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1. Introduction

The statistical distributions are a vital part of our lives. It allows us to
understand the world around us and make informed decisions. It also helps
us in identify trends and opportunities. In the recent years, the modeling of
lifetime data is an essential research topic. The researcher’s studies on this
subject have appeared, and their aim was introducing new statistical
methodologies for dealing with lifetime phenomena. Several families of
statistical distributions have been widely applied and used in variety of
fields during the last several decades, including engineering, economic,
medical sciences, demography, and so on. In this paper, a new class of
generalized distributions (family) is proposed based on the [0,1]

Truncated, which it namely [0,1] Truncated Nadarajah-Haghighi-G ([0,1]

TNH-G) family of distributions. In additional, it includes generators of
distributions as specific instances. The key advantage of the new
distribution family is that it provides more flexibility distribution to the
extremes of the density function, making it suited for analyzing data sets
with a significant level of asymmetry and kurtosis. As a result, building
new families of distributions has been investigated by adding extra shape
parameter (s) to the baseline model. There has recently been considerable
interest in creating new generators or generalized families of univariate
continuous distributions that expand well-known distributions while also
providing tremendous flexibility in modeling data in reality. The generated
families generalized and extended most of the formal distributions. Some
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of the generators are Beta-G by Eugene et al. (2002), Exponential-G family
introduced and studied by Cordeiro et al., (2013). The Weibull-G family
introduced by Bourguignon et al., (2014), the generalized transmuted-G
studied and introduced by Nofal et al., (2017). The Gompertz-G family was
introduced by Alizadeh et al., (2017). The extended odd Fréchet-G family
was introduced by Nasiru (2018). The Generalized odd Gamma-G family
of distributions introduce by Hosseini et al., (2018), Marshall-Olkin alpha
power family introduced by Nassar et al., (2019). Arshad et al. (2020)
introduced the Gamma Kumaraswamy-G family of distributions. Khaleel et
al., introduce the Marshall-Olkin Topp Leone-G family in (2020). The
Marshall-Olkin-Weibull-H family introduced by Afify et al., (2022). The
Odd Chen family introduced by Anzagra et al., (2022). Truncated
distribution has been derived from that of a parent distribution, for example
normal and exponential distribution by bounding the random variable form
either below or above or both. Abid et al., (2017) using [0,1] Truncated

families of distributions by [0,1] Truncated Fréchet gamma and inverted
gamma distribution they were discussed as a special case CDF, moments,
mean, variance, skewness, kurtosis, median, characteristic function.
Following the same method Khaleel et al., (2022) introduced [0,1]
truncated inverse Weibull family. Khalaf and Khaleel in (2022) introduced
and studied a new distribution named [0, 1] truncated exponentiated
exponential Gompertz.

This paper introduces a new family named [0,1] TNH-G. The aimed

of study is derived some mathematical and statistical properties of this new
family. Our idea is to generate a new family by using [0,1] Truncated-G
method to define many new distributions for dealing with heavy tail data.
The general motivations for [0,1] TNH-G family are to generate

distributions can handle both monotonic and non-monotonic hazard rate
function (HRF) and introduce extreme tailed distributions for modeling
lifetime data as well as skewness for symmetrical distributions.

The reset of the article is outlined as follows. In section 2, a useful
[0, 1] TNH-G family of distributions is proposed. Section 3 introduces and

discusses some important mathematical and statistical properties of the
proposed family. In addition, to estimate the parameters of this new family,
the MLE method is used and involved in section 4. A special sub-model
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from the [0,1] TNH-G family named [0,1] Truncated Nadarajah-Haghighi
inverse Weibull distribution ([0,1] TNH-IW) is defined and discussed in

section 5. Section 6 validated the estimates through simulation process of
the [0,1] TNH-IW sub-model. In section 7, a real data set is used to

illustrate the effectiveness of the [0,1] TNH-IW sub-model. The final

conclusions are comprised in section 8.
. The [0,1] Truncated Nadarajah Haghighi-G family: The Nadarajah-

Haghighi distribution introduced by Sarales Nadarajah and Firoozeh
Haghighi as an extension of exponential distribution, the N-H distribution
has the CDF and PDF as follows:

VX)=1— e [#2° g p >0 ,x >0 (1)
v(x) = ab[1 +bx]* Lel"*09% 4 b >0 ,x >0 (2)

A new class of continuous distribution was generated based on the
interval [0,1] truncated cumulative distribution function V and ¢ named
[0,1]TV-G. Let G(x) and g(x) be any baseline CDF and PDF prepared for
a random variable X. And let we have a continuous distribution V(.) and
v(.) respectively, CDF and PDF are defined in eq (1) and eq (2). The
proposed formula for the CDF to separate on the composing V with G
would be.

