

1

WWaassiitt JJoouurrnnaall ffoorr SScciieennccee && MMeeddiicciinnee 22001111 44 ((11)):: ((11 -- 1111))

Application of Haar-like Features in Three AdaBoost

Algorithms for Face Detection

Dhyaa Shaheed Sabr Al-Azzawy

Ph. D. Computer Sciences. - University of Wasit – College of Sciences

لايك في ثلاثة خوارزميات لتحديد الوجه-تطبيق خصائص هار
جامعة واسط / كلية العلىم -ضياء شهيد صبر

 :الخلاصة

نقذم في هزا البحث نظام التصنيف التذفقي والمؤلفف نفخ سمفر نشاتفن فصفنيواة وبفةر وعصفوس ػمتيفة فف فحتيفن

لتي ف اسفتخذاناا لتقوبفة المصفنف القفولك ول فن (ر اGentelو Modestو Realثلاثة أنواع نخ الخواسصنياة)

(ر هي)نشعؼيخ أثنيخ افقيفيخر Haar-likeنشتتة نخ نشاتن المصنف القول ف استخذام سمسة نمارج نخ صواة)

نشعؼيخ اثنيخ ػمودبيخر ثلاثة نشعؼاة افقيةر ثلاثة نشعؼاة ػمودبةر و اسعؼة نشعؼاة(ك وف فطبيق صواة المشعؼيخ

مففودبخ وسواسصنيففة اداعوسففل فففي المصففنواة القوبففة الاولفف والاانيففة ػتفف التففوالير و فطبيففق صففواة الافقيففيخ والؼ

المشعؼاة الالاثة الافقية والؼمودبة وسواسصنية سبن اداعوسفل ففي المصفنواة القوبفة الاالافة والشاعؼفة ػتف التفوالير

لقول الخفانر نفخ المصفنف التذفقيفةك واسيشا ف فطبيق صواة المشعؼاة نغ سواسصنية سبن اداعوسل في المصنف ا

ونففخ سففلات التنويففز لففوتض عففتخ اف ففن اسففتخذام لخواسصنيففة اداعوسففل هففي: سواسصنيففة نودبسففل اداعوسففل ل ففن نففخ

 المصنواة القوبة الاول والاانيةر و سواسصنية سبن اداعوسل لتمصنواة القوبة الاالاة والشاعؼةك

Abstract

In this paper we introduce a proposed cascade classifier system consists of

five strong classifiers (stages), and empirically analysis three types of Adaboost

algorithms (Real, Modest, and Gentle) which it were used for boosting the strong

classifiers. Five prototypes of haar-like features (two-horizontal rectangles, two-

vertical rectangles, three-horizontal rectangles, three-vertical rectangles, and four-

rectangles) are used for each strong classifier (stage) of cascade classifier. Two-

horizontal, two-vertical rectangles features and Modest-Adaboost Algorithm are

applied for the 1
st
 and 2

nd
 strong classifier respectively, three-horizontal, vertical-

rectangles features and Real-Adaboost Algorithm are applied for 3
rd

 and 4
th

 strong

classifier respectively, and the last, four-rectangles and Real-Adaboost Algorithm

are applied for the 5
th

 strong classifier of cascade classifier. The implementation

shows that the best use of Adaboost algorithm is: the Modest-Adaboost algorithm

for both 1
st
 and 2

nd
 strong classifier, and the Real-Adaboost algorithm for 3

rd
,4

th

and 5
th

 strong classifier.

Key words: Face Detection, Haar-Like Features, and Adaboost Algorithm.

2

1- Introduction
Recently Viola et al. have proposed a multi-stage object classification

procedure that reduces the processing time substantially while achieving almost

the same accuracy as compared to a much slower and more complex single stage

classifier [1]. This paper extends their rapid object detection framework by

constructing cascade of strong classifiers consists of five stages, each stage use

one type of haar-like features, applying three Adaboost Algorithms (Real-

Adaboost, Modest-Adaboost, and Gentle-Adaboost algorithm), analysis the results

that occurs with each algorithm independently and analysis the effect of training

rounds of the three Adaboost Algorithms.

