## GENERALIZED JORDAN LEFT DERIVATION ON SOME GAMMA RING

Rajaa C.Shaheen
Department of Mathematics, College of Education,
University of Al-Qadisiya, Al-Qadisiya, Iraq.

#### **ABSTRACT**

In this paper we define a Generalized Jordan left derivation on  $\Gamma$ -ring and show that the existence of a non-zero generalized Jordan left derivation D on a completely prime  $\Gamma$ -ring implies D is a generalized left derivation .Furthermore we show that every generalized Jordan left derivation on  $\Gamma$ -ring has a commutator left non-zero divisor is a generalized left derivation on  $\Gamma$ -ring.

Key wards:  $\Gamma$ -ring, prime  $\Gamma$ -ring, prime  $\Gamma$ -ring, left derivation, Jordan left derivation, generalized Jordan left derivation.

### 1-INTRODUCTION

An additive mapping d:R $\rightarrow$ R is called a left derivation (resp.,Jordan left derivation)if d(xy)=xd(y)+yd(x) (resp., $d(x^2)=2xd(x)$ ) holds for all  $x,y\in R$ . Clearly, every left derivation is a Jordan left derivation,Thus ,it is natural to ask that :whether every Jordan left derivation on a ring is a left derivation? In [1] authors answered the above question in case the underlying ring R is 2-torsion free and prime and in [5] Rajaa c. Shaheen,answered the above question in case the underlying ring R is a 2-torsion free and has a commutator left non-zero divisor and define the concept of generalized Jordan left derivation and Generalized left derivation as follows:

Let R be a ring,and let  $\delta: R \to R$  be an additive map,if there is a left derivation (resp.,Jordan left derivation)d:  $R \to R$  such that  $\delta(xy) = x \delta(y) + y d(x)$  (resp.,  $\delta(x^2) = x \delta(x) + x d(x)$  for all  $x,y \in R$ ,then  $\delta$  is called a generalized left derivation and d is called the relating left derivation(resp., then  $\delta$  is called a generalized Jordan left derivation and d is called the relating Jordan left derivation).and study the same problem .In this paper we define a generalized Jordan left derivation and we show that the existence of a non-zero generalized Jordan left derivation  $D: M \to M$  on a completely prime  $\Gamma$  -ring M which satisfy the condition  $x \alpha y \beta z = x \beta y \alpha z$  for all  $x,y,z \in M$  and  $\alpha,\beta \in \Gamma$  implies D is a generalized left derivation and we show that every generalized Jordan left derivation on  $\Gamma$ -ring has a commutator left non-zero divisor is a generalized left derivation.

Let M and  $\Gamma$  be additive abelian groups, M is called a  $\Gamma$ -ring if for any  $x,y,z \in M$  and  $\alpha$ ,  $\beta \in \Gamma$ , the following conditions are satisfied

(1)  $x \alpha y \in M$ (2) $(x+y) \alpha z=x \alpha z+y \alpha z$   $x(\alpha + \beta)z=x \alpha z+x \beta z$   $x \alpha (y+z)=x \alpha y+x \alpha z$ (3) $(x \alpha y) \beta z=x \alpha (y \beta z)$ 

The notion of  $\Gamma$ -ring was introduced by Nobusawa[4] and generalized by

Barnes[2],many properties of  $\Gamma$ -ring were obtained by many researcheres.

M is called a 2-torsion free if 2x=0 implies x=0 for all  $x \in M$ . A  $\Gamma$ -ring M is called prime if a  $\Gamma$  M  $\Gamma$  b=0 implies a=0 or b=0 and M is called completely prime if a  $\Gamma$  b=0 implies a=0 or b=0(a,b  $\in$  M), Since a  $\Gamma$  b  $\Gamma$  a  $\Gamma$  b  $\Gamma$  a  $\Gamma$  b  $\Gamma$  then every completely prime  $\Gamma$ -ring is prime. In [3] Y. Ceven defined a Jordan left derivation as follows

<u>Definition 1.1</u>:-Let M be a  $\Gamma$ -ring and let  $d:M \rightarrow M$  be an additive map.d is called a Left derivation if for any  $a,b \in M$  and  $\alpha \in \Gamma$ ,

 $d(a \alpha b) = a \alpha d(b) + b \alpha d(a),$ 

d is called a Jordan left derivation if for any  $a \in M$  and  $\alpha \in \Gamma$ , d(a  $\alpha$  a)=2a  $\alpha$  d(a).