- V(6(x)—V(0) 3)
F(X)oa1mv—c = 7 — 7(0)
Now, let V(0) = 0 then CDF in (3) can be rewritten as,
v(G (4)
F(X)parmv-¢ = (1’(7(1?)
And it's associated PDF, f(x) = i(F(x}}, will be,
vl G (5)
fOv-¢= l( i{x()l)ig(x)

A new generated family of [0,1] truncated based on Nadarajah-
Haghighi distribution (NH) will introduce as follows. Let V(.) and, v(.) be

the CDF and PDF of (NH) distribution respectively recall that eq (1) and eq
(2) with two non-negative parameters (a, b > 0). We have V(0) = 0,

So, let
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V(G(x)) =1— el (1+6()°
V(1) =1— el *0)F°
(6 (1) = ab(1 + b6 (x))" " el (1+66G)°

Then according to eq (3) and eq (4), the CDF and PDF for the new
family of distribution named {[0,1] Truncated Nadarajah-Haghighi-G

family} (symbolized by [0,1] TNH-G) will be

1 — o1-(1+p6(x)°

F(:x}TNH—G - 1 — el_(1+b)a (6)
and
ab(1+b6(x, )" e D) gy
f(X)rvg-6 = 1_ el-(1tb) (7)

Where & is the vector of parameters for the baseline distribution.

The survival, hazard rate, reversed hazard rate, cumulative hazard rate, and

odd functions that correspond to (6), (7)
1-(1+bG(x&))* _ el—(1+b)“

e
S(x,a,b,8)0,1178H-6 = 1 — gl-(1#b)°
ab[1 + bG(x,§)]% L e HPEDN g(x)
h(x,a,b,§)o117v0-6 = o 1-[1+DG(x D)) _ o1-(1+D)?

ab(1+b6(x))"* e1-(1+0600)"
_ : g(x)
r(x,a,b,§)0117NH-6 = 1—e1-[1+bG(xE)]%

el 140G 8N? _ j1-[14+0]? }

H(x,a,b, &) o11rNH-6 = —ln{

1 — p1-(1+b6(xH)"

1—e 1-(1+6600)"

0 , ,b, -G — a
(x,a, b, &) o1)7NH-6 1= (1+b6(x8))" _ p1-(1+b)2

. General Results: In this section, we derive general results of the new
family [0, 1] Truncated Nadarajah-Haghighi-G family.

3-1. Quantile function: The quantile function of the [0,1]TNH — G
family of distributions can be obtained by inverting u = Fjg 117nu—¢ (%)

given in (6) as follows

1
Q) = 1 (% (1 —In{1 — uf1 - el—[“b]“]}a) — 1,5) (8)
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3-2. Mixture Representation: The mixture representation of the PDF is
essential in the derivation of the statistical properties of [0,1] TNH-G

family of distributions. By take eg. (7) and reduce it

ab(1 + bG(x,§))" " el (1+060)" gy £y
f(x)[n,l]TNH—G = 1 — el-(1+p)°

By use the expansion of the exponential function (Faris and Khaleel,2022)

i
u — yo W
e _ijclj!l

we get
a1 ayJ
e1-(1+b6(x$)" = Zﬁ (1-(1+b69)")
j=0""

b g (1+66(x8))" F e 1 a~J
f(x}[o,leNH—G =24 j_gl_(ubfa ) ijoj_!(l - (1 + bG (x, f)) )
Moreover, by using the generalized binomial theorem formula

