
 1

 WWaassiitt JJoouurrnnaall ffoorr SScciieennccee && MMeeddiicciinnee 22001111 44 ((11)):: ((11 -- 1111))

Image Compression using Fourier

Transformation with Genetic Algorithm

Mohammed Mustafa Siddeq - Software Engineering Depart.

Technical College/ Kirkuk –Iraq

 [

Abstract:
This paper introduce proposed algorithm consist of: (1) using Discreet Fourier

Transformation (DFT) which convert an image into frequency domain image,

then compress frequency domain image with Run-Length-Encoding (RLE), and

Arithmetic Coding. (2) Apply Inverse Fourier Transformation (IDFT) to obtains

an approximately original image, and then compared with original image to get

the difference stored in a new matrix called (D(spatial)). The matrix D(spatial)

transformed to frequency domain by Discreet Cosine Transform (DCT)

(D(frequency)). Finally applying weight vector (W= [0.5, 0.3, 0.2]) on the

D(frequency), multiply "W" with each three coefficients from matrix D(frequency) to

produce a new matrix (G), at last compress matrix G by arithmetic coding. (3)

The decompression process start from arithmetic decoding to return frequency

domain matrix (i.e. return DFT image), then apply Inverse DFT to get an image

A, also from arithmetic decoding produced matrix G. The Genetic Algorithm

used to produce minimized matrix D(frequency) by take each data from matrix G

and using fitness function. Finally apply inverse DCT to generate matrix

D(spatial), added with image A to produce a decompressed image. In this paper

our approach, compared with JPEG technique, by using Peak Signal to Noise

Ratio (PSNR).

 الخلاصة:
 Discreet Fourier " -1نقدم في ذي ا احث ير قة قيي ةد يدب حاليثر احتيوة وذذليوب ذي ا احث ير يب

Transformation (DFT) " واحذي ذ يوا احتيوةب احيا ةيدا ذيةددد وث يد حي" ذ ي دم " Run-

Length-Encoding (RLE) و ""Arithmetic Coding نقثيييم ي ا يييي يل ييي ي -2" حلث ييي د
" حا توا ياا تيوةب ايدث ي احيا احتيوةب اةتيا ي Inverse DFT حاتوةب اح وحي يب قة م "

وث د ح" نفوم ث دب احفةم ث ن د وث ب احتوةب اةتا ي وذ ا احفةم زب في تيفوفي ةد يدب ذ ي ا
 Discreet Cosine احييا ةييدا ذييةددد يييب قة ييم "" و ييوا ذيي لم اح تييفوفي D(spatial) ب "

Transform (DCT) " و ييي ا اح تيييفوفي اح وحيييي احيييا "D(frequency) وأ يييةا نقاييي ةيييم "
" ثوا يقي ذي ل اح ذةي يذقا ةيم اح تيفوفي احيا W= [0.5, 0.3, 0.2] اح تفوفي ثأ ذ دام ذةي "

" حليييثر Arithmetic Coding " و ييب ثيييم ن ييذ دم "Gثايير اح ةييم وذ يي ا ذييي لم اح تييفوفي ب"
" ن ييذ دم D(frequency) " و "Gفيي ي ا ييي فيي" احذاييف ة ن ييذةةت اح تييفوفد " -3اح تييفوفي اة ييةب

" يييب G" , وذلذ ييا ي ا ييي فيي" احذاييف ة ثفيي" تييفوفي "Aاح ا ييي اح ل يي ي حا تييوا ياييا تييفوفي "
 ي ن تيا يايا تيفوفي فيةم " و ثأ ذ دام اح ا ي اح ل Genetic Algorithm (GA)قة م ذقن ي "

" D(spatial)" ثم ند ج "A+ D(spatial) حا توا ياا توةب وف ذ ا احث ر قدةنيد قة قذنيد يت ذقن يي "
"JPEG" ثد ذذ دام "PSNR "

Keywords: Discrete Fourier Transformation, Discrete Cosine Transformation, Genetic Algorithm

1. Introduction

2

Since the mid-80s, members from both the International Telecommunication

Union (ITU) and the International Organization for Standardization (ISO) have

been working together to establish a joint international standard for the

compression of grayscale and color still images. This effort has been known as

JPEG, the Joint Photographic Experts Group the “joint” in JPEG refers to the

collaboration between ITU and ISO)[1,2,4,11]. Officially, JPEG corresponds to

the ISO/IEC international standard 10928-1, digital compression and coding of

continuous-tone (multilevel) still images or to the ITU-T Recommendation

T.81[1,2,4]. The text in both these ISO and ITU-T documents is identical. The

process was such that, after evaluating a number of coding schemes, the JPEG

members selected a DCT1-based method in 1988. From 1988 to 1990, the JPEG

group continued its work by simulating, testing and documenting the algorithm.