 $D(a \alpha b)=a \alpha D(b)+b \alpha d(a)$ , for all  $a,b \in M$  and  $\alpha \in \Gamma$ ,

In this paper, we generalized the above definition by giving the following definition <u>Definition 1.2</u>:- Let M be a  $\Gamma$ -ring and let  $D:M \rightarrow M$  be an additive map. Then D is called a <u>Generalized left derivation</u> if there exist a left derivation  $d:M \rightarrow M$  such that

<u>Definition 1.3:-</u> Let M be a  $\Gamma$ -ring and let  $D:M \to M$  be an additive map. Then D is called a <u>Generalized Jordan left derivation</u> if there exist a Jordan left derivation  $d:M \to M$  such that  $D(a \ \alpha \ a) = a \ \alpha \ D(a) + a \ \alpha \ d(a)$ , for all  $a \in M$  and  $\alpha \in \Gamma$ ,

### 2. RESULT

<u>Lemma 2.1</u>:- Let M be a  $\Gamma$ -ring, D:M $\rightarrow$ M be a Generalized Jordan left derivation and d:M $\rightarrow$ M be the relating Jordan left derivation then the following statements hold:

(i)  $D(a \alpha b+b \alpha a)=a \alpha D(b)+b \alpha D(a)+a \alpha d(b)+b \alpha d(a)$  for all a,b  $\in M$  and  $\alpha \in \Gamma$ ,

Especially if M is 2-torsion free and a  $\alpha$  b  $\beta$  c=a  $\beta$  b  $\alpha$  c, for all a,b,c  $\in$  M and  $\alpha$ ,  $\beta \in \Gamma$ , then

- (ii)  $D(a \alpha b \beta a) = a \alpha b \beta D(a) + 2a \alpha b \beta d(a) + a \alpha a \beta d(b) b \alpha a \beta d(a)$
- (iii)  $D(a \alpha b \beta c + c \alpha b \beta a) = a \alpha b \beta D(c) + c \alpha b \beta D(a) + 2a \alpha b \beta d(c) + 2c \alpha b \beta d(a) + a \alpha c \beta d(b) + c \alpha a \beta d(b) b \alpha a \beta d(c) b \alpha c \beta d(a).$