(1-2)%= Y7, ()(—1D* z% , we get,

(1-(+060)") = > (1) C0* (1 + 560, 9)"
k=0
then
ab g(x,$)

floarna-c(x, a, b, §) = 1 _ el-(1+b)2

. — k .
X X7 0 Xi-o(1) % (1 + bG(x, &))H+a 1
Again, by using the generalized binomial theorem Abdullah et al., (2022)
(1466 (0 )Y = 57 o(V ) ™ (6 )™

> ()

0 k=0 m=0

ab g(x,$)
flourna-¢(x @, b, §) = ] _ o1-[1+0F X

INGE

J

. - 1 miajt+a—
I N P LTER Y (16%5) i

Qe 90,8 (GG, &)™ )

where
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Lijkm =T 1= [1+b]azz Z ( )( 2 (aj :f _1) o™

Jj=0 k=0 m=0

3-3. Moments, Moments Generating Functions
Proposition 1: The ™ moment of the [0,1] TNH-G family is given by:
e = Qjiom [ 27 9C0 9 (66.9)

0
Proof: the v moment of a random variable X defined as

miaj+a—1)

dx

tr = j?x?'f(x} dx

where f(x) given in (9) so that

miaj+a—1)

b= | 2 e 9 (606, 8)) dx

m(aj+a—1)

= Qim f, x7900, &) (G(x,)) dx

Instead of that, we can define the +*® moment in the quantile function as
1

e = Qiom | WQE O
0
Where u = G (x) and Q;(u) is the quantile of the baseline distribution.

3-4. Moment Generating Functions
Proposition 2: The moment generating functions (MGF) for [0,1] TNH-G

family of distributions is given by

Mx® =y = [ X" 900 (60, 8)
=0 —0

m(aj+a—1)

dx

Proof: the MGF of a random variable X is defined as follow
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My (t) :i; fx” f(x)dx
r=0 o

where f(x) was defined in (9) we get

m(aj+a—1)

MO = Qs Y [ X790 (66 0)" T Vax
=0 — o

My (t) can be expressed in the terms of quantile function as

My () = Qjon X0 fy €% @ukdu , 0< u < 1

3-5. Incomplete Moments”
Proposition 3: The incomplete moments of [0,1] TNH-G family of

distributions is defined as
y

M) = Ym [ 270D (600)

Proof: The incomplete moments of a random variable X defined by
¥

M, () = f X7 F () dx

— o0

m(aj+a—1)

dx

where f(x) given in (9) we have gotten
y

M) = Y [ X79C0 ) (666,8)
In addition, the incomplete moments may be defined in the quantile
function as.

m(aj+a—1)

dx

G(y)
My () = m f kL (w)du

0
3-6. Order statistic: Let X;, X5, X3, ..., X;, have [0,1] TNH-G family with
CDF, PDF defined in (6), (7) respectively and let X;.,,, X5.,,, X3.0) oo, X1t
be the order statistic obtained from this sample. Then the probability
density function of r order statistic from [0,1] TNH-G is obtained by

inserting (6), (7) in the following equation. Ahmed et al., (2020)
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(p— 1}?(.11 —p)! (FG) (1-F@)" " @)

Expanding (F(:xc})p_1 in the defeintion of £, (x, ®) using binomial series

fiy () =

expansion yields
p—1
p-1 (P 1 i
(F)" = Z:(;(_l) (", ) a-r@)

Substituting it back into the expression of f,,.,, (x, ®) we get

r—1
B n! N B i+n—-p
fxp:,,(x)—(p_lm_p)é( 0 (PN - F) T

-1
- (p—l}?én—p}zz(_l)i( )(5( ))1 e
i=0

where S(x) is the survival function of our family
e 1-(1+bG(x ) _ e 1-(1+4b)%
S(x,a,b,8)0,11780-¢ = e 1-(1+D)

Then

i+n—p

1-(1+bG(x. ) 1—(1+b]a)

