

1

 WWaassiitt JJoouurrnnaall ffoorr SScciieennccee && MMeeddiicciinnee 22001111 44 ((11)):: ((11 -- 1111))

Cosine Transform and Shift Number Coding

uses for 24-Bit Bitmap image Coding

Ammar O. Hassan Al-barznji
Computer Science Deprat. -Science Education College -Salahhaden University

Abstract:
 This paper represents an approach for image coding which consists of three parts:

The first part is DCT which is used one dimensional discrete cosine transform

converts each (n-pixel) into frequency domain, then reduces number of frequency

domain elements by deleting half number of elements. The second part applies

SNC (Shift Number Coding) on the remained coefficient elements, these elements

are converted to integer number. SNC does not need to compute the probability for

an image file, just compute the values for each coefficient in frequency domain

matrix. The value is computed by selecting maximum number in matrix, then it

divides the interval {0…1} by maximum number. This value is shifted by shift

function then sum with previous value, the total values represent Compression

Value. Finally the arithmetic coding used to compress the matrix of compression

value into stream of bits. This approach is tested with three types of images, and

compared with JPEG, PNG, and TIFF by using Compression Ratio and PSNR.

Keywords: Discrete Cosine Transform, Shift Number Coding, Arithmetic Coding.

1. Introduction

 The transport of images across communication paths is an expensive process

and image compression provides an option for reducing the number of bits in

transmission[1,2]. This in turn helps increase the volume of data transferred in a

space of time, along with reducing the cost required. It has become increasingly

important to most computer networks, as the volume of data traffic has begun to

exceed their capacity for transmission. Traditional techniques that have already

been identified for data compression include: Predictive coding, Transform coding

and Vector Quantization[3.4]. In brief, predictive coding refers to the decorrelation

of similar neighbouring pixels within an image to remove redundancy. Following

the removal of redundant data, a more compressed image or signal may be

transmitted[5,6]. Transform-based compression techniques have also been

commonly employed. These techniques execute transformations on images to

produce a set of coefficients. A subset of coefficients is chosen that allows good

2

data representation(minimum distortion) while maintaining an adequate amount of

compression for transmission. The results achieved with a transform-based

technique is highly dependent on the choice of transformation used (Cosine,

Wavelet, Karhunen-Loeve,….etc.)[7,8].

 Finally, vector quantization techniques require the development of an

appropriate codebook to compress data. Usage of codebooks does not guarantee

convergence and hence do not necessarily deliver infallible decoding accuracy.

Also the process may be very slow for large codebooks as the process requires

extensive searches through the entire codebook[9]. Following the review of some

of the traditional techniques for image compression, it is possible to discuss some

of the more recent techniques that may be employed for data compression.

2. Compression Approach

 This paper introduces an approach for (24-Bitmap) image coding by using

DCT and SNC. The first part of this approach it is most popular uses in image

compression, converting each n-pixel to frequency domain, then eliminates half

data from the frequency domain to reduce number of coefficients. The second part

it's new algorithm for image compression, introduce in this paper, which receive

frequency domain coefficients to convert it into floating point numbers. Finally the

floating point numbers are coded into binary code by arithmetic coding algorithm.

In Figure - 1 shows the image compression for this paper.

Figure – 1, DCT and SNC for Image Compression

2.1 Discrete Cosine Transform

The implementation of DCT begins with reducing pixels levels from 256-level into

less than 256 gray levels by using the following equation [7]:-

 Pixels (new) =
256

)*()(reducePixels old
 (1)

Reduction of the pixels levels leads to reduction the pixels size, and to simplify

converting pixels into single floating point value. The discrete cosine transform

(DCT) helps separate the image into parts. The DCT is similar to the discrete

Original

Image

Reduce Gray

Level

Apply DCT

Apply

SNC

Arithmetic

Coding

 Stream of Bits

……..101100

3

Fourier transform: it transforms a signal or image from the spatial domain to the

frequency domain. One of the advantages of DCT over DFT is the fact that it is a

real transform, whereas DFT is complex. This implies lower computational

complexity, which sometimes important for real-time applications [9,12]. The

discrete cosine transformation is used to decorrelate the pixels of image or to pack

as much information as possible into the smallest number of transform coefficients.

The following equation represents one dimensional DCT:-

1

0 2

)12(
cos)()(/2)(

n

i n

ui
ixuCnuX

 (2)

Where\ C(u)

0,1

0,2 2/1

uif

uif for u=0,1,2,…,n-1

In the above equation the X(u) represents the frequency domain of the pixels x(i),

and the n is number of pixels. Let's assume that the number of pixels eight (n=8)

the pixels are :{ 11, 22, 33, 44, 55, 66, 77, 88}.Using equation (1) to calculate one-

dimensional DCT, creates the eight coefficients {140,-71, 0,-7, 0,-2, 0, 0}.

