [𝑇𝑖
2 + To

2]
1

2⁄
                                      28                                               

And using Eqs. (7) and (8) Ti and To are: 

T𝑖 = [𝑇8
2 + 𝑇10

2 + 𝑇12
2]

1
2⁄
                                29                                     

T𝑜 = [𝑇9
2 + 𝑇11

2 + 𝑇13
2]

1
2⁄
                                         30                                                                                             

St is a function of (h) and (U) therefore the error in St which will denoted as (St) and can be 

formulated from Eq. (13) as: 

St =  [(
𝜕𝑆𝑡

𝜕ℎ
ℎ)

2
+ (

𝜕St

𝜕𝑈
𝑈)

2
]

1
2⁄

                               31                                                                      

Where (h) is given in Eq. (21), while (U) can be derived from the formula (U =

Qv Ac⁄ ) as: 

U =  [(
𝜕U

𝜕𝑄𝑣
𝑄𝑣)

2
]

1
2⁄

                                                                    32                                                                                                              

Where Qv can be derived from Eq. (1) as follows:  

Q𝑣 =  [(
𝜕Q𝑣

𝜕𝐻𝑜
𝐻𝑜)

2
]

1
2⁄

                                     33                                                                                                               

From Eq. (14) the standard error in friction factor (f) can be derived as: 

f =  [(
𝜕f

𝜕𝐻l
𝐻l)

2
+ (

𝜕f

𝜕𝑈
𝑈)

2
]

1
2⁄

                                         34                                                                                             

For the same parameter, if there is more than one source of error, then, the overall error can be 

calculated as (Bolton, 1996): 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑒𝑟𝑟𝑜𝑟 = [𝑒1
2 + 𝑒2

2 + ⋯ ]
1

2⁄                         35                                                                              

Where (e1, e2,…..etc) are the individual error sources. By using Eq. (35), the error in the inlet 

and outlet temperature can be calculated in order to substitute them in the equations of standard 

error of the main factors. When using Eqs. (20) to (34) the error in Nu, St and f can be 

determined and listed as shown in Table 2.  
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Table 2.   Uncertainties in the main factors. 

       Item 

No. 
Parameter Magnitude of error 

1 Nu ± 8.892 

2 St ± 2.83˟10-4 

3 f ± 1.146˟10-4 

 

From these results, it can be concluded that the using of intelligent techniques to predict a new 

results in some heat applications is a very useful and safety; especially at the complicated cases. 

However, this fact is estimated from the variety of sources of error which associated with the 

implementation of the experiments as well as the high ranges of the magnitudes of these errors. 

5. ARTIFICIAL NEURAL NETWORK 

Artificial Neural Network (ANN) has been developed at many steps from 1943 by McCulloch 

and Pitts until the conception of multi-layer Perceptorn which had appeared by the attempts of 

Werpos, 1974 and Rumelhart, 1986, see (Roland, 2001). It is one of the intelligent techniques 

that can treat the multi-input multi-output (mimo) applications. ANN can be trained with many 

algorithms such as Batch Gradient Descent (Traingd), Powell-Beale Restarts (Traincgb) and 

Levenberg-Marquardt (Trainlm) (Rojas, 1996). There are many factors that may affect the 

ability of ANN for prediction such as training algorithm, the number of hidden nodes and the 

number of hidden layers. In this study, the input layer consists of Re, Pr and Q. Where the 

output layer is consisting of Nu, St and f as shown in Fig. 3. Also, one hidden layer with thirteen 

nodes is used in this work. 

 

 

 

 

 

 

 

 

Fig.  3. Neural network structure. 
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6. RESULTS AND DISCUSSION 

The Neural network which had been designed in this work was trained with some training 

algorithms. The results show that there is some difference in the regression (R) and mean square 

error (mse) that these algorithms have been produced. In Fig. 4 for Nu, Traingd algorithm was 

used and it can be noticed that there is some fitting between the ANN results and experimental 

results at points 2, 7 and 8. However, St results which are shown in Fig. 5 had appeared close 

in results at points 1, 2 and 9. The friction factor was not present acceptable regression at any 

point when using Traingd as seen in Fig. 6. These results can be described also by the mean 

square error (mse) in Fig. 7, which had high value (i.e., 0.1411) and a great amount of iteration 

(i.e., 500 epoch). Rather than that, the value of test regression (R=0.78871) represents another 

index for the weakness of this algorithm. In the other hand, when using more improved training 

algorithm (Traincgb) , the results of Nu, St and f which shown in Figs 8, 9 and 10 respectively, 

indicate high convergence between ANN results and experimental data except for some points. 