Sections 2 and 3 explain the Haar-like features, section 4,5, and 6 discusses weak

learner, strong classifier and cascade of strong classifiers respectively, section 7

shows the analysis and results of the implementation for the cascade of strong

classifiers.

2- Features
The detection process of proposed system is based on the value of simple

features. Any detection system depend on either features-based or pixel based in

detection process, but most the systems using features rather than the pixel. The

most common reason is that features can act to encode ad-hoc domain knowledge

that is difficult to learn using a finite quantity of training data. The other reason is

our features can be computed at any position and scale in the constant time and

high speed. The speed of feature evaluation is also a very important aspect since

almost all object detection algorithm slide a fixed-size window at all scales over

the input image.

According to Kasinski et el [2], and Lienhart et el [3], the basic unit for testing the

presence of an object is a window of WxH pixels. The base resolution of our

proposed system is 24x24 pixels and the exhaustive set of rectangle features is

quite large, over 180,000, but we will show that we used a few number of set in

the result section.

Figure(1) Examples of an upright and 45

o
 rotated rectangle

Viola et. el. [1], and Lienhart et. el. [4] assumed that the rectangle feature is

specified by the tuple r=(x, y, w, h, ) with Wwxx  ,0 , Hhyy  ,0 ,

}45,0{,0,  hw , where, x, y left most corner of window, w, h width and

height of rectangle. Rectangle's pixel sum is denoted by RecSum(r). Two

3

examples of such rectangles are given in (Fig. 1). The raw feature set is then the

set of all possible features of the form.





},...,1{

),(Re
NIi

iiI rcSumfeature  (1)

where the weights i , the rectangles ir , and N are arbitrarily chosen. They

described the prototype of rectangle features according to the following rules [2]

[3]:

1- Only weighted combination of pixel sums of two rectangles are considered.

2- The weights have opposite signs, and are used to compensate for the difference

in area size between the two rectangles.

3- The features mimic haar-like features and early features of the human visual

pathway such as center-surround and directional responses.

These restrictions lead us to the 14 features prototypes shown in (Fig. 2).

 Four edge features,

 Eight line features, and

 Two center-surround features.

 One special diagonal line feature.

These prototypes are scaled independently in vertical and horizontal direction

in order to generate a rich, over-complete set of features. Note that the line

features can be calculated by two rectangles only. Hereto it is assumed that the

first rectangle r0 encompasses the black and white rectangle and second rectangle

r1 represents the black area. In our experiments we used (1a), (1b), (2a), (2c), and

(4).

Figure (2) Feature prototypes of simple haar-like and center surround features.

Black areas have negative and white areas positive weights.

The number of features derived from each prototype can be calculated as follows.

Let X=[W/w] and Y=[H/h] be the maximum scaling factors in x and y direction.

An upright feature of size wxh then generates [4]:

)
2

1
1()

2

1
1(







Y
hH

X
wWXY (2)

And features for an image window of size WxH, while 45
o
 rotated feature

generates:

)
2

1
1()

2

1
1(







Y
zH

X
zWXY , with z=w+h. (3)

4

Dhyaa Shaheed Sabr

3- Integral Image

Rectangle image can be computed very rapidly using an intermediate

representation for the image which we call the integral image [1]. The integral

image at location x,y contains the sum of the pixels above and to the left of x,y,

inclusive (Fig. 3a):





yyxx

yxiyxii
,

),,(),((4)

Where, ii(x,y) is the integral image and i(x,y) is the original image. In [2]

used the notation of SAT(x,y) to represent ii(x,y), the whole table can be

computed in a single pass using the following formula [2] [4] [5] :

SAT(x,y)= SAT(x,y-1)+SAT(x-1,y)+i(x,y)-SAT(x-1,y-1) (5)

With SAT(-1,y)=SAT(x,-1)=SAT(-1,-1)=0. Once filled, the SAT enables

computation of RecSum(r) for any upright rectangle r=(x,y,w,h,0
o
) with only four

look-ups (Fig. 3b).
RecSum(r)=SAT(x-1,y-1)+SAT(x+w-1,y+h-1)-SAT(x+w-1,y-1)-SAT(x-1,y+h-1)

(6)

Figure(3) Auxiliary image representation: (a) the idea of SAT, (b) fast feature

calculation using SAT.