Deleting the last two nonzero coefficients to be the sequence: {140,-

71,0,0,0,0,0,0}. This means we not needs for zeros and the eights pixels are

reduces in two coefficients 140,-71. Then applying IDCT (Inverse Discrete Cosine

Transform) on the two coefficients (140,-71) to return eight pixels, and the

sequence of pixels are: {15 , 20 , 30 , 43 , 56 , 69,79, 84}. These pixels are

approximately same as original pixels. The IDCT as shown below:

1

0 2

)12(
cos)()(/2)(

n

u n

ui
uXuCnix

 (3)

Where\ C(u)

0,1

0,2 2/1

uif

uif for u=0,1,2,…,n-1

2.2 Shift Number Coding

The implementation of (SNC) begins with selects maximum coefficient in DCT

matrix, this coefficient is called "MAX", then divide the interval {0….1} into

MAX, in this way the all coefficients are converted into floating point between

{0..1}. This means the interval between any two sequential data is 1/MAX, and

this interval constant for all types of images. For this reason this approach does not

need to compute the probabilities for an image file each data has specific Value,

and each Value computing from the List -1.

4

Ammar O. Hassan

List -1

Set Value = 0.0;

MAX=Select_Maximum_Number(DCT);

For Symbol =0 to MAX Do

 Interval (Symbol) =Value;

 Value =Value + (1/MAX);

End// for

SNC converting number of bytes into floating point number, the following

equation used by SNC approach:

)(*)(
1

iValueiShiftValuenCompressio
N

i

 (4)

The final value of equation(4) it is floating number, function "Shift(i)" is used to

shift the value to the left as shown in List -2, and compression algorithm by SNC is

shown in List -3 respectively:

List -2

Shift(1)=1.0;

For i=2 to number of data

 Shift(i)=Shift(i-1)*0.01;

End //for

List -3

Set S to 0.0;

Set index to 1;

While (index N) Do

 Read (symbol)

 Value = interval (Symbol);

 S = S + Shift (index) * Value;

 Index = index + 1;

End //While

Compression_Value=S;

To illustrate the compression algorithm by DCT and SNC, assumes the following

pixels reduced by equation (1).

5

T=

50,156,99,100

189,255,134,129

 T=

12,37,23,23

44,60,31,30

The first step applies DCT (i.e. equation (2)) on the above data by take each two

data as vector, which means the matrix "T" converted to frequency domain by

DCT, the Figure-2 shows how the special domain matrix converts to frequency

domain matrix.

 1835]1237[

033]2323[

1174]4460[

143]3130[

DCT

DCT

DCT

DCT

 C =

1835

033

1174

143

 (a) (b)

Figure – 2 (a) Convert each two pixels to frequency domain,

(b) Final Cosine transform matrix

At the end of this part we eliminates the data {-1,11,0,18} from matrix "C". This

step reduce number of coefficient to half, and the remaining coefficients are

{43,74,33,35}, is shown in the following figure:

C=

035

033

074

043

 columnslastdelete
 C=

35

33

74

43

 (a) (b)

Figure – 3 (a) frequency domain matrix containing 8- coefficients

(b) Matrix "C" containing 4- coefficients

The 4-coefficients in matrix "C" are used by SNC (i.e. equation (4)) to convert the

matrix "C" into integer number. We see in matrix "C" the maximum coefficient is

"MAX=74" and increment MAX by "1" to be MAX=75, to generate the interval

1/75 = 0.013, from this interval we generate values for all data in matrix these

values in range{0…1}. The Table 1 shown the SNC algorithm

 Reduce

matrix by

equation (1)

6

Table 1 SNC Compression

Index Data Value Shift(index) S

1 43 0.559 1 0.559

2 74 0.962 0.01 0.56862

3 33 0.425 0.0001 0.5686625

4 35 0.455 0.000001 0.568662955

Compression Value = 0.56866

In the above table the final value (Compression Value = 0.56866), we see from the

result that the "Compression Value" consist of five digits, because the length of

"Compression Value" affects on data compression size when convert it into binary

code. Table 1 shows the final result stores as integer (56866) which its size 16-Bit,

this means our approach reducing 8-Bytes into 16-Bits. In this example not use the

"Arithmetic Coding", but we use it in Section 4.

