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1.Introduction. The genesis of the notation of compactness is

connected with the Borel theorem (proved in 1984) stating that every

countable open cover of a closed interval admits a finite subcover, and

with the Lebesgue observation that the same holds for every open cover

of a closed interval ( in [1903] Borel generalization this result, in

Lebesgue's seting, to all bounded closed subsets of Euclidean spaces )

[2]. In 2010 Zitkovic [5] introduced the concept of  convexly compact

sets. A collection  of sets is said to have the finite intersection property

(FIP) [2,4] if the intersection of each finite subcollection of  is non-

empty. A subset C of a topological space X is said to be compact if every

open cover of C admits a finite subcover,or equivalently, if and only if

every collection of closed subsets of C with the finite intersection

property admits non-empty intersection[2,4].A function from a
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topological space into topological space is continuous if and only if the

inverse image of every open (closed) set is open ( closed ) set .  A

function from a topological space into topological space is said to be

closed if the image of every closed set is closed set[2,4].

Let  be a non-empty set.The set )(Fin consisting of all non-empty

finite subsets of A carries a natural structure of a partially ordered set

when ordered by inclusion. Moreover, it is a directed set, since

2121, DDDD  for any )(, 21 FinDD [5].

Definition 1.1 [3] A topology  on a vector space over afield  is called

avector topology if the map XXX  : and XX  : are

continuous.

A vector space endowed with a vector topology is called a topological

vector space.

Definition 1.2 [1,3] A subset C of a vector space X is said to be convex

set if yx )1(    C for every Cyx , and 10   .

Remark 1.3 [3] let X be a vector space, then

(i) the empty set and the singleton set are convex set.

(ii) every intersection of convex sets is convex set .

(iii) The closure of every convex set is convex set.

Theorem 1.4 [1,3]

(i) The image of every convex set under a linear map is convex.

(ii) The inverse image of convex set under linear map is convex.



3

Definition 1.5 [2,4] Let X be any non-empty set. A filter on X is a

non-empty collection F of a subsets of X satisfying the following

axioms.

[F1]  F .

[F2] If F F and FH  , then H F .

[F3] If F F and H F , then  HF F .

Remark 1.6 [2,4] Every filter on a non-empty set X admits the finite

intersection property.

Definition 1.7 [2,4] Let ),( X be a topological space and let F be a

filter on X . The point Xx is said to be a cluster point of F if and only

if Fx for all F F .

2. Convexly compact sets

In this section we shall study some new properties of convexly

compact sets.

Definition 2.1 [ 5] A convex subset C of  a topological vector space

X is said to be convexly compact if for any non-empty set A and any

family  AF  : of closed and convex subsets of C , the condition

 )(AFinD , 


 


D

F (2.1)

implies




 


A

F ,                                         (2.2)

Without the additional restriction that the sets  AF  :

be convex, Definition 2.1—postulating the finite-intersection property

for families of closed and convex sets would be equivalent to the
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classical definition of compactness. It is, therefore, immediately clear

that any convex and compact subset of a topological vector space is

convexly compact [5]. The converse however is not true ( see [5]

Example 2.2).

Definition 2.2. A topological vector  space X is said to be convexly

compact if for any non-empty set A and any family   AF  of closed and

convex subsets of X ,

the condition

 )(AFinD , 


 


D

F (2.1)*

implies




 


A

F ,                                               (2.2)*

Definition 2.3 A subset of a vector space X is said to be co-convex if

its complement is convex.

Theorem 2.4 If A is co-convex subset of a vector space X , then A is

co-convex for every  0/ .

Proof. we need to prove that if AX / is convex set, then AX / is convex

set. Let AXyx /,  and 10   . Then

Xyx , and Ayx ,

 Xyx , and Ayx  11 , .

 Xyx  11 , ( since X is a vector space and 1 ) and

Ayx  11 , .Therefore AXyx /, 11   .Since AX / is convex set then

AXyx /))(1()( 11   

 AXyx /))1(()( 11   
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 AXyx /))1((1  

 Xyx  ))1((1  and Ayx  ))1((1 

 Xyx  )1(  and Ayx   )1(

 AXyx  /)1(  .

Then AX / is convex and this complete the proof.

////

Remark 2.5 The above theorem dose not still true if 0 . For

example, consider the real line and let A be any co-convex subset of the

real line. Since  0A then ),0()0,()( cA is not convex . Indeed

the line segment  that joint 1 and 1( for example ) dose not lie in cA)( .

////

Theorem 2.6 The arbitrary union of a collection of a co-convex set is

co-convex.

Proof. Suppose that   :A be arbitrary collection of a co-convex

subsets of a vector space X . Then The collection  :
cA is convex

for every  . By Remark 1.3 (ii) we get 


cA is convex set. By De-

Morgan Law we have
cc AA )(









 .

Therefore cA )(

 is convex i.e. 


A is co-convex and the proof is

complete. ////

Theorem 2.7 A topological vector space X is convexly compact if and

only if every co-convex open cover of X admits a finite co-convex open

cover.
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Proof. Suppose that X is convexly compact and let    :G be a

co-convex open cover of X , so that







GX .

Then







 cG

Thus   :
cG be a collection of convex closed sets with empty

intersection so by hypothesis there exists )( FinD such that




 


D

cG .Thus 


 


c

D

G )(  XG
D






 .

Conversely, suppose that for every co-convex open cover of X admits a

finite co-convex open cover, and let   :F be a collection of convex

closed subset of X such that condition (2.1)* holds, i.e.

 )(AFinD , 


 


D

F .