<u>Proof</u>:-(i)Since D is a Generalized Jordan left derivation then  $D(a \ \alpha \ a) = a \ \alpha \ D(a) + a \ \alpha \ d(a)$ , for all  $a \in M$  and  $\alpha \in \Gamma$ ,....(1) By linearizing (1), we get for all  $a,b \in M$  and  $\alpha \in \Gamma$ ,

```
D(a \alpha b+b \alpha a)=a \alpha D(b)+b \alpha D(a)+a \alpha d(b)+b \alpha d(a),....(2)
(ii)In (2) replace b by a \beta b+b \beta a, \beta \in \Gamma
W = D(a \alpha (a \beta b + b \beta a) + (a \beta b + b \beta a) \alpha a)
=a \alpha D(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha D(a)+
   a \alpha d(a \beta b+b \beta a)+(a \beta b+b \beta a) \alpha d(a)
=a \alpha a \beta D(b)+a \alpha b \beta D(a)+a \alpha a \beta d(b)+a \alpha b \beta d(a)+a \beta b \alpha D(a)+b \beta a \alpha
D(a)+2a \alpha a \beta d(b)+2a \alpha b \beta d(a)+a \beta b \alpha d(a)+b \beta a \alpha d(a)
on the other hand,
W = D(a \alpha (a \beta b + b \beta a) + (a \beta b + b \beta a) \alpha a)
  =D(a \ \alpha \ a \ \beta \ b+2a \ \alpha \ b \ \beta \ a+b \ \beta \ a \ \alpha \ a)
   = D(a \ \alpha \ a \ \beta \ b + b \ \beta \ a \ \alpha \ a) + 2D(a \ \alpha \ b \ \beta \ a)
= a \ \alpha \ a \ \beta \ D(b) + b \ \beta \ D(a \ \alpha \ a) + a \ \alpha \ a \ \beta \ d(b) + b \ \beta \ d(a \ \alpha \ a) + 2D(a \ \alpha \ b \ \beta \ a)
=a \alpha a \beta D(b)+b \beta a \alpha D(a)+b \beta a \alpha d(a)+a \alpha a \beta d(b)+2b \beta a \alpha d(a)+2D(a \alpha b \beta a)
then by comparing these two expression of W and by using the fact of 2-torsion free
ring ,we get
D(a \alpha b \beta a)=a \alpha b \beta D(a)+2a \alpha b \beta d(a)+a \alpha a \beta d(b)-b \alpha a \beta d(a).....(3)
(iii)by linearizing (3) we find that
D(a \alpha b \beta c + c \alpha b \beta a) = a \alpha b \beta D(c) + c \alpha b \beta D(a) + 2a \alpha b \beta d(c) +
2c \alpha b \beta d(a)+a \alpha c \beta d(b)+c \alpha a \beta d(b)-b \alpha a \beta d(c)-b \alpha c \beta d(a).....(4)
Now we shall give the following lemma which is necessary to prove [lemma 2.3]
Lemma 2.2:-let M be a 2-torsion free \Gamma-ring and d:M\rightarrowM is a Jordan left derivation
on M and a \alpha b \beta c=a \beta b \alpha c for all a,b,c \in M and \alpha, \beta \in \Gamma then
(a \alpha a \alpha b-2a \alpha b \alpha a+b \alpha a \alpha a) \beta d(b)=0.
Proof:- From [3], Lemma 2.2,i], we have
(a \alpha a \alpha b-2a \alpha b \alpha a+b \alpha a \alpha a) \beta d(a)=0.....(5)
by replacing a by a+b in (5), we find that
((a+b) \ \alpha \ (a+b) \ \alpha \ b-2(a+b) \ \alpha \ b \ \alpha \ (a+b)+b \ \alpha \ (a+b) \ \alpha \ (a+b)) \ \beta \ d(a+b)=0
(a \alpha a \alpha b+b \alpha a \alpha b+a \alpha b \alpha b+b \alpha b \alpha b-2a \alpha b \alpha a-2a \alpha b \alpha b-2b \alpha b \alpha a-2b \alpha b
                                                                                                                                     \alpha b+b
\alpha a \alpha a+b \alpha b \alpha b+b \alpha a \alpha b+b \alpha b \alpha a) \beta (d(a)+d(b))=0
(a \ \alpha \ a \ \alpha \ b+2b \ \alpha \ a \ \alpha \ b-2a \ \alpha \ b \ \alpha \ a-a \ \alpha \ b \ \alpha \ b-b \ \alpha \ b \ \alpha \ a+b \ \alpha \ a \ \alpha \ a) \ \beta (d(a)+d(b)=0)
((a \alpha a \alpha b - 2a \alpha b \alpha a + b \alpha a \alpha a) - (b \alpha b \alpha a - 2b \alpha a \alpha b + a \alpha b \alpha b)) \beta d(a) +
((a \alpha a \alpha b - 2a \alpha b \alpha a + b \alpha a \alpha a) - (b \alpha b \alpha a - 2b \alpha a \alpha b + a \alpha b \alpha b)) \beta d(b) = 0
```

```
and since (a \ \alpha \ a \ \alpha \ b-2a \ \alpha \ b \ \alpha \ a+b \ \alpha \ a \ \alpha \ a) \ \beta \ d(a)=0, we get
-(b\ \alpha\ b\ \alpha\ a-2b\ \alpha\ a\ \alpha\ b+a\ \alpha\ b\ \alpha\ b)\ \beta\ d(a)+(a\ \alpha\ a\ \alpha\ b-2a\ \alpha\ b\ \alpha\ a+b\ \alpha\ a\ \alpha\ a)\ \beta\ d(b)=0.....(6\ )
since
0=d([a,b] \beta [a,b])
 =d(a \ \beta \ (b \ \alpha \ a \ \alpha \ b)+(b \ \alpha \ a \ \alpha \ b) \ \beta \ a)-d(a \ \alpha \ (b \ \alpha \ b) \ \alpha \ a)-d(b \ \alpha \ (a \ \alpha \ a) \ \alpha \ b)
 =2(a \ \beta \ d(b \ \alpha \ a \ \alpha \ b) + (b \ \alpha \ a \ \alpha \ b) \ \beta \ d(a)) - a \ \alpha \ a \ \beta \ d(b \ \alpha \ b) - 3a \ \alpha \ b \ \alpha \ b \ \beta \ d(a) + b \ \alpha \ b
 \alpha a \beta d(a)-b \alpha b \beta d(a \alpha a)-3b \alpha a \alpha a \beta d(b)+a \alpha a \alpha b \beta d(b)
 =-3(a \alpha a \alpha b-2a \alpha b \alpha a+b \alpha a \alpha a) \beta d(b)-(a \alpha b \alpha b-2b \alpha a \alpha b+b \alpha b \alpha a) \beta d(a)