JPEG became a Draft International Standard (DIS) in 1991 and an International

Standard (IS) in 1992 [1-3]. Lossy compression is compression in which some

of the information from the original message sequence is lost. This means the

original sequences cannot be regenerated from the compressed sequence. Just

because information is lost doesn’t mean the quality of the output is

reduced[2,4,11]. For example, random noise has very high information content,

but when present in an image or a sound file, we would typically be perfectly

happy to drop it. Also certain losses in images or sound might be completely

imperceptible to a human viewer (e.g. the loss of very high frequencies). For

this reason, lossy compression algorithms on images can often get a factor of 2

better compressions than lossless algorithms with an imperceptible loss in

quality. However, when quality does start degrading in a noticeable way, it is

important to make sure it degrades in a way that is least objectionable to the

viewer (e.g., dropping random pixels is probably more objectionable than

dropping some color information). For these reasons, the ways most lossy

compression techniques are used are highly dependent on the media that is

being compressed[2]. Lossy compression for sound, for example, is very

different than lossy compression for images.

2. Image Compression algorithm

In this paper we introduce an idea for image compression with Discrete Fourier

transformation (DFT), and Discrete Cosine Transformation (DCT). The first

step in image compression using DFT; consist from real and imaginary part,

divide each part into by a value, then compress each part by using Run-Length-

Encoding (RLE) and Arithmetic coding algorithm. The difference between

Inverse DFT for a frequency domain and original image, is be used by DCT

(i.e. Convert the difference into frequency domain matrix by DCT). The

weight vector introduced in this paper used to minimize the frequency domain

matrix to be compressed by Arithmetic coding algorithm, Figure -1 shown the

proposed algorithm.

Apply RLE

on Real and

Imaginary part

Apply Fourier

Transformation

(DFT) then Divide by

Value1

Inverse Fourier

Transformation

(IDFT)

Difference between

Original image, and

IDFT image

Discrete Cosine

3

Figure – 1 Image Compression Algorithm

2.1 Using Discrete Fourier Transformation (DFT)

The following equations are represents two-dimensional DFT and Inverse DFT

[1,2]:-











1M

0x

1N

0y

))] Nvy / M(ux / 2π sin(j)) Nvy / Mux / (2π ([cosy)f(x,
MN

1
v)F(u,

 …………….(1)











1M

0u

1N

0v

))] Nvy / M(ux / 2π (sin j)) Nvy / M(ux / 2π (cos [v)F(u, y)f(x, ………….(2)

Where f(x,y) is represent image matrix at spatial domain, and F(u,v) is represent

image at frequency domain consist from real, and imaginary parts[1,2]. Divide

each part on a value, the idea for dividing on a value increasing number of

zero's, this lead to increase compression ratio, as shown in Figure – 2. The RLE

and Arithmetic Coding convert each part into stream of bits.

