+ _
(S( ))1 = (9 1_91—(1+§]a

1

1-(1+b6(x,8))"
(1 _ el—(1+b)a}1+n—p

x (el (DG _ el—(1+b)“)i+n_p

Employing a similar concept of expansion, the density function of
[0,1] TNH-G family, a mixture representation of the PDF of the p*® order

statistic is defined as
fity () =

where

(p— 1)?:1&11 p)! YViiemj1(G(x)) 7 g(x) (10)

r—1

o= 22 230 ()

i=0 k=0 m=0j=01=0

14
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a(b)Hl (_1}i+k+m+l ek+1 (jo)m (e 1_[1+b]a)i+n—p—k

(mI}(II}(l _ el—[1+b]a)i+n—p+1
3-7. Moments of Order statistic:
Proposition 4: The r*® moment of the p™* order statistic of [0,1] TNH-G
family of distributions is given by

E(X})..) = e Yikem ‘zf X" (G(x)) 7 g(x)dx
P p-Din—-ptr ™ J

Proof: the ™ moment of the p™ order statistic,
E(X}..)of arandom variable X is defined as follows

0

B(X) = | xfi,, ()dx

— o0

Now when fxpm (x) as in (10) we get that

E(X"'" )=fx"’" n Yiem i (G(x)) 7 g(x)dx
pn J (p . 1}1 ('."1 . P}I tkmjl g

Hence

o0

o f X (6(x)) T g(0)dx
0

n!
"}(‘.
p—D(n—pt*

3-8. Inequality Measure: Several fields like econometrics, insurance and
reliability employ Lorenz and Bonferroni curves in the study of inequality
measures like income and poverty.

3-8-1. Lorenz curve

Proposition 5: The Lorenz curve of [0,1] TNH-G family of distributions

defined by

Bk =

¥y

1
L) = % Bk | ¥ 9 @0)

— o0

Proof: The Lorenz curve of a random variable X is defined as

m(aj+a—1)

dx

Y.
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¥y

1
L) = [ 2
So that where f(x) defined in (8) we get the Lorenz curve of [0,1] TNH-G

family of distributions is
y

1 (aj+a—1)
L) =2 f X Qg (6 8 (66, )" T dx
the equation can be written as follows
1 (@jta—1)
— » Qi km f_:"mx(g(x, &) (G (x, f})m ajta-1) . (11)

3-8-2. Bonferroni Curve
Proposition 6: The Bonferroni curve of [0,1] TNH-G family of

distributions is

Bp(y)
y
1- el_(l_'-b)a miaj+a—1)
i (1 — et-(+066:0)) B f g8 (6(x9) dx
p(1—e : J

Proof: the Bonferroni Curve of a random variable X defined as

Lr(¥)
Br(y) = FF@)

with respect to y so that
Bp(y)

now where Lz(y) as in (11) and F(y) was defined in (6)

1_ pl-(+p)e p

m(aj+a—1)

dx

— o0

3-9. Mean Residual Life
Proposition 7: The mean residual life of [0,1] TNH-G family of

distributions is

¥y
_ 1 m(ajt+a—
M(y) = o) K= Qjrm fxg(x,f) (6(x,9) I -y

Proof: The mean residual life of a random variable X is defined as
M({y)=EX—-ylX >y)
Thus

AR
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¥
1

M(y) = — | u— fx x)dx | —

= ol H J f(x) y

Now substituted £ (x) as mixture density defined in (8) we get
y

_ 1 m(aj+a—1)
A0 = w1 Qpom | 29 (600 dx | -

M= Foy | # %k 9069 (6(x,9) y

3-10. Rényi entropy: The entropy of a random variable X is a measure of

variation of uncertainty.
Proposition 9: Rényi entropy for the [0,1] TNH-G family of distributions

Is random variable X is defined by
Ix(c)
1

= Clﬂg{(ﬂj,k,m)c f(g(x, f})c (G(x, E))Cm(ajm_l) dxy,c#1,c>0,

Proof: Rényi entropy for the random variable X is defined by

1
Ir(c) = 1— ¢

log{ ffc(x)dx],c #1,¢c>0

Now when f(x) which defined in (8) then

— a [
. ab(1 + bG(x,f})a b e1-(1406(x) g(x, &)
[ X orvn—6 = 1 — gl (1tb)"
Hence
Ix(c)
1 c c cm(aj+a—1)
= 1— Clﬂg (ﬂj,k,m) (g(xl f}) (G(x: f)) dx ,C F 1:C = U:

3-10-1. Shannon entropy:
Proposition 10: The Shannon entropy of a [0,1] TNH-G family is given by

e = E (108 { 10 9008 (66 £)™ 7))

Proof: The Shannon entropy of a random variable X is defined as

YYY
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N, = E{—log f(x)}
So that Shannon entropy of [0,1] TNH-G family of distributions where
f (x) was defined in (8) is

e = E (—108{ Qj1m 96, ©) (6(x, 8)

3-10-2. Delta Entropy
Proposition 11: The § — entropy of [0,1] TNH-G family of distributions

m[aj+a—1)})-

1 c r c cmiaj+a—
H(8) = ——log {1—(ﬂj,k,m) | (9G.9)° (G )™ P dx]

Proof: since the § — entropy of a random variable X is given by

— 1 [ &
H(5)—1_5log{1—_ff (x)dx]
Hence for [0,1] TNH-G family of distributions is given by

log {1 — (Qsem)” f (90, ®)° (GG, )TV dx]

H(S) = —
(&) =15
. Parameters Estimation: The parameters of [0 1] TNH-G family are

estimated by using the maximum li;elihood method Abdal et al.,(2020).
Suppose that x; x, ... x,, is random sample of size n from the [0 1] TNH-
G family of distributions. Then the corresponding likelihood function is
given by:
L, = | [rewano
i=1

_ T ab(+ b6 (x;, §)7 7 eI g (x;,8)
T 1 — el—(1+b)“

i=1
(@)™ ¥, g(x, ) (1 + bG(x;, §))* eZima - (e )”
- (1 _ el—[1+b]“)n

Now the log-likelihood function given as:

| = nlog(a) + nlog (b) + Z log {g(x;, &)}
i=1

+(a— 1)2 log{1 + bG (x;,§)} + 2(1 [+ b6 (x;, )]
i=1 i=1

— nlog{1 — el [1+01%}

YyYy
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Now we find the paretial deivitvie of [ with respect to the parameter as
follow:

[ = nlog(a) + nlog(b) + Z log (g(x;,&))
i=1
+(a— 1)2 log{1 + bG (x;,&))
i=1

+Z(1 1+ bG (x;, )] — nlog{1 — el-@+))
i=1

Al n N n(1+ b)%log(1 + b) et~(1+D)°
o= Zl log{1 + bG (x;,)} + —
= ) (14 b6, ) log(1 + b6 (x;, )
i1
al _n = (a—1) G(x;,&) a-1
= F; TG D60 D)
na(1+ b)a 1l (1+D)"
- e1-(1+b)?
al _ d¥i1log (9(x;,8)) +(a- 1)52?=1103{1 +bG(x;,8)}
¢ ¢ o€
N a¥i1(1—(1+DG(x;,8)Y)
9¢

Equating the score functions to zero and numerically solving the system
of equations using techniques such as Newton-Raphson method, gives the
maximum likelihood estimates.

5. A Special Model from [0,1] TNH-G Family: This section deals with a

new special distribution, namely [0,1] TNH-Inverse Weibull denoted by
[0,1] TNH-IW distribution.
5-1. The [0,1] Truncated Nadarajah-Haghighi Inverse Weibull

Distribution: Suppose that the baseline distribution is the inverse Weibull
distribution with the following CDF and PDF, respectively.

GG A B) = e M7 (12)
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And
g A, B) = ABx~ BV =Py~ 0 2 B > 0. (13)
Then the CDF of [0,1] TNH-IW distribution is obtained by substituting
eg. (12) in eq. (6) as follows:
)
F(a,b, A B) s tvemw = — g X 2 0,a,b,4,8 >0 (14)
In addition, the PDF can be obtained by substituting egs. (12), (13) in eq.
(7).
f(xab,A, 3)[0,1] TNHIW —

)a‘l . 1—(1+b(e_’1x_ﬁ ]] -

ab Apx~E+ (14p(e~7F)

1—p1-(1+1)@ (15)
The HRF of [0,1] TNH-IW distribution is given by

h(x; a,b,l,ﬁ)[g’l] TNHIW
_ a—1 _ _ix—F @ _
ablﬁx_(ﬁ“)(l +b(e™ ﬁ)) e G CRD) Bl
e ) e

Figure 1 shows the Shapes of PDF and hazard functions of [0,1] TNH-IW
distribution.