4- Weak classifier
For each detection window WxH of the image being processed, a weak

classifier gives a decision }1,1{)(Windoww indicating membership of the

window to one of two classes, labeled by -1 (negative, e.g. a non-face) and +1

(positive, e.g. a face).

Recalling the formula number (1) for computing the feature of window, Viola et.

el. [5] used the following formula of weak classifier to classify the window :

  pxpfpfxh )(if 1

otherwise 0),,,(

Her x is a window WxH pixel sub-window of an image, f is the feature, p is the

direction of inequality, and  is the threshold.

In the proposed system the size of window are 24x24 pixels, and the number of

features prototypes are 5 types (Fig. 2 (1a) (1b) (2a) (2c) (4)). And the weak

classifier was CART (Classification and Regression Tree).

5

CART is classification method which uses historical data to construct

decision trees. Depending on available information about the dataset, classification

tree or regression tree can be constructed. Constructed tree can be then used for

classification of new observations. Classification trees are used when for each

observation of learning sample we know the class in advance. Classes in learning

sample may be provided by user or calculated in accordance with some exogenous

rule [6].

Decision tree is a tree graph, with leaves representing the classification result and

nodes representing some predicate. Branches of the tree are marked true or false.

Classification process in case of decision tree is a process of tree traverse. We start

from root and descend further, until we reach the leaf, the value associated with

the leaf is the class of the presented sample. At each step we compute the value of

the predicate associated with current node. We choose next node (or leaf) that is

connected with current by the branch with the value of current nodes predicate.

The tree consists of a number of nodes (splits), if number of splits is one it means

this tree is a Stump, and if the number of splits more than one, the tree is a

CART.

5- Strong Classifier
A strong classifier is composed of a number of weak classifiers. Its decision

is made by weighted voting: decision of a t
th

 weak classifier is multiplied by alpha

t [5]:






  
  



T

t

T

t

ttt xh

xc 1 1
2

1
)(1

otherwise 0)(


Strong classifier used Adaboost algorithm to find a weak hypothesis ht , this

algorithm takes as input a training set (x1,y1), … , (xn,yn) where each xi belong to

some domain or instance space X, and each label yi is in some label set Y, Y={-

1,+1}. Adaboost calls a given weak or base learning algorithm repeatedly in a

series of rounds m=1, … , M. One of the main ideas of the algorithm is to maintain

a distribution or set of weights over the training set. The weight of this distribution

on training example i on round m is denoted wm(i). Thus, the main job of weak

learner is to find the weak hypothesis hm::X {-1,+1}. [7]

In the proposed system, we experimentally used three types of Adaboost algorithm

(Real-Adaboost Algorithm [1], Modest-Adaboost Algorithm [8], and Gentle

Adaboost algorithm [2]). See (Fig. 4), (Fig. 5), and (Fig. 6). (Fig. 7) illustrates

algorithm of the implementation of the all three Adaboost algorithms.

6

6- Cascade of Classifiers
A cascade of classifiers is degenerated decision tree where at each stage a

strong classifier is trained to detect almost all objects of interest (frontal faces in

our example) while rejecting a certain fraction of the non-object patterns, see (Fig.

8). [3] [9].

For instance, in our case, five stages were trained using five prototypes of

haar-like features; each stage was trained with one feature only and using either

Real, Modest or Gentle Adaboost learning algorithm. We will analysis the

proposed system for each algorithm with details in the results section and the

training time depends on the number of tree nodes, the time for 200 nodes require

more than one hour for training the strong classifier.