128128122127133128133131

128128132135132130131130

131133130132126130131130

128135132138129133132128

130128128133131133140133

134129134139137137136136

134129134139137137136136

134129134139137137136136

































19- 14, 28, 18,- 2, 18, 25, 36,

18 11,- 12, 13, 28,- 7,- 22,- 9,

4 4,- 3, 8,- 5,- 16, 18, ,18

41- 8, 1, 10, 1, 8, 41,- ,54

18 16, 5,- 8,- 3, 4,- ,4 18

22- 7,- 28,- 13, 12, 11,- 18, 9,

25 18, 2, 18,- 28, 14, 19, - ,36

12- 38, 32,- 16, 32,- 38, 12,- ,8476

































23 , 10- , 9- , 5- , 2 , 32 , 23- , 82

23- 5, 2, 11, 3,- , 3- 12,- , 39

7- , 12 , 11- , 5- , 7 , 2 , 12- , 10

5- , 4 , 17- , 0 , 17 , 4- 5, 0,

12 2,- 7,- 5, , 11 , 12- , 7 , 10-

12 , 3 , 3 , 11- , 2- , 5- , 23 , 39-

23 32,- , 2- , 5 , 9 , 10 , 23- , 82-

57 , 12 , 5 , 0 , 5- , 12- 57,- ,0

 (a) Original Matrix (b) real-part in DFT (c) imaginary-part in DFT

































00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000001

































00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

 (d) real-part divide by 1600 (e) imaginary-part divide by 1600

Figure – 2 (a-e) matrix 8x8 converted into DFT

and divided on value=1600

Mohammed Mustafa Siddeq

4

In Figure – 2 (d,e) the matrices used by RLE, the basic idea is to identify

numbers of adjacent data of equal value and replace them with a single

occurrence along with a count. In above example, the numbers sequence in the

real-part=(1,0,0,0….0), and imaginary-part=[0,0,0,…0] could be transformed

to (1,1), (0,63), (0,64). Once transformed, a probability coder (e.g., Arithmetic

coding) can be used to code both the data and the counts[1,2,11,12].

2.2 Using Discrete Cosine Transformation (DCT)

After divide DFT on the value1=1600, we use the Inverse DFT to get

approximately original image then the difference between original image and

approximately original image (i.e. Difference = Original image - Inverse DFT)

stored in the new matrix called Matrix D(spatial). This matrix converted into

frequency domain (Matrix D(frequency)) using DCT, the following equations

shows DCT, and Inverse DCT[1,2,4,11]:-


 








 







 


1-N

0x

1-M

0y
2

 v1)(2y
 COS

2N

u 1)(2x
 COS y)f(x, a(v) a(u)v)C(u,

M

 …………………(3)

Where \ a(u)=
N

1 for u = 0

 a(u) =
N

2 for u 0


 








 







 


1-N

0u

1-M

0v
2

 v1)(2y
 COS

2N

u 1)(2x
 COS v)C(u, a(v) a(u) y)f(x,

M

 …………………(4)

The following figure shown the difference between original matrix, and Inverse

DFT for the image converted into DCT.

































-122-122-128-123-117-122-117119-

-122-122-118-115-118-120-119120-

-119-117-120-118-124-120-119120-

-122-115-118-112-121-117-118122-

-120-122-122-117-119-117-110117-

-116-121-116-111-113-113-114114-

-116-121-116-111-113-113-114114-

-116-121-116-111-113-113-114114-

































22102-6-34

0010-13-10

-21-210030

0-41-2-2234-

410-34-1-70

-4125-2-130

05-43-1-4318

3-3-73-1-69940-

(a) matrix D(spatial) = Original matrix – Inverse DFT (b) matrix D(frequency) = DCT(matrix D(spatial))

































00000-100

00000000

00000000

00000000

000000-10

00010000

01000002

00-100-1194-

(c) matrix D(frequency) divided by 10

Figure – 3 (a-c) Converting the matrix D(spatial) into

frequency domain by DCT

The DCT is similar to the DFT: it transforms an image from the spatial domain

to the frequency domain. One of the advantages of DCT over DFT is the fact

that it is a real transform, whereas DFT is complex[2,4,11]. This implies lower

computational complexity, which is sometimes important for real-time

applications [3,4,9,11,12]. The discrete cosine transformation is used to

decorrelate the pixels of image or to pack as much information as possible into

5

the smallest number of transform coefficients (See Figure -3(b)). The

coefficients for the matrix D(frequency) divided by a value to convert most of

coefficients to zero's (See Figure-3(c)). The main idea for using DCT to reduce

the matrix size (i.e. eliminate part of the matrix coefficients from high

frequency domains) by eliminate last two columns and last two rows (See

Figure – 4(a,b)).

Finally we use weight vector multiply with each three coefficients from

minimized matrix D(frequency), to produce the new matrix G. The weights vector

containing floating point numbers, and total of weights equivalent to one.

Assume the weights values W= [0.5, 0.3, 0.2], used for compression and

decompression. The idea of weights values is similar to (Mask Filter 3x3) used

in image enhancement and image restoration, and total of Mask Filter 3x3

equivalent to one[7-10]. The matrix G converted into stream of bits by

Arithmetic coding,

List -1

W=[0.5, 0.3, 0.2];

For i=1 to Row

 J=1; v=1

 While (j<=Column)






2

0

)(frequency k)j(i, Matrix_DMinimized_*W[k]),(

k

vIG

 v=v+1;

 j=j+3;

 End; // while

End;// for

The Figure -4 illustrates matrix G generated from matrix D(frequency), and

weight vector.

