These results appear clearly in Fig. 11 and the small value of (mse) which equal to (0.0086331) 

represent a clear index. Also, the acceptable value of (R) (about 0.98615) show the high ability 

of this training algorithm for prediction. High fitting between the ANN and target can be 

achieved by using more effective training algorithm such as (Trainlm), illustrated in Figs. 12, 

13 and 14. By hard testing and training of the network, test error and train error can be calculated 

as shown in Fig. 15. Very small value of (mse=8.7691× 10-8) as shown in this figure and very 

acceptable regression (about (1))) represent another indexes for the high efficiency of this 

training algorithm. 
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Fig.  7. Errors using Traingd training 

algorithm. 
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Fig.  9. Stanton number predictions using 

Traincgb algorithm. 

 

1 2 3 4 5 6 7 8 9
5

5.5

6

6.5

7

7.5

8
x 10

-3

Sample number

F
ri
c
ti
o
n
 f

a
c
to

r

 

 

ANN

EXP.

Fig.  10. Friction factor predictions using 

Traincgb algorithm 

 

Fig.  11. Errors using Traincgb algorithm 
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Fig.  12. Nusselt number predictions using 

Trainlm algorithm. 

 

Fig.  13. Stanton number predictions using 

Trainlm algorithm. 
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Fig.  14. Friction factor using Trainlm algorithm. 

 

Fig.  15. Errors using Trainlm algorithm. 
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Fig.  17. Comparison of Stanton number at 

three methods. 
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In order to explain the high ability of ANN in the field of prediction, such comparison against 

empirical results has been implemented as shown in Figs. 16, 17 and 18. The empirical results 

have a great range of error while ANN results had appeared quite fit with the experimental data. 

This efficiency in prediction has been reached in the test of Nu and St were the empirical results 

had higher magnitudes than others. Also, f that calculated with empirical relation (i.e., Eq. (17)) 

has lower magnitudes than ANN and experimental results, see Fig. 18. Optimum nonlinear 

relations have been formulated for best fitting of the experimental data. As shown in Fig. 19, it 

can be noticed that Nu results obtained from the correlation have a great difference than that of 

experiments. This fact has also proved by the high magnitude of standard error (9.23) and low 

value of the correlation factor (7.83× 10−1). Although that all the data have been used in the 

correlation program, the results of St and f illustrated in Figs. 20 and 21 respectively reveal the 

great deviation from the experimental results. The great amount of error had appeared because 

of the complexity of the model. Also, high fluctuation of output variables which associated with 

many input variables may produce high values of uncertainties. For this reason, ANN has been 

used to obtain multi-input multi-output structure which appears very acceptable results as 

shown in Table 3. 

 

Table 3. Error and Correlation factor. 

   Test factor 

Outputs 

Error 
Correlation 

factor 

Best fit ANN Best fit ANN 

Nu 9.23 8-10 ×8.7691 0.78 1 

St 4-10 ×2.83 8-10 ×8.7691 0.68 1 

f 4-10 ×9.79 8-10 ×8.7691 0.27 1 

 

 

The use of ANN can reduce the number of experiments which then can reduce the required 

power and also the erratic condition can be investigated. Some comparisons have been 

implemented in order to explain the powerful of ANN against empirical (emp) relations as 

compared with the experimental data. These results were presents for Nu, St and f as shown in 

Tables 4, 5 and 6 respectively, where it can be concluded how the ANN can predict precise 

results with small percentage of error especially at complex heat transfer problems. Also, in this 

work, a new Graphical Usage Interface (GUI) named ANN-Heat parameters calculation had 

been constructed with three inputs (i.e. Re, Pr and Q). These inputs are received by relations 

depend on best trained ANN and produce three outputs Nu, St and f (see Fig. 22). 