Adaboost algorithm is a powerful machine learning algorithm it can learn strong

classifier based on a (large) set of weak classifiers by re-weighting the training

samples and adjusting the threshold to minimize false negatives. Our sets of weak

classifiers are all classifiers which use one feature from our feature pool in

combination with a simple binary thresholding decision. At each round "Iteration"

of boosting, the feature-based classifier is added that best classifiers the weighted

training samples. With increasing stage number the number of weak classifiers,

which are needed to achieve the desired false alarm rate at the given hit rate,

increases. [3] [1] [7]

7

Figure (4) Real-Adaboost Algorithm

Figure (5) Modest-Adaboost Algorithm

0. (Input)

(1) Training examples {(x1,y1), … , (xN,yN)}, where N=a+b; of which a examples

have yi=+1 and b examples have yi=-1;

(2) The maximum number Mmax of weak classifier to be combined;

1. (Initialization)

or 1 with examples for those
2

1)0( ii y
a

w

1 with examples for those
2

1)0( ii y
a

w
 M=0;

2. (Forward Inclusion)

(1) while M < Mmax

(2) M  M + 1;

(3) Choose hM according with respect to the weighted error:

 
i

iiipf

M

i ypfxhw)),,,(|min ,,  

(4) Define MMMMMM andpfpfxhxh  ,, where),,,()( are the minimizers of M

.

(5) Update ,*
1)(ie

M

M

i

M

i ww


  where, ei=0 if example xi is classified correctly,

ei=1 otherwise, and
M

M
M









1
.

3. (Output)






 
 


max

1
2

1
)(1

otherwise 0)(

M

M

MMM xh

xC
 Where,

t

M



1

log

0. (Input)

(5) Training examples {(x1,y1), … , (xN,yN)}, where N=a+b; of which a examples have

yi=+1 and b examples have yi=-1;

(6) The maximum number Mmax of weak classifier to be combined;

1. (Initialization)
or 1 with examples for those

2

1)0( ii y
a

w

1 with examples for those
2

1)0( ii y
a

w
 M=0;

2. (Forward Inclusion)

while M < Mmax

(1) M  M + 1;

(2) Choose hM according with respect to the weighted error:

 
i

iiipf

M

i ypfxhw)),,,(|min ,,  

(3) Define
MMMMMM andpfpfxhxh  ,, where),,,()( are the minimizers of M .

(4)  
i

imi whyfors *,1 all 1
and s2= 

i

imi whyfor * ,1 all

(5) Update ,*
1)(ie

M

M

i

M

i ww


  where, ei=0 if example xi is classified correctly, ei=1

otherwise, and

21

21

ss

ss
M




 .

4. (Output)






 
 


max

1
2

1
)(1

otherwise 0)(

M

M

MMM xh

xC
 Where,

t

M



1

log

8

Figure (6) Gentle-Adaboost Algorithm

Figure (7) Algorithm of all Adaboost Algorithms

0. (Input)

(3) Training examples {(x1,y1), … , (xN,yN)}, where N=a+b; of which a examples

have yi=+1 and b examples have yi=-1;

(4) The maximum number Mmax of weak classifier to be combined;

1. (Initialization)
or 1 with examples for those

2

1)0( ii y
a

w

1 with examples for those
2

1)0( ii y
a

w
 M=0;

2. (Forward Inclusion)

while M < Mmax

(1) M  M + 1;

(2) Choose hM according with respect to the weighted error:

 
i

iiipf

M

i ypfxhw)),,,(|min ,,  

(3) Define MMMMMM andpfpfxhxh  ,, where),,,()( are the minimizers of

M .

(4)  
i i

mi
w

hyfors
1

*,1 all 1 and s2= 
i i

mi
w

hyfor
1

* ,1 all

(5)  
i i

mi
w

hyfors
1

*,1 all 3 and s4= 
i i

mi
w

hyfor
1

* ,1 all

(6) Update ,*
1)(ie

M

M

i

M

i ww


  where, ei=0 if example xi is classified

correctly, ei=1 otherwise, and)1(*)1(* 4231 ssssM  .

4. (Output)






 
 


max

1
2

1
)(1

otherwise 0)(

M

M

MMM xh

xC
 Where,

t

M



1

log

0. (Input)

(1) Training examples {(x1,y1), … , (xN,yN)}, where N=a+b; of which a examples

have yi=+1 and b examples have yi=-1;

(2) The maximum number Mmax of weak classifier to be combined;

1. (Initialization)
or 1 with examples for those

2

1)0( ii y
a

w

1 with examples for those
2

1)0( ii y
a

w
 M=0;

2. (Forward Inclusion)

Choose one of the following:

(1) Real-Adaboost.