and hence
(a \ \alpha \ b \ \alpha \ b-2b \ \alpha \ a \ \alpha \ b+b \ \alpha \ b \ \alpha \ a \ \beta \ d(a)+3(a \ \alpha \ a \ \alpha \ b-a \ \alpha \ b \ \alpha \ a+b \ \alpha \ a \ \alpha \ a) \ \beta \ d(b)=0
.....(7)
from(6) and (7), we get
4(a \alpha a \alpha b-2a \alpha b \alpha a+b \alpha a \alpha a) \beta d(b)=0
and since M is 2-torsion free \Gamma-ring,then
 (a \alpha a \alpha b-2a \alpha b \alpha a+b \alpha a \alpha a) \beta d(b)=0
Lemma2.3:- Let M be a 2-torsion free \Gamma-ring which satisfy the condition
a \alpha b \beta c = a \beta b \alpha c, for all a,b,c \in M and \alpha,\beta \in \Gamma, then D:M \to M be a Generalized
Jordan left derivation and d:M\rightarrow M be the relating Jordan left derivation then
[a,b] \beta (D(b \alpha a)-b \alpha D(a)-a \alpha d(b))=0
Proof: In (4) replace c by [a,b] = a \alpha b - b \alpha a
Y=D(a \alpha b \beta [a,b]+[a,b] \alpha b \beta a)
= a \alpha b \beta D([a,b]) + [a,b] \alpha b \beta D(a) + 2a \alpha b \beta d([a,b]) + 2[a,b] \alpha b \beta d(a) + a \alpha [a,b]
                                                                                                                                        \beta d(b)+
[a,b] \alpha a \beta d(b)-b \alpha a \beta d([a,b])-b \alpha [a,b] \beta d(a)
=a \alpha b \beta D(a \alpha b)-a \alpha b \beta D(b \alpha a)+[a,b] \alpha b \beta D(a)+2a \alpha b \beta d([a,b])+
2[a,b] \alpha b \beta d(a)+a \alpha [a,b] \beta d(b)+[a,b] \alpha a \beta d(b)-b \alpha a \beta d([a,b])-b \alpha [a,b] \beta d(a)
 since [a,b] \beta d([a,b])=0 from [3,lemma~2.2,(iii)]
Y=a \alpha b \beta D(a \alpha b)-a \alpha b \beta D(b \alpha a)+[a,b] \alpha b \beta D(a)+a \alpha b \beta d([a,b])+2[a,b] \alpha b \beta d(a) -
b \alpha [a,b] \beta d(a) + a \alpha [a,b] \beta d(b) + [a,b] \alpha a \beta d(b)
On the other hand,
Y = D(a \alpha b \beta [a,b] + [a,b] \alpha b \beta a)
=D(a \alpha b \beta a \alpha b-a \alpha b \beta b \alpha a+a \alpha b \beta b \alpha a-b \alpha a \beta b \alpha a)
```

```
=D(a \alpha b \beta a \alpha b)-D(b \alpha a \beta b \alpha a)
= a \alpha b \beta D(a \alpha b) + a \alpha b \beta d(a \alpha b) - b \alpha a \beta D(b \alpha a) + b \alpha a \beta d(b \alpha a)
Then by comparing these two expression of Y and since from [3,Lemma2.2], we have
[a,b] \beta d(a \alpha b)=a \alpha [a,b] \beta d(b)+b \alpha [a,b] \beta d(a)....(8)
then we get
     -[a,b] \beta (D(b \alpha a)-b \alpha D(a)-a \alpha d(b))+a \alpha b <math>\beta d([a,b])+2[a,b] \alpha b \beta d(a)-b \alpha [a,b]
      \beta d(a)+[a,b] \beta d(a \alpha b)-b \alpha [a,b] \beta d(a)-a \alpha b \beta d(a \alpha b)+b \alpha a \beta d(b \alpha a)=0
     then
-[a,b] \beta (D(b \alpha a)-b \alpha D(a)-a \alpha d(b))+a \alpha b \beta d([a,b])+2[a,b] \alpha b \beta d(a)-2b \alpha [a,b]
\beta d(a) + a \alpha b \beta d(a \alpha b) - b \alpha a \beta d(a \alpha b) - a \alpha b \beta d(a \alpha b) + b \alpha a \beta d(b \alpha a) = 0
-[a,b] \beta (D(b \alpha a)-b \alpha D(a)-a \alpha d(b))+[a,b] \beta d([a,b])+2[a,b] \alpha b \beta d(a)
-2b \alpha [a,b] \beta d(a)=0
by [3,Lemma2.2,iii],we have
[a,b] \beta d([a,b])=0 for all a,b \in M and \alpha, \beta \in \Gamma.
Then
-[a,b] \beta (D(b \alpha a)-b \alpha D(a)-a \alpha d(b))=2(-[a,b] \alpha b+b \alpha [a,b]) \beta d(a)
                                                              =2(b \alpha [a,b] - [a,b] \alpha b) \beta d(a)
since
(b \ \alpha \ [a,b] - [a,b] \ \alpha \ b) \ \beta \ d(a) = [a,b] \ \beta \ d(a \ \alpha \ b) - a \ \alpha \ [a,b] \ \beta \ d(b) - [a,b] \ \alpha \ b \ \beta \ d(a)
                                       =[a,b] \beta ( d(a \alpha b)-b \alpha d(a))- a \alpha [a,b] \beta d(b)
                                       = [a,b] \beta a \alpha d(b)-a \alpha [a,b] \beta d(b)
                                      =([a,b] \alpha a-a \alpha [a,b]) \beta d(b)
then
-[a,b] \beta (D(b \alpha a)-b \alpha D(a)-a \alpha d(b))=-2(a \alpha [a,b]-[a,b] \alpha a) \beta d(b)
                                              =-2(a \alpha a \alpha b-2a \alpha b \alpha a+b \alpha a \alpha a) \beta d(b)....(9)
so by [Lemma 2.2], we get
[a,b] \beta (D(b \alpha a)-b \alpha D(a)-a \alpha d(b))=0.....(10)
Theorem 2.4:- let M be a 2-torsion free \Gamma-ring has a commutator left non-Zero divisor
and a \alpha b \beta c = a \beta b \alpha c for all a,b,c \in M and \alpha,\beta \in \Gamma and D:M \to M is a Generalized
Jordan left derivation on M and d:M \rightarrow M is the relating Jordan left derivation Then D is a
```