To compute the efficient of this algorithm by using Compression Performance (C.P.) as

it's shown in the following equation [4,7]:-

ncompressiobeforeSize

ncompressioafterSize
RatenCompressio (5)

 %1100.. RatenCompressioPC (6)

The compression performance for above example is 75% this means this algorithm

save 75% from data and this result for our approach is good. The decompression

for this approach can be illustrates in the following figure:-

Figure – 4 Decompress SNC and IDCT for image Decompression

In the decompression algorithm returns the approximately original frequency

domain coefficients, by using SNC. List -4 illustrates decompressions for SNC,

and Table 4 shown decompression steps.

List -4

N=number of data – 1;

S=Compression_Value;

While (N>0) Do

 For I =0 to MAX Do

 IF Value(I) S < Values(I+1) THEN

 Let K=Value(I);

Image

File

Arithmetic

Decoding

Decompress

by SNC

Apply Inverse

DCT

Recomputed

Pixels

pixe

 Stream of Bits

101100…….

7

 N=N-1

 Pixel=Get_Pixel (I);

 End //IF

 End //For

 S=S - K;

 S=S * 100;

End //While

SNC decompression algorithm start by search "Compression value" between any

two sequential values, if the "Compression value" found between any two values,

subtract minimum value from "Compression value". The minimum value

represents the frequency domain coefficient. The algorithm repeats to search for

"Compression value" between values until number of data reaches to zero or

Compression Value less than interval (i.e. interval=1/MAX). The decompression

algorithm for SNC can represent in Table 2.

Table 2 Decompression for SNC
Compression

Value

Compare "S"

 Between two

 sequence Values

Selected

Data

N

0.56866 [0.559 – 0.572] 43 3

0.966 [0.962 – 1.0] 74 2

0.40 [0.39 – 0.403] 30 1

0.01 Stop - 0

After decompress "Compression Value" generating the pixels {43, 74, 30}. But its

three frequency domain data, because the N = 0 and "Compression Value" less

than interval, for this reason the last data (i.e. 3rd data) made copy at 4th location,

and final coefficients are {43, 74, 30, 30}.

From the Table 4 we construct the frequency domain matrix "C", by padding the

last column with zeros, then using Inverse DCT (See equation (3)) to get image

pixels. The equation (3) applied on each vector from matrix "C". The Figure - 5

illustrates Inverse DCT.

C=

030

030

074

043

 2121]030[

2121]030[

5252]074[

3030]043[

DCTInverse

DCTInverse

DCTInverse

DCTInverse

Figure – 5 Constructs image pixels by Inverse DCT

8

The constructed matrix by our approach as shown below:-

 T=

2121

2121

5252

3030

 T=

90,90,90,90

222,222,128,128

The above matrix "T" represents final matrix, all data in this matrix not same in

original matrix, this difference not effects on image brightness, for this reason this

approach is very interactive for image compression.

3. Computer Simulation

 This approach implemented on computer Pentium4 -2.4GHz with Visual

C++.NET, and the images are used for testing as shown in the figure-6

 (a) Original Image1 (256 x 256) (b) Original Image2 (320 x 208)

(c) Original Image3 (352 x 352)

Figure – 6 (a) Gray level image 24-Bits, (b) Color image 24-Bits,

(c) Color image 24-Bits.

Inverse

equation (1)

9

The images in Figure - 6 are compressed by our approach; at first pixels reduced by

equation (1) using "reduce=20". The number of pixels used by equation(2) is (2 x 4

- pixels) to be compressed into four frequency domain coefficients. The SNC

compressing each (4- coefficient) into integer number by equation(4), the

performance for our approach shown in Table 3.

Table 3 Compression Results by our appraoch

File name
Before

Compression

After

Compression
C.P.

Image 1 192-KByte 47.3-KByte 75%

Image 2 195-KByte 41.5-KByte 78%

Image 3 363-KByte 99-KByte 73%

3.1 Arithmetic Coding

We add Arithmetic coding to our approach, to compress again, by taking stream of

data (i.e. compressed data from SNC) and convert it to stream of floating point

value. These output values in range less than one and greater than zero[7], when

decoded these values getting exact stream of data. The arithmetic coding need to

compute the probability of all data and assign range for each data, the range value

consist from Low and High value[10]. The final compressed matrix from SNC, are

compressed again by arithmetic coding, as shown in the Table 4, and arithmetic

coding algorithm is shown in List -5:-

List – 5

Set Low =0.0;

Set High = 1.0;

While (not reached end of data)

 data = read_data_from_vector ();

 Range = High – Low;

 High = Low + Range * High_Range(data);

 Low = Low + Range * Low_Range(data);

 End;

Table 4 Compression Results with Arithmetic coding

File name
Before

Compression

After

Compression
C.P.