(2) Modest-Adaboost.

(3) Gentle-Adaboost.

3. (Output)






 
 


max

1
2

1
)(1

otherwise 0)(

M

M

MMM xh

xC
 Where,

t

M



1

log

9

Figure (8) Cascade of Classifiers with N stages. At each stage a classifier is trained

to achieve a hit rate off h and a false alarm rate of f.

The proposed cascade system of increasingly specialized stages, each one

being trained to reject the false positives of previous stages, while detecting all

positive instances. In other words, a positive result from the first strong classifier

triggers the evaluation of a second strong classifier which has also been adjusted

to achieve very high detection rates, a positive result from the second strong

classifier triggers a third strong classifier, and so on, a negative outcome at any

point leads to the immediate rejection of sub-window. [1]

A summary of the architecture of the proposed cascade classifier is illustrated in

(Fig. 9), where the numbers of stages are five stages. When an instance, WxH sub-

window of image, enters the detector, it is examined by the first stage, which

either rejects the instance immediately, or passes it on to the next stage for further

processing. This process is repeated for subsequent stages until the instance is

either rejected or the final (5
th

) stage accepts it (Fig. 9(a)). An individual stage

consists of an ensemble of weak classifiers, whose outputs are combined by a

weighted vote (Fig. 9(b)), and this represents Adaboost learning algorithm. Each

weak classifier (Fig. 9(c)) is based on a small subject of the image features, it

represents CART, which can be any function computed over a sub-window of the

image (Fig. 9(d)), represents five prototypes of features that were mentioned

previously in (Fig. 2).

Figure (9) the architecture of the proposed cascade of five strong classifiers system

from high level cascade to the low level features

10

7- Results
7.1. Training dataset.

The training set consisted of 450 hand labeled faces scaled and aligned to

base resolution of 24 by 24 pixels, and 120 non-faced images, where each layer of

cascade classifier was trained with this dataset. The faces were extracted from

images downloaded from the World Wide Web. Some typical faces examples are

shown in (Fig. 9). The training faces are only roughly aligned. This work done by

having a person place a bounding box around each face just above the eyebrows

and about half-way between the mouth an the chin. This bounding box was

normalized to the base 24 by 24 window pixels. The non-faces were extracted

from any image that not has any face. The dataset of test image composed of two

classes, the first about 300 test images were downloaded from the World Wide

Web, and the second class was belong to my family and friends.

7.2. The Cascade classifier

The cascade classifier consists of 5 stages of strong classifiers, the first strong

classifier was trained with feature's type of (Fig. 2) (1a), the second with type of

(Fig. 2) (1b), the third with type of (Fig. 2) (2a), the fourth with type of (Fig. 2)

(2c), and the last strong classifier was trained with type of (Fig. 2) (4). Each stage

was based on detector of size 24 by 24 pixels. Table 1 list the count of features for

each stage of cascade classifier.

Figure (10) examples of frontal upright face images used for training.

Table 1: Count of features of (24x24) for each stage of cascade classifier

Stage of Cascade

Classifier
Feature type w/h X/Y

Number of

features

First stage Fig. 2 (1a) 4/2 6/12 7986

Second stage Fig. 2 (1b) 2/4 12/6 7986

Third stage Fig. 2 (2a) 6/3 4/8 2800

Fourth stage Fig. 2 (2c) 3/6 8/4 2800

Fifth stage Fig. 2 (4) 4/4 6/6 4356

11

7.3. Experimental Results

When any stage of cascade is trained with one node and once iteration then

that stage would be a Stump, and otherwise, it would be a CART. (Fig. 11), (Fig.

12) and (Fig. 13) show the errors that occurred when the one stage of proposed

system was Stump or CART (the iteration (rounds) starts from 10) for each one of

the three types of Adaboost algorithms. These figures represent also the

performance of the strong classifier with the number of rounds for training the

nodes of Adaboost Algorithm.

The (Fig. 11) shows the implementation performed at the (a) first stage of the

proposed system only, and (b) 2
nd

 stage only. Figure (12) shows implementation of

(a) 3
rd

 stage (b) 4
th

 stage only. (Fig. 13) shows implementation of 5
th

 stage only.