86               Saleem et al.,  

Table 4. A comparison of absolute error in (Nu) at different methods. 
 

Nu 

Exp.vs.ANN Exp.vs.emp ANN.vs.emp 

0.006157424 28.5471000000 28.5532574243 

0.001358131 18.2768999999 18.2782581316 

0.000106911 26.2260200000 26.2259130885 

0.000021350 8.36513999999 8.36516135037 

0.014384559 54.4855500000 54.4999345592 

0.014515652 49.9094199999 49.8949043474 

0.023074865 30.8857399999 30.9088148651 

0.000098816 23.5647299999 23.5648288161 

 

 
Table 5. A comparison of absolute error in (St) at different methods. 

 

St 

Exp.vs.ANN10-6 Exp.vs.emp ANN.vs.emp 

0.20289916617 0.00090099200 0.0009007891 

0.03807893144 0.00062325500 0.0006232169 

0.00386091232 0.00099796000 0.0009979638 

0.00370309769 0.00033476900 0.0003347727 

0.47544645030 0.00149474000 0.0014942645 

0.47932358165 0.00140215900 0.0014026383 

0.75651406161 0.00090159400 0.0009008374 

0.00371102404 0.00105783000 0.0010578262 
 

 

Table 6. A comparison of absolute error in (f) at different methods. 

 

f 

Exp.vs.ANN10-7 Exp.vs.emp ANN.vs.emp 

0.066153210 0.001633936 0.0016339426 

0.290296906 0.002111671 0.0021116419 

0.004717140 0.000093101 0.0000931005 

0.090940783 0.001212297 0.0012122879 

0.115654798 0.000808321 0.0008083325 

0.466124264 0.000411829 0.0004117823 

0.624972617 0.001841161 0.0018412234 

0.009478575 0.000150416 0.0001504150 

 

For more confidence, the new GUI is compared with results obtained from M-file program of 

ANN where an adequate fitting had appeared as shown in Table 7. The test of GUI was 

implemented for a sample numbered (4) in Table 7 where the outputs are much closed to each 

other.  
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Table 7. Results of M-file for heat parameters calculations. 

 

Case 

Coefficient      

1 2 3 4 

Nu 77.4456 82.1018 56.4343 102.8179 

St 0.0024 0.0024 0.0025 0.0028 

f 0.007 0.0071 0.0059 0.007 
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Fig.  18. Comparison of friction factor at three 

methods. 
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Fig.  19. Comparison of Nusselt number 

(correlation vs. experimental results). 
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Fig.  20. Comparison of Stanton number 

 (correlation vs. experimental results). 

 

Fig.  21. Comparison of friction factor 

(correlation vs. experimental results). 
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Fig.  22. Graphical Usage Interface for ANN-Heat parameters calculation.  

7. CONCLUSIONS 

The ANN can be used effectively for the predictions of the heat transfer characteristics and its 

results are better than that obtained from the heat transfer correlations. However, there are many 

factors which affect with a great percentage  in the magnitude of the correlation factor (R) and 

the mean square error (mse) such as the best estimating of training algorithm and number of 

hidden layers and nodes of ANN structure. Also, learning rate and number of training sample 

can lead the efficiency of ANN to high levels. In this study, eighteen experiments were divided 

into nine training samples and as that testing which is enough to cover a wide range of required 

inputs and outputs in order to predict any value lied in this area of data. This ability is very 

important in the prediction of heat transfer coefficients for turbulent internal forced convection 

flow in pipes because it can reduce the time and cost as well as the effort. Such best fitting 

relations have been obtained with help of Curve Expert software in order to explain the power 

of ANN at the prediction procedure. Also, such analysis on uncertainties has been implemented 

in this study and the main derivations of the standard error formula of effective parameters were 

done. The magnitude of errors represents a useful index for using ANN in this research. A very 

powerful GUI had been proposed in this study which allows to evaluate several important 

factors in heat transfer applications such as Nu, St and f based on a previous trained artificial 

neural network.  
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