10
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Figure (1): Shapes of PDF and hazard functions of [0,1] TNH-IW

distribution. This figure finds by author by using R program
6. Simulation Study: In this section we have conducted simulation study for
[0,1] TNH-IW distribution. We have generated samples of sizes

YYo


http://www.doi.org/10.25130/tjaes.19.61.2.17

Tikrit Journal of Administrative and Economic Sciences, Vol. 19, No. 61, Part (2): 311-333
Doi: www.doi.org/10.25130/tjaes.19.61.2.17

n = {50,80,120,200,300} from the proposed model and parameters have
been estimated by MLE method, the simulation study is in terms of the
averages of the three quantities: absolute bias |Bais(8)| = %Zi“:l |6 — 0|,

mean square error (MSE), MSE (@) = %Zi‘il(ﬁ —6)”, and mean relative

error (MRE), MRE(@) = %Zﬁil |8 — 0]/6. All the computations are made

by using R Statistical Software. Table 1 shows some simulation results for
different values of 8 (a, b, A, 5)T. Based on the simulation criteria, from

Table 1 one can be discovered that the maximum likelihood estimate
strategy performs pretty well in estimating the [0,1] TNH-IW distribution

parameters.
. Application: In this section, we fit the [0,1]TNH-IW distribution a real

data set to demonstrate that the proposed distribution fits well when
compared to competing distributions. R Statistical Software is used to
calculate all the results. In order to obtain the best results, we used the
following statistical criteria (-{, AIC, AIC, BIC, HQIC) for the proposed

model compared to other models, such as beta inverse Weibull (BIW),
Kumaraswamy inverse Weibull (KulW), Exponential Generalized inverse
Weibull (EGIW), Weibull inverse Weibull (WelW), Gompertez inverse
Weibull (GolW), Marshal-Olkin inverse Weibull (MolW) and inverse
Weibull (IW). This data set is the employment of the failure rate dataset
(103 hours) for the turbocharger for the engine type. The data set consists
of 40 observations by Alobaidi et al., (2021), Hassan et al., (2021) and it is
given as follows:
1.6, 2.0, 2.6, 3.0, 3.5, 3.9, 4.5, 4.6, 4.8, 5.0, 5.1, 5.3, 5.4, 5.6, 5.8, 6.0, 6.0,
6.1, 6.3, 6.5,65,6.7,7.0,7.1,73,73,7.3,7.7,7.7,7.8, 7.9, 8.0, 8.1, 8.3,
8.4,8.4,8.5,8.7,8.8,9.0.

According to the values shown in Tables 2 and 3 it is clear that the
[0,1]TNH-IW distribution is superior the comparative distributions. The

proposed expanded distribution provides an accurate representation
because it has the lowest values according to the statistical and
informational criteria, and the largest value of the p-value. It is clear that

from Figures 2 and 3 the [0,1] TNH-IW model provides the overall best fit
and therefore could be chosen as the adequate model for explaining data.
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Table 1: Bias, MSE and MRE of parameters of [0,1] TNH-IW distribution

8= (a=0.75b=1751=2750=140)"

Est.

Est. Par.

n =50

n = 80

n =120

n =200

n =300

|Bias]|

0.52908

0.46918

0.41856

0.37869

0.33748

0.66939

0.65050

0.63931

0.59485

0.58769

0.41075

0.37219

0.34554

0.31333

0.30438

0.83114

0.82258

0.81907

0.81681

0.81424

MSE

0.46496

0.36732

0.29044

0.23835

0.18734

0.74693

0.66923

0.66362

0.55809

0.55312

0.27060

0.21320

0.17740

0.13695

0.12506

0.70440

0.68663

0.67840

0.67256

0.66720

MRE

0.88181

0.78197

0.69760

0.63116

0.56246

0.47813

0.46465

0.45665

0.42489

0.41978

0.16765

0.15191

0.14103

0.127/89

0.12424

T | A T R | T | S| | T )| | &

1.38523

1.37097

1.36512

1.36134

1.35707

0= (a=

0.75,b =

0.50,4=0

40,8 = 0.