00000-100

00000000

00000000

00000000

000000-10

00010000

01000002

00-100-1194-



























000000

000000

0000-10

010000

000002

-100-1194-

 (a) Matrix D(frequency) (b) Delete part from matrix D(frequency) (G



























00

00

00.3-

0.30

01

-0.246.9-



























00

00

03-

30

010

-2469-

 c) Multiply weight vector produce Matrix (d) multiply each coefficients with 10

Figure- 4 (a-d) Matrix G generated from Matrix D(frequency) and Weight Vector.

3. Decompression by using Genetic Algorithm

6

The genetic algorithm is a parallel search algorithm by using a number of

strings and computing fitness value for each string, these strings are shared

with each others by crossover until reached to the result [13,15]. In this section

we will explain how the genetic algorithm reached to the original coefficients

in the matrix D(frequency). The genetic algorithm reverse the operation to find

matrix D(frequency) by using weight vector =(0.5, 0.3, 0.2) and matrix G, the

genetic algorithm generate lost coefficients by using fitness function and

crossover. The following equation represents fitness function:

Fitness function(i) =

















2.0

3.0

5.0
 * [X1, X2, X3] (5)

Where \ i= 1,2,3,….matrix G size

The genetic algorithm generates strings, and each string consists from 3

elements, because the weight vector size is 3. The genetic algorithm string is

integer numbers, these numbers ranges depend on the matrix D(frequency) content,

for example in Figure-4(b) the matrix D(frequency) probability data: -94, 1, -1, 0,

2, and the genetic algorithm depend on this probability to generate strings, and

genetic algorithm search for the string depending on the fitness function

compared with matrix G.

These strings are generated randomly consist from integer numbers depend on

the probability of data; this leads the genetic algorithm, to find matrix

D(frequency) coefficients[13,14,16]. The crossover and fitness function play an

main rule in genetic algorithm, the genetic algorithm search for X1, X2, and

X3, depending on the fitness function is described at Equation (5) it is used for

comparison with matrix G coefficients (i.e. fitness values matched with matrix

G coefficients). While the crossover its meaning exchange between any two

strings randomly, and this operation done by selecting an element randomly

from the strings, then make exchange between them. For example assume we

have the following two strings and then make exchange between them [13-16]:

The genetic algorithm generates 25 strings for the probability data: -94, 1, -1, 0,

2 used in Figure-4(b), the data are used distributed randomly in 25 strings. The

following example illustrated genetic algorithm generates matrix D(frequency)

coefficients:

Strings represents
 Matrix D(frequency) Fitness Function

 S1: 0 0 -1 (-0.2*10) = -2 matched

 S2: 0 -1 2 (0.1*10) = 1

 S3: 2 0 0 (1*10) = 10 matched

 S4: -94 2 1 (-46.2*10)= -462

 S5: 0 0 1 (0.2*10) = 2

 ……. ……

 S25: 0 -1 0 (-0.3*10) = -3 matched

(a) Genetic algorithm generates random strings and compared with Matrix G



























00

00

03-

30

010

-2469-

 Matrix G

7



























00

00

03-

30

010

-2469-

 Matrix G



































00000000

00000000

00000000

00000000

000000-10

00010000

00000002

00-100-1194-

 (b) Genetic algorithm find Matrix D(frequency), and padded with zeros.

Figure -5 (a-b) Genetic algorithm searches

for matrix D coefficients

After the crossover between all 25 strings, we not need to ignore some string or

make copy for some strings has minimum error at next generation. In this paper

the crossover will done between all 25 strings, and then they all transferred to

the next generation, because these strings has all probability of data and one or

more string reaches to the solution (See Figure -5). The matrix D(frequency)

padded with zeros transformed to spatial domain by inverse DCT, this matrix is

represents matrix D(spatial). Finally using Inverse DFT to transformed the

matrices in Figure – 2 (d,e) into spatial domain, then add with matrix D(spatial) to

produce decompressed matrix approximately equal to original matrix (See

Figure-2(a)), the Figure -6 shown decompression by using Inverse DCT, and

Inverse DFT.

