The observation of the three figures refers to:

1- For the 1
st
 and 2

nd
 stage of cascade classifier, the best algorithm is Modest

Adaboost algorithm, and best iteration count (rounds) is 10 for 1
st
 stage

and 20 for 2
nd

 stage.

2- For the 3
rd

 and 4
th

 stage, the best is Real Adaboost algorithm for both

stages, 50 for the 3
rd

 stage and 10 for the 4
th

 stage.

3- For the 5
th

 stage, the best is Real Adaboost algorithm and 20 iterations.

Scanning the Detector

The final detector scans across the whole image at multiple scales and

locations. Scaling achieves by scaling the detector itself, rather than scaling the

image. This process makes sense because the features can be evaluated at any

scale with the same cost. We got the result by using a set of scales factor of 1.2

apart. The detector scans across location, subsequent locations are obtained by

shifting the window some number of pixels (we used 3 pixels for shifting the sub-

window to right and down directions).

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30 40 50 60

Th
e

 E
rr

o
e

No. of Iteration

Real

Modest

Gentle

(a) Error versus count of iterations for implementation of 1

st
 stage

12

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0 10 20 30 40 50 60

Th
e

 E
rr

o
e

No. of Iteration

Real

Modest

Gentle

(b) Error versus count of iterations for implementation of 2

nd
 stage

Figure (11) implementation of 1
st
 and 2

nd
 stages of proposed cascade system

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80

Th
e

 E
rr

o
e

No. of Iteration

Real

Modest

Gentle

(a) Error versus count of iterations for implementation of 3

rd
 stage

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80

Th
e

 E
rr

o
e

No. of Iteration

Real

Modest

Gentle

(b) Error versus count of iterations for implementation of 4

th
 stage

Figure (12) implementation of 3
rd

 and 4
th

 stages of proposed cascade system

13

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60

Th
e

 E
rr

o
e

No. of Iteration

Real

Modest

Gentle

Error versus count of iterations for implementation of 5

th
 stage

Figure (13) implementation of 5
th

 stage of proposed cascade system

Detecting the faces in image

Now by depend on the best counts of the rounds and two algorithms (Modest

and Real) that were gotten from the empirical analysis of Figures (11, 12 and 13)

and got low detection error, we can construct the cascade strong classifiers with

those counts of training rounds and two algorithms. For detecting the face in

particular image, the first job, we normalize the size of that image to 150x150

pixels, then scan the whole image with 24x24 sub-windows, scale these sub-

windows by 1.2 factors for each scanning process. Collect all these sub-windows

of different scales and entering it into the proposed cascade classifier system.

(Fig. 14) (a-d) shows the results of detected faces for images contained at faces

which belong training set. (Fig. 15) (a-f) shows the results of detected faces for

images contained at the faces which not belong to the training set. The (Fig 15) (b)

and (d) shows the errors that happened cause the rotation of faces in these images.

Tables (2) and (3) list counts of sub-windows that are entered to and exit from

each strong classifier for images of figure (14) and figure (15) respectively. The

rows represent the count of sub-windows for each figure, the 1
st
 column is the

name of figure, the 2
nd

 is the count of sub-windows that is containing at the

features and would be entered to the first stage of cascade classifier, the 3
rd

 is the

count of sub-windows that accepted by 1
st
 stage and would be the input of 2

nd

stage of cascade classifier, and so on. For instance, the first row of table (3) is the

information of image of (Fig. 15) (a), the count of sub-windows are 4824 WxH

sub-windows, all those sub-windows are entered to 1
st
 stage, the output of 1

st
 stage

would be 499 sub-windows, the 2
nd

 stage would accept only 39 sub-windows from

those 499, and so on, at the last stage the output would be 25 sub-windows only.

14

(a)

(b)

(c)

(d)

Figure (14) Results of the implementation of the proposed cascade of strong

classifiers with images contained at the faces which are belong to the training

dataset.