60)7

Est.

Est. Par.

n =50

n =80

n=120

n =200

n =300

|Bias|

0.33564

0.32977

0.32930

0.31432

0.30503

0.97158

0.94561

0.93413

0.91817

0.91538

2.03537

2.04078

2.04407

2.04608

2.04780

0.18191

0.15692

0.14249

0.12251

0.11018

MSE

0.19489

0.18504

0.18815

0.16987

0.15870

1.10956

1.04976

1.01732

0.97077

0.96122

4.14514

4.16624

4.17926

4.18714

4.19394

0.05903

0.04327

0.03637

0.02766

0.02308

MRE

0.55940

0.54962

0.54883

0.52387

0.50839

0.69399

0.67544

0.66724

0.65583

0.65384

0.83076

0.83297

0.83431

0.83514

0.83583

T A T R T | S| | T )| T | &

0.30319

0.26154

0.23749

0.20418

0.18363

0= (a=

1.50,b =

1.75,A =2

75,8 = 2.

45)T

Est.

Est. Par.

n =50

n = 80

n =120

n =200

n =300

|Bias|

0.88617

0.85938

0.85050

0.84884

0.85287

=

0.51764

0.49632

0.48027

0.46285

0.44859
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0.56162

0.48264

0.42878

0.37629

0.34425

1.87000

1.85971

1.85624

1.85675

1.85774

MSE

1.03999

0.91795

0.85072

0.79700

0.77797

0.40302

0.36949

0.32247

0.27853

0.24824

0.54095

0.39447

0.30641

0.22551

0.17815

3.56935

3.50734

3.47894

3.46910

3.46641

MRE

1.47695

1.43230

1.41750

1.41473

1.42145

0.36974

0.35452

0.34305

0.33060

0.32042

0.22923

0.19700

0.17501

0.15359

0.14051

T | ™| o] [T | S| & [T ™)

3.11666

3.09952

3.09374

3.09459

3.09623

Table (1): Bias, MSE and MRE of parameters of [0,1] TNH-IW
distribution (Continued)

0 = (a=1.50b=0.5041=0.40,5= 140"

Est. |[Est.Par.| n =50 | n =80 n=120 |n =200 n =300
|Bias| a 0.99922 | 0.99380 | 0.97838 | 0.96476 | 0.94529
b 0.93687 | 0.92891 | 0.90546 | 0.89628 | 0.89108
) 2.03776 | 2.04107 | 2.04485 | 2.04762 | 2.04860
,[? 0.84751 | 0.84067 | 0.84451 | 0.83965 | 0.83784
MSE a 1.21107 | 1.18090 | 1.13642 | 1.08976 | 1.03320
b 1.02364 | 0.98353 | 0.92449 | 0.88486 | 0.85991
) 4.15496 | 4.16752 | 4.18253 | 4.19345 | 4.19727
g 0.96017 | 0.89784 | 0.87178 | 0.82899 | 0.79828
MRE a 1.66537 | 1.65633 | 1.63063 | 1.60794 | 1.57548
b 0.66919 | 0.66351 | 0.64676 | 0.64020 | 0.63649
X 0.83174 | 0.83309 | 0.83463 | 0.83576 | 0.83616
g 1.41252 | 1.40112 | 1.40751 | 1.39942 | 1.39640
0 = (a = 4.00,b = 0.50,4 = 2.75,8 = 1.40)T
Est. |Est.Par.| n=50 | n=80 |n=120 n=200 n=300
|Bias| a 3.43707 | 3.47798 | 3.48808 | 3.53083 | 3.53740
b 0.91002 | 0.92533 | 0.93018 | 0.93086 | 0.92981
1 0.57437 | 0.51238 | 0.47374 | 0.40910 | 0.38237
g 0.80889 | 0.79824 | 0.79347 | 0.79357 | 0.79387
MSE a 12.1286 | 12.3218 | 12.3402 | 12.5598 | 12.5762
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0.85541 | 0.87267 | 0.87779 | 0.87446 | 0.87044