-124-128-124-117-118-120-118118-

-122-125-121-117-119-120-119121-

-120-121-117-117-120-119-118123-

-121-119-116-117-120-116-115122-

-122-120-116-116-118-113-111118-

-121-121-116-114-115-112-110115-

-117-120-115-111-113-114-112114-

-113-118-114-109-112-116-115115- Matrix

D(spatial)

(a) Convert Matrix D(frequency) to

Matrix D(spatial)

 (Continue)

































250250250250250250250250

250250250250250250250250

250250250250250250250250

250250250250250250250250

250250250250250250250250

250250250250250250250250

250250250250250250250250

250250250250250250250250

 (b) Apply Inverse Fourier Transformation on Real, and imaginary matrices Matrix A

































126122126133132130132132

128125129133131130131129

130129133133130131132127

129131134133130134135128

128130134134132137139132

129129134136135138140135

133130135139137136138136

137132136141138134135135

 (c) Add matrix D(spatial) with matrix A to get approximately original image

Figure – 6 (a-c) using Inverse DCT, and Inverse DFT produce decompressed image

Multiply each

coefficient by 10

Apply Inverse

DCT on Matrix

D(frequency)

Matrix D(frequency)

padded with Zeros

Multiply each

coefficient by 1600

Apply

Inverse DFT

 Real-Part

 Imaginary-Part

Genetic

Algorithm

8

4. Computer Simulation

Our approach applied on Pentium4 – 1.7GHz, with RAM – 1GByte, and

using MATLAB language, the images are tested on our approach as shown in

Figure – 7.

(a) Original Lena Image (b) Original Cat Image

Figure – 7 (a) Gray level size 64KByte with dimension 256 x 256, (b) Color Image size

363KByte, with dimension 352 x 352.

The Lena Image consists from 8-bit gray level tested on our approach. At DFT

part the frequency domain matrix divided by the Value1=16000, and also at the

DCT the matrix D(frequency) is divided by the Value2=20, The compressed size

for Lena image is 11.7KByte, after decompression the PSNR= 31.6 dB for

Lena image as shown in Figure -9(a). Peak signal to noise ratio (PSNR) can be

calculated very easily and is therefore a very popular quality measure [6,10,13].

The PSNR it is measured on a logarithmic scale and is based on the mean

squared error (MSE) between an original image and decompressed image,

relative to (255)
2 (i.e. the square of the highest possible signal value in the

image).

The Cat Image consist from three layers (i.e. consist from 3-dimensional array;

Red, Green, and Blue). This mean each layer is compressed independently

using our approach. Red, Green and Blue are transformed to YCbCr, the goal of

this transformation is to obtain compression efficiency [1,2,7,10], figure 8

shown the matrix transformation.







































































r

b

C

C

Y

B

G

R

0.063- 0.375- 0.438

0.45 0.3- 0.15-

0.1 0.6 0.3

2

2

5



















































B

G

R

C

C

Y

r

b

 0 2 1

0.7994- 0.3341- 1

1.5987 0.0016 1

2*

2*

5*

 (a) (b)

Figure – 8 (a) Transform matrix from RGB to YCbCr, (b) Transform matrix from YCbCr to RGB

9

At the compression part the matrix in Figure - 8(a) used to transform the Cat

Image from Red, Green, and Blue to YCbCr these three forms reduce the

image levels from 255 to less than 50, for each layer, this transformation

increases compression performance. The transformed image compressed by

using our approach, which the Value1=8000, and Value2=5. The compressed

image size is 17.8Kbyte, and the PSNR=32.5 dB for Cat image. The Figure -

9(b) shown decompressed Cat Image.

(a) Decompressed Lena Image, PSNR = 31.6 dB (b) Decompressed Cat Image, PSNR = 32.5 dB

Figure – 9 (a,b)Decompressed Images by our approach

Our approach compared with JPEG and PNG, these method are popular used in

image compression specially when transmits through internet [1,2,4,7,10,11].

The JPEG is a lossy data compression scheme for color and gray-scale images,

based on DCT and Arithmetic coding. It works on full 24-bit color, and was

designed to be used with photographic material and naturalistic artwork, also

the JPEG can produce a smaller file than PNG for photographic images since it

uses a lossy encoding method specifically designed for photographic image

data [1,2,9]. The PNG use lossless data compression methods, which are used

in compression of library. The most common general-purpose, lossless image

compression algorithm used with LZW[1,2,9]. These algorithms compared

with our approach by image size, and PSNR as shown in Table1.