Image 1 192-KByte 31-KByte 84%

Image 2 195-KByte 26.5-KByte 86%

Image 3 363-KByte 52.3-KByte 85%

From the Table 6 the performance for our approach increased by using arithmetic

coding, and this is because the arithmetic coding able to convert group from data

into single floating point[12]. The Decompression by arithmetic coding has shown

in List - 6.

10

List -6

While (Low >=0)

 For I = 0 to 10

 IF(Low>Low_Range(I)ANDLow<=High_Range (I)) THEN

 Range = High_Range(I) – Low_Range(I);

 Low = Low – Low_Range(I);

 Low = Low / Range;

 End // if

 End // for

 End // while

In the decompression part returns all data from stream of bits, by using arithmetic

decoding. And SNC convert each integer number into four frequency domain

coefficients (See List-4), then generates (2 x 4-pixels) by using inverse DCT (See

equation(3)) the Figure - 7 shown the decompressed images. Also the Table 5

shows the time execution for compression and decompression of images.

 (a) Decompress Image1 (256 x 256) (c) Decompress Image3 (352 x 352)

(b) Decompress Image2 (320 x 208)

Figure – 7 (a– c) Decompressed images by our approach

11

Table 5 Time execution for our approach

File name
Compression Time

(min:sec: sec)

Decompression Time

(min:sec: sec)

Image 1 00:24:90 00:35:11

Image 2 00:27:69 00:35:47

Image 3 00:52:23 01:00:51

3.2 Comparison methods

Our approach is compared with JPEG, PNG and TIFF. These method are popular

use in image compression specially when transmits through internet [9]. The JPEG

is lossy data compression scheme for color and gray-scale images. It works on full

24-bit color, and was designed to be used with photographic material and

naturalistic artwork, also the JPEG can produce smaller file than PNG and TIFF for

photographic images since it uses lossy encoding method specifically designed for

photographic image data [10].

The TIFF and PNG use lossless data compression methods, which are used in

compression of library. The most common general-purpose, lossless compression

algorithm used with TIFF is LZW, which is inferior to PNG [11]. There is a TIFF

variant that uses the same compression algorithm as PNG uses, but it is not

supported by many proprietary programs. TIFF also offers special-purpose lossless

compression algorithms like CCITT Group IV, which can compress bi-level images

(e.g., faxes or black-and-white text) better than PNG compression algorithm [12].

The Table 6 has shown the comparison our approach with JPEG, PNG and TIFF

using PSNR.

Table 6 Comparison with author type of comprised image

Method
Image

Name

Compression

C.P. PSNR Before

After

JPEG

Image1

(256 x 256)

192-KB 12.8-KB 93% 33.5

Image 2

 (320 x 208)

195-KB 10.8-KB 94% 31.3

Image 3

 (352 x 352)

363-KB 19-KB 95% 39.7

Our

Approach

Image1

 (256 x 256)

192-KB 36.4-KB 81% 36.8

Image 2

 (320 x 208)

195-KB 26.5-KB 86% 37.1

Image 3

 (352 x 352)

363-KB 52.3-KB 85% 37.0

PNG

Image1

(256 x 256)

192-KB 77.8-KB 59% Inf

Image 2

 (320 x 208)

195-KB 132-KB 32% Inf

Image 3

 (352 x 352)

363-KB 280-KB 22% Inf

TIFF

Image1

 (256 x 256)

192-KB 101-KB 47% Inf

Image 2

(320 x 208)

195-KB 166-KB 15% Inf

Image 3
(352 x 352)

363-KB 380-KB NON Inf

http://en.wikipedia.org/wiki/Photography
http://en.wikipedia.org/wiki/Lossy_data_compression

12

Peak signal to noise ratio (PSNR) can be calculated very easily and is therefore a

very popular quality measure it is shown in the following equation [13]:

For TIFF section Image 3 C.P was NON because the Image size was the same and

the compression was very few .

MSE

255
log10PSNR

2

10 (7)

The PSNR it is measured on a logarithmic scale and is based on the mean squared

error (MSE) between an original image and decompressed image, relative to

(255)
2 (i.e. the square of the highest possible signal value in the image).