0.55279 | 0.43982 | 0.37401 | 0.26887 | 0.22437

0.68013 | 0.65351 | 0.64192 | 0.63756 | 0.63599

MRE 5.72844 | 5.79663 | 5.81346 | 5.88472 | 5.89566

0.65001 | 0.66095 | 0.66441 | 0.66490 | 0.66415

0.23444 | 0.20914 | 0.19336 | 0.16698 | 0.15607

T | | T TS| ™| T

1.3481 | 1.33040 | 1.32245 | 1.32262 | 1.32311

0 = (a = 4.00,b = 3.00,4 = 1.60, 8 = 1.40)T

Est. [ Est.Par. n=50 | n=80 |n=120 n =200 n =300

|Bias| a 3.56264 | 3.53248 | 3.52988 | 3.50618 | 3.48457
b 1.72737 | 1.69151 | 1.66569 | 1.65021 | 1.63546
) 0.83674 | 0.84914 | 0.85754 | 0.85842 | 0.85822
g 0.82166 | 0.82221 | 0.82455 | 0.82067 | 0.81737
MSE a 13.17458 | 12.83337 | 12.72352 | 12.48727 | 12.27564
b 3.17134 | 2.99493 | 2.86770 | 2.77645 | 2.70833
) 0.72468 | 0.73628 | 0.74652 | 0.74407 | 0.74177
g 0.68887 | 0.68625 | 0.68848 | 0.67999 | 0.67311
MRE a 593773 | 5.88746 | 5.88314 | 5.84364 | 5.80762
b 1.23383 | 1.20822 | 1.18978 | 1.17872 |1.16819}
) 0.34153 | 0.34659 | 0.35002 | 0.35038 | 0.35030
g 1.36944 | 1.37035 | 1.37425 | 1.36779 | 1.36228

This table finds by author by using R program
Table (2): The K-S value with its corresponding p-value and W value of

the data set

Model W A K-S p-value
[0,1]TNH-IW | 0.058 | 0.451 | 0.103 | 0.788
BelW 0.155 | 1.073 | 0.137 0.436
Kulw 0.202 | 1.344 | 0.138 0.426
EGIW 0.187 | 1.259 | 0.170 0.196
WelW 0.236 | 1.535 | 0.130 0.507
Golw 0.102 | 0.738 | 0.163 0.235
MolwW 0.368 | 2.256 | 0.230 0.028
W 0.606 | 3.480 | 0.243 0.017
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This table finds by author by using R program
Table (3): Represented the values of statistically criteria (-LL, AIC, CAIC,
BIC, HQIC)

Model MLEs -1 AIC | CAIC | BIC | HQIC

[0,1] TNH-IW 81.29 | 17/0.59|1/71.73|177.34|173.03

b =196.16
A=4331
£ =0.95

BelW 85.37 |178.75|179.90 | 185.51 | 181.20

a =391
b = 133.68
1=391
£ =059

KulWw 87.27 |182.55 | 183.69 | 189.31 | 184.99

G =7021
EGIW b=0.35 86.79 | 181.59 | 182.74 | 188.35 | 184.04
A =37.54 ' ' ' ' '

£ =1.03

a =5.37
b =25.01
1=10.75
£ =14.39

WelW 88.80 | 185.60 | 186.74 | 192.35 | 188.04

0.01

GolW 83.78 | 177.48 | 178.62 | 184.24 | 179.92

MolW =9.67 | 96.67 |199.44|200.11 | 204.51 | 201.28

W n 101.95 | 207.18 | 207.50 | 210.56 | 208.40
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This table finds by author by using R program
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Figure (2): Estimated densities of model for data set. This figure finds by
author by using R program.
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Figure (3): Estimated cumulative distribution function for data set. This
figure finds by author by using R program
8. Conclusions: The flexibility of generalized models in modelling varying
datasets remains a strong motivation for developing new families of
distributions. The study developed a new family of distribution called the
[0,1] TNH-G family. Statistical properties such as moments, order

statistics, entropies of the new family are derived. [0,1] TNH-IW

distribution introduces as a special model of new family. Finally, we
estimate parameters of the new family by MLE.
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