Generalized left derivation on M.

**Proof**:- if we suppose that

 $G(b,a)=D(b \ \alpha \ a)-b \ \alpha \ D(a)-a \ \alpha \ d(b)$ 

Then (10) becomes

[a,b]  $\beta$  G(b,a)=0 for all a,b  $\in$  M and  $\alpha$ ,  $\beta \in \Gamma$  .....(11)

Since M has a commutator left non-Zero divisor then  $\exists x,y \in M$  and  $\alpha,\beta \in \Gamma$  such that

[x,y]  $\beta$  c=0 implies that c=0

It is easy to see that from (11),

[x,y]  $\beta$  G(y,x)=0 and so G(y,x)=0

In (11) replace a by a+x,then we get

 $[x,b] \beta G(b,a) + [a,b] \beta G(b,x) = 0....(12)$ 

replace b by b+y in (12),then we get

[x,y]  $\beta$   $G(b,a)=0 \Rightarrow G(b,a)=0$ 

i.e  $D(b \ \alpha \ a)=b \ \alpha \ D(a)+a \ \alpha \ d(b)$ 

 $\Rightarrow$ D is a Generalized left derivation on M.

**Theorem 2.5:-** let M be a 2-torsion free completely prime  $\Gamma$ -ring and  $a \alpha b \beta c = a \beta b \alpha c$  for all  $a,b,c \in M$  and  $\alpha,\beta \in \Gamma$  and  $D:M \rightarrow M$  is a Generalized Jordan left derivation on M. Then D is a Generalized left derivation on M.

**<u>Proof</u>**:- Since[a,b]  $\beta$  G(b,a)=0 for all a,b  $\in$  M and  $\alpha$ ,  $\beta \in \Gamma$ 

And since M is completely prime  $\Gamma$ -ring,then either[a,b]=0 or G(b,a)=0

If [a,b]=0 for all  $a,b \in M$  and  $\alpha \in \Gamma \Rightarrow M$  is commutative and so D is a Generalized left derivation on M .if G(b,a)=0 then D is a Generalized left derivation on M.

### REFERENCES

[1]Ashraf,M.,Rehman,N.:On Lie ideals and Jordan left derivations of prime rings,Arch.Math.(Brno)36,201-206(2000)

[2]W.E.Barnes" On the  $\Gamma$ -rings of Nobusawa" Pacific J.Math., 18(1966), 411-422.

[3] Y.Ceven," Jordan left derivations on completely prime Gamma rings", Fenbilimleri Dergisi(2002) cilt 23say12.

[4]N. Nobusawa." on a generalization of the ring theory ,Osaka J.Math.,1(1964)

[5] Rajaa.C.Shaheen, "Generalized Jordan homomorphisms and Jordan left derivation on some rings, M.S.C thesis, 2005.