Suppose if possible, 


 


A

F . Then

cFX )(





 = 


cF .

This means that   :
cF is a co-convex open cover of X . By

hypothesis, there exists )( FinD such that


D

cF


 X  XF c

D




)(


  


 


D

F

But this contradicts the condition (2.1)*. Hence we must have 


 

F .

////

Theorem 2.8 A topological vector space X is convexly compact if and

only if any basic co-convex open cover of X admits a finite subcover.
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Proof. Let X be a convexly compact space. Then by Theorem 2.7 every

co-convex open cover of X admits a finite subcover. In particular, every

basic co-convex open cover of X admit a finite subcover.

Conversely, suppose that every basic co-convex open cover of X admits

a finite subcover. Let   :C be any co-convex open cover of X . If

  :B be any co-convex open base for X , then each C is a union of

some members of  . That is there exists  such that 





 BC for

every  . ( Note that by Theorem 2.6 we have  the union of co-

convex sets is also co-convex set). And the totality of all such members

of  is evidently a basic co-convex open cover of X . By hypothesis this

collection of members of  admits a finite subcover, say, niB
i

,...,2,1:  .

For each
i
B in this finite subcover, we can select a

i
C from  such

that
ii

CB   . It follows that the finite subcollection  niC
i

,...,2,1:  each

arise in this way is a subcover of  . Hence X is convexly compact.

////

Theorem 2.9 If X be a convexly compact topological vector space.

Then every convex filter on X admit a cluster point.

Proof. Assume X be a convexly compact topological vector space and

let  be any convex filter on X . Then be a collection of convex

subsets of X and by Remark 1.6 it has FIP. Since by Remark 1.3(iii) the

closure of convex set is also convex and the closure of any set is closed,

then  FF : is a collection of convex closed subsets of X . Since 

has FIP property, then so is  FF : . By hypothesis  



F

F  , hence

there exists at least one point  



F

Fp . This implies that Fp for every

F . Hence p is a cluster point of by Definition 1.7.                     ////
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Theorem 2.10 The image of convexly compact set under a continuous

bijective linear map is convexly compact.

Proof. Suppose that C be a convexly compact in a topological vector

space X and let f be continuous linear map from X onto another

topological vector space Y . Since C is convex in X and f is linear then

by Theorem 1.4 (i) )(Cf is convex set in Y . To show that )(Cf is a

convexly compact. Let   :F be a collection of closed and convex

subsets of )(Cf with the property that




 


D

F ,  )( FinD .

Since f is continuous,and F is closed  then    :)(1 Ff is

closed. Since f is linear,and F is convex  then by theorem

1.4(ii)    :)(1 Ff is convex. Since )(CFF  for every  , then CFf  )(1 

for every  .Hence   :)(1 Ff is collection of convex and closed

subsets of C since 


 


D

F and f is onto then 


 


 
D

FF )(1  D .

Since f is bijective then 


 
D

FF


)(1 
D

Ff





)(

1 and hence




 



D

Ff )(1  )(AFinD .Since C is convexly compact, then 


 



A

Ff )(1

then 


 


 ))(( 1
A

FfF since 


 ))(( 1
A

FfF


 ))(( 1
A

Fff





 

A

F





 [since f is

bijective]. Thus 


 


A

F . )(Cf is convexly compact.This complete the

proof. ////

Theorem 2.11 The inverse image of every convexly compact set under

closed bijective linear map is convexly compact.
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Proof. Suppose that X and Y are two topological vector spaces and

YXf : be a closed bijective linear map. Let C be a convexly compact

set in Y . To show that )(1 Cf  is convexly compact in X . Since C is

convex and f is linear then by Theorem 1.4 (ii) )(1 Cf  is convex set.

Now,let   :F be a collection of convex closed subsets of )(1 Cf 

with the property that 


 


D

F , for every )(FinD . Since )(1 CfF 

and f is onto, then CCffFf   ))(()( 1
 . Since F is closed  and

f is closed function , then )( Ff is closed subset of C. Since F is

convex  and f is linear then )( Ff is convex set. Thus

  :)(Ff is the a collection of closed convex subsets of C . Since




 


D

F , )( FinD then 


 


)(
D

Ff . But f is onto, thus




)(
D

Ff


 )(
D

Ff


 , therefore 


 


)(
D

Ff i.e.   :)(Ff admits finite

intersection property. By convexly compactness of C , we have




 


)( Ff . Since f is onto, then 


 ))((1 


Fff  since f is one-one

then 


 ))((1 


Fff 


 ))((1


Fff 

F ;hence 


 


F ,i.e. )(1 Cf  is

convexly compact, and this complete the proof.

////

Theorem 2.12 If A is convexly compact subset of a topological vector

space X . Then the set A is convexly compact where  .

Proof. Suppose that A is convexly compact subset of a topological

vector space X and  . Since the function XX  : which define

by xx  ),( is continuous by definition of a topological vector space,
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then by Theorem 2.10 the set A is convexly compact and the proof is

complete.

////

References

[1] G. Zitkovic, " Convexly Compactness and its Applications" Math.
Finan Econ 3(2010). 1-12.

[2] J.N.Sharma,"Topology" Published by Krishna Pracushna , Mandir
, and     printed at Mano, 1977.

[3] N.F. Al-Mayahi and A.H. Battor " Introduction to Functional

Analysis" Iraq. Najef. 2005.

[4] R. Engelking " General Topology " polish. Scientific publishers.
Warsawx 1989.

[5] W .Rudin ,”Functional  Analysis”, New York. 1973