Table 1 comparison our approach with JPEG

Algorithm
Image

Name

Before

Compression

After

Compression
PSNR

Our

Approach

Lena 64Kbytes 11.7Kbyte 31.6

Cat 363Kbyte 17.8Kbyte 32.5

JPEG
Lena 64Kbytes 12.8Kbyte 33.5

Cat 363Kbyte 18.4Kbyte 39.7

http://en.wikipedia.org/wiki/Photography
http://en.wikipedia.org/wiki/Lossy_data_compression

10

5. Conclusion

The advantage of our algorithm can be illustrated in the following steps:-

1- The main reason for using DFT most of data transform to zero, when divided

by Value1 (See Figure – 2 (d,e)). Also the DCT used to transform most of data

to zero, when divided on Value2 (See Figure – 3 (c)). This process leads for

increasing compression performance.

2- Our algorithm gives a best performance for color image compression more

than gray level images.

3- The Genetic Algorithm used in Decompression part, looking for Minimized

Matrix D(frequency), based on the probability of Matrix D(frequency) and the Matrix

G. The genetic Algorithm finds the result as fast as possible, because not needs

for mutation just needs for crossover between strings, and not need to increase

number of strings at next generation.

The disadvantage of our approach can be illustrated in the following steps:

1- Using more than one transformation (i.e. using DFT and DCT) these

processes reduce image quality more than JPEG technique (See Table 1).

2- The arithmetic coding and decoding used two times by our approach, this

led more computations and recurrence calculating may be led to increase time

execution for compression and decompression, also the Genetic Algorithm

increase decompression time. These reasons make our approach slower than

JPEG.

REFRENCES

[1] K. Sayood, "Introduction to Data Compression", Morgan Kaufmann

Publishers, Inc., San Francisco, CA, 2nd dition, 2000.

[2] Rafael C. Gonzalez, Richard E. Woods "Digital Image Processing",

Addison Wesley publishing company – 2001.

[3] S. G. Chang, B. Yu, and M. Vetterli, "Adaptive wavelet shareholding for

image denoising and compression",. IEEE Trans. Image Process. vol. 9,

no. 9, pp. 1532.1546, 2000.

[4] K. R. Rao, P. Yip, Discrete cosine transform: Algorithms, advantages,

applications, Academic Press,San Diego, CA, 1990.

[5] S. S. Pradhan, K. Ramchandran, Enhancing analog image transmission

systems using digital side information: A new wavelet-based image coding

paradigm, in:Proc. IEEE Data Compression Conf. (DCC), Snowbird,UT,

2001, pp. 63–72.

[6] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding

using wavelet transform,” IEEE Trans. on Image Processing, vol. 1, no. 2,

pp. 205–220, Apr. 1992.

11

[7] C. Christopoulos, J. Askelof, and M. Larsson, “Efficient methods for

encoding regions of interest in the upcoming JPEG 2000 still image

coding standard,” IEEE Signal Processing Letters, vol. 7, no. 9, pp. 247–

249,Sept. 2000.

[8] M.A.Figueiredo and R.D.Nowak, “Anew algorithm of wavelet-based

image restoration,” IEEE Trans. On Image Processing,vol. 12, no. 8, pp.

906–916, August 2003.

[9] I. E. G. Richardson, Video Codec Design, John Wiley & Sons, 2002.

[10] D. Marpe, H. Schwarz and T.Wiegand, “Context-Based Adaptive Binary

Arithmetic Coding in theH.264/AVC Video Compression Standard”, IEEE

Transactions on Circuits and Systems for Video Technology, to be

published in 2003.

[11] K. R. Rao and P. Yip, Discrete Cosine Transform, Academic Press, 1990.

[12] 8. I. Witten, R. Neal and J. Cleary, Arithmetic coding for data

compression, Communications of theACM, 30 (6), June 1987

[13] John R. Koza, "Genetic Programming II: Automatic Discovery of

Reusable Programs", MIT Press, 1994.

[14] Reiko Tanese, "Distributed Genetic Algorithms. In Proceedings of the

Third International Conference on Genetic Algorithms", pp. 434-

439,1989.

[15] Eun Yi Kim, Se Hyun Park, Sang Won Hwang, Hang Joon Kim, "Video

sequence segmentation using genetic algorithms", Volume 23 , Issue

7May, Elsevier Science Inc. New York, NY, USA, 2002.

[16] Y. Hill, S. O'Keefe, and D. Thiel. "An investigation of wavelet design

using genetic algorithms". In Microelectronic Engineering Research

Conference, 2001.

RReecciivveedd ………………………………………………………………………………....……………………………………..………….. ((2200//1122//22001100))

Accepted ………………………………………………...………..……... (3/1 /2011)