 4. Conclusions

This research represents new approach for image compression, by using three

algorithms. The first algorithm is DCT it is most popular used in digital signal

processing especially in image compression, the second part SNC new algorithm

represented in this research, the idea of SNC converting n-bytes to an integer

number. Finally the matrix of integer numbers compressed by Arithmetic Coding to

get stream of bits, the advantage of this approach: (1) It does not needed to compute

the probability for an image, (2) The DCT reduce the n-bytes to half (i.e. n/2 -

bytes) and also SNC reduce the remainder bytes to half, and this process leads to

compressing big part from image (See Table 4). (3) The compression value by

arithmetic coding represented in binary code. the arithmetic coding playing main

role for image compression in this research. (4) Our approach gives better

compression performance than PNG and TIFF, also our approach gives better

image quality than JPEG (See Table 6).The disadvantage for this approach takes

more time for compression, because more computations by DCT, SNC and

Arithmetic coding. Also the decoding by arithmetic and SNC may leads to

increasing time execution for decompression (See Table 3). Our approach

represents lossy data compression especially eliminates half coefficients from DCT

matrix, this means for gain high-quality images the PNG and TIFF is stronger than

our approach, because these methods use lossless data compression methods which

are used in compression of library[10].

Notes:

1- The comparison for jpg images is Lossy and my comparison was lossy to, the

comparison was Lossy with Lossy

2- The other ways was Lossless and it was added to the research in order to

compare it with the lossless but in other hand the file size will be much bigger.

3- The TIFF file had become bigger therefore I wrote NON in the table because the

C.P was zero.

4- The formula (7) shows MSE and how it affects the PSNR, therefore when MSE

become Zero, then any number divided by Zero the result will be infinity (∞) and I

wrote it Like (inf) which is lossless

13

 References

[1] Castelli. V., Robinson j. and Turek j.j., Multiresolution lossless/lossy

compression and storage of data for efficient processing thereof, U.S. Patent

No. 6,141,445. Octobar, 2000.

[2] Dembo A. and Kontoyainnis I., "Source coding large deviations and

approximate pattern matching", Invited paper in IEEE Trans. Theory special

issue on Shannon theory, dedicated to Aaron D. Wyner, 48. pp. 1590 - 1615,

June, 2002.

[3] Harrison M. and Kontoyiannis I., "Maximum likelihood estimation for lossy

data compression", (Invited paper). 40th Allerton Conference on

Communication, Control and Computing, Allenton, IL, October, 2002.

[4] James. E. F. and Beatrice Pesuet-Popescu, “An Overview on Wavelets in

Source Coding, Communication, and Networks,” EURSIP Journal on Image

and Video Processing, Vol 2007.

[5] Kontoyainnis I. and Meyn S. P., "Large deviation asymptotic and the spectral

theory of multiplicatively regular Markov processes.", Electronic Journal of

probability,No.10, paper 3 pp. 61-72, February, 2005.

[6] Kontoyainnis I., "Pointwise redundancy in lossy data compression and

universal lossy data compression", IEEE Trans. on Inform. Theory. 46. pp.

136-152, January, 2000.

[7] Nelson, M., The Data Compression Book, M & T Publishing Inc, 1991.

[8] Pennebaker W.B. and Mitchell J.L., JPEG still image data compression

standard. Van Nostrandm Reinhold, 1992.

[9] Siddeq M. M., "SEQUNCE DYNAMIC CODE FOR STREAM TWO BYTE

DATA (16-Bit) COMPRESSION", Al-Taqani Journal,Vol. 19,No.2,pp 85-

99, 2006

[10] Sayood, Khalid, "Introduction to Data Compression", San Francisco, Morgan

Kaufmann, 2000.

[11] Usevitch B. E., “A tutorial on modern lossy wavelet image compression:

foundations of JPEG2000,” IEEE Signal Processing Mag., vol. 18, no. 5, pp.

22–35, September 2001.

[12] Witten, H. I., Neal, Radford M., and Cleary, John G.," Arithmetic Coding for

Data Compression", Communications of the ACM, pp 520-540, June, 1987.

[13] Xiong Z., Wu X., Cheng S., and Hua j., "Loss-to-lossless compression of

medical volumetric data using three-dimensional integer wavelet

transforms", IEEE Trans. on Medical Imaging, Vol. 22, No. 3, March 2003.

RReecciivveedd …………………………………………………………………………………………....……………………………………………….. ((11//22 //22001100))

Accepted ……………………………………………………...……………... (20/3/2010)

http://j.j.turek.u.s.patent/
http://j.j.turek.u.s.patent/
http://trans.inform.theory.46.pp.136-152.january/
http://trans.inform.theory.46.pp.136-152.january/