The last stage would produce many counts of overlapped sub-windows as shown

in figure (16), and to eliminate these overlapped sub-windows we used small

program that groups all sub-windows that are far from the others by small number,

and calculate the average of that group and produce one sub-window.

(a)

(b)

15

(c)

(d)

(e)

(f)

Figure (15) Results of the implementation the proposed cascade classifier system

with images contained at the faces which it weren't belong to the training dataset.

Table (2): Count of sub-windows for each image in the (Fig.14)
Figure

(14)

No. of windows

before input

Accepted

by stage 1

Accepted

by stage 2

Accepted

by stage 3

Accepted

by stage 4

Accepted

by stage 5

(a) 2704 277 58 37 27 24

(b) 2704 327 85 55 40 34

(c) 2704 213 48 33 21 19

(d) 2704 406 119 79 43 33

Table (3): Count of sub-windows for each image in the (Fig. 15)
Figure

(15)

No. of windows

before input

Accepted

by stage 1

Accepted

by stage 2

Accepted

by stage 3

Accepted

by stage 4

Accepted

by stage 5

(a) 4824 499 39 34 26 25

(b) 4718 903 9 5 4 4

(c) 2608 556 78 45 25 21

(d) 3322 230 21 17 7 6

(e) 3960 637 185 137 85 68

(f) 3960 754 179 108 73 65

16

Figure (16) results of classification with overlapped windows

8- Conclusions
This paper introduced a novel and fast to compute set of haar-like features as

well as a three types of Adaboost algorithms (Real, Modest, and Gentle) that

applied to cascade classifier. It was shown that the overall performance could be

improved by use Modest Adaboost algorithm for the 1
st
 and 2

nd
 strong classifier of

cascade classifier and 20 rounds in the training. And use Real Adaboost algorithm

with 50 rounds for the 3
rd

 stage and 20 rounds for the 4
th

 and 5
th

 strong classifier.

The results of detection of faces in images that contained at faces was very high

performance for the faces belong to the training dataset and with few error for

images that contained at the faces that not belong to the training dataset.

The analysis shows that: the Modest Adaboost Algorithm is suitable for the two-

horizontal (10 rounds) and a two-vertical rectangle features (20 rounds). And

Real-Adaboost Algorithm is suitable for the three-horizontal (50 rounds), three-

vertical (10 rounds) and four rectangles features (20 rounds).

17

References

[1]. P. Viola and M. Jones (2001). Rapid object detection using a boosted cascade

of simple features. In IEEE Conference on Computer Vision and Pattern

Recognition, Kauai, Hawaii.

[2]. A. Kasinski and A. Schmidt (2010). The architecture and performance of the

face and eyes detection system based on the haar cascade classifiers. Pattern

Anal Applic, Vol.13: 197-211.

[3]. R. Lienhart and S. Clara (2002). An extended set of haar-like features for

rapid object detection. IEEE ICIP, Vol. 1: pp. 900-903.

[4]. R. Lienhart, A. Kuranov and V. Pisarevsky (2002). Empirical analysis of

detection Cascade of boosted classifiers for rapid object detection. Intel Labs,

Microprocessor Research Lab Technical report.

[5]. P. Viola and M. Jones (2004). Robust real-time face detection. International

Journal of Computer Vision 57(2): 137-154.

[6]. R. Timofeev (2004). Classification and Regression Trees (CART) Theory and

Applications. Master thesis, Statistics and Economics, Humboldt University,

Berlin.

[7]. Y. Freund and R. Schapire (1999). A short introduction to boosting. Journal of

Japanese Society for Artificial Intelligence, 14(5):771-780.

[8]. J. Thongkam, G. Xu, Y. Zhang, and F. Huang (2008). Breast cancer

survivability via Adaboost algorithms. Conference in Research and Practice

in Information Technology (CRPIT), Vol. 80.

[9]. S. Charles Brubaker, JianxinWu Jie Sun, Matthew D. Mullin and James M.

Rehg (2008). On the design of cascades of boosted ensembles for face

detection. International Journal of Computer Vision 77: 65–86.

RReecciivveedd …………………………………………………………………………………………....……………………………………………….. ((1166//88//22001100))

Accepted ……………………………………………………...….…………... (2/1/2011)

