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Abstract:  
This paper introduce proposed algorithm consist of: (1) using Discreet Fourier 

Transformation (DFT) which convert an image into frequency domain image, 

then compress frequency domain image with Run-Length-Encoding (RLE), and 

Arithmetic Coding. (2) Apply Inverse Fourier Transformation (IDFT) to obtains 

an approximately original image, and then compared with original image to get 

the difference stored in a new matrix called (D(spatial) ). The matrix D(spatial) 

transformed to frequency domain by Discreet Cosine Transform (DCT) 

(D(frequency)). Finally applying weight vector (W= [0.5, 0.3, 0.2]) on the 

D(frequency), multiply "W" with each three coefficients from matrix D(frequency) to 

produce a new matrix (G), at last compress matrix G by arithmetic coding. (3) 

The decompression process start from arithmetic decoding to return frequency 

domain matrix (i.e. return DFT image), then apply Inverse DFT to get an image 

A, also from arithmetic decoding produced matrix G. The Genetic Algorithm 

used to produce minimized matrix D(frequency) by take each data from matrix G 

and using fitness function. Finally apply inverse DCT to generate matrix 

D(spatial), added with image A to produce a decompressed image. In this paper 

our approach, compared with JPEG technique, by using Peak Signal to Noise 

Ratio (PSNR).    
 

 الخلاصة:
 Discreet Fourier " -1نقدم في  ذي ا احث ير قة قيي ةد يدب حاليثر احتيوة وذذليوب ذي ا احث ير  يب 

Transformation (DFT) " واحذي  ذ يوا احتيوةب احيا  ةيدا ذيةددد  وث يد  حي" ذ ي دم " Run-

Length-Encoding (RLE) و  ""Arithmetic Coding  نقثيييم ي ا يييي يل ييي ي  -2" حلث ييي د
"  حا توا ياا تيوةب  ايدث ي احيا احتيوةب اةتيا ي  Inverse DFT حاتوةب اح  وحي يب قة م "

وث د  ح" نفوم ث  دب احفةم ث ن د وث ب احتوةب اةتا ي وذ ا احفةم   زب في   تيفوفي ةد يدب ذ ي ا 
 Discreet Cosine احييا  ةييدا ذييةددد يييب قة ييم "" و  ييوا ذيي لم اح تييفوفي  D(spatial) ب "

Transform (DCT) " و  ييي ا اح تيييفوفي اح  وحيييي احيييا "D(frequency) وأ  يييةا نقاييي   ةيييم   "
" ثوا يقي ذي ل اح ذةي   يذقا   ةيم اح تيفوفي احيا W= [0.5, 0.3, 0.2] اح تفوفي ثأ ذ دام  ذةي  "

" حليييثر Arithmetic Coding " و ييب ثيييم ن ييذ دم  "Gثايير اح ةييم وذ يي ا ذييي لم اح تييفوفي ب"
"  ن ييذ دم D(frequency) " و "Gفيي  ي ا ييي فيي" احذاييف ة ن ييذةةت اح تييفوفد  " -3اح تييفوفي اة  ييةب  

"  يييب G" , وذلذ ييا ي ا ييي فيي" احذاييف ة ثفيي"  تييفوفي "Aاح  ا ييي اح ل يي ي حا تييوا ياييا  تييفوفي "
 ي ن تيا يايا  تيفوفي فيةم " و ثأ ذ دام اح  ا ي اح ل Genetic Algorithm (GA)قة م ذقن ي "

" D(spatial)" ثم ند ج  "A+ D(spatial) حا توا ياا توةب  وف  ذ ا احث ر قدةنيد قة قذنيد  يت ذقن يي "
"JPEG" ثد ذذ دام "PSNR    " 
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Since the mid-80s, members from both the International Telecommunication 

Union (ITU) and the International Organization for Standardization (ISO) have 

been working together to establish a joint international standard for the 

compression of grayscale and color still images. This effort has been known as 

JPEG, the Joint Photographic Experts Group the “joint” in JPEG refers to the 

collaboration between ITU and ISO)[1,2,4,11]. Officially, JPEG corresponds to 

the ISO/IEC international standard 10928-1, digital compression and coding of 

continuous-tone (multilevel) still images or to the ITU-T Recommendation 

T.81[1,2,4]. The text in both these ISO and ITU-T documents is identical. The 

process was such that, after evaluating a number of coding schemes, the JPEG 

members selected a DCT1-based method in 1988. From 1988 to 1990, the JPEG 

group continued its work by simulating, testing and documenting the algorithm. 

JPEG became a Draft International Standard (DIS) in 1991 and an International 

Standard (IS) in 1992 [1-3]. Lossy compression is compression in which some 

of the information from the original message sequence is lost. This means the 

original sequences cannot be regenerated from the compressed sequence. Just 

because information is lost doesn’t mean the quality of the output is 

reduced[2,4,11]. For example, random noise has very high information content, 

but when present in an image or a sound file, we would typically be perfectly 

happy to drop it. Also certain losses in images or sound might be completely 

imperceptible to a human viewer (e.g. the loss of very high frequencies). For 

this reason, lossy compression algorithms on images can often get a factor of 2 

better compressions than lossless algorithms with an imperceptible loss in 

quality. However, when quality does start degrading in a noticeable way, it is 

important to make sure it degrades in a way that is least objectionable to the 

viewer (e.g., dropping random pixels is probably more objectionable than 

dropping some color information). For these reasons, the ways most lossy 

compression techniques are used are highly dependent on the media that is 

being compressed[2]. Lossy compression for sound, for example, is very 

different than lossy compression for images. 
 

2. Image Compression algorithm 

In this paper we introduce an idea for image compression with Discrete Fourier 

transformation (DFT), and Discrete Cosine Transformation (DCT). The first 

step in image compression using DFT; consist from real and imaginary part, 

divide each part into by a value, then compress each part by using Run-Length-

Encoding (RLE) and Arithmetic coding algorithm. The difference between 

Inverse DFT for a frequency domain and original image, is be used by DCT 

(i.e.  Convert the difference into frequency domain matrix by DCT). The 

weight vector introduced in this paper used to minimize the frequency domain 

matrix to be compressed by Arithmetic coding algorithm, Figure -1 shown the 

proposed algorithm.               
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Figure – 1 Image Compression Algorithm 
 

2.1 Using Discrete Fourier Transformation (DFT) 

The following equations are represents two-dimensional DFT and Inverse DFT 

[1,2]:- 
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Where f(x,y) is represent image matrix at spatial domain, and F(u,v) is represent 

image at frequency domain consist from real, and imaginary parts[1,2]. Divide 

each part on a value, the idea for dividing on a value increasing number of 

zero's, this lead to increase compression ratio, as shown in Figure – 2. The RLE 

and Arithmetic Coding convert each part into stream of bits. 
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        (a)  Original Matrix                                  (b) real-part in DFT  (c)                  imaginary-part in DFT 
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                       (d) real-part divide by 1600               (e) imaginary-part divide by 1600 

 

 

Figure – 2 (a-e) matrix 8x8 converted into DFT 

and divided on value=1600 
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In Figure – 2 (d,e) the matrices used by RLE, the basic idea is to identify 

numbers of adjacent data of equal value and replace them with a single 

occurrence along with a count. In above example, the numbers sequence in the 

real-part=(1,0,0,0….0), and imaginary-part=[0,0,0,…0] could be transformed 

to (1,1), (0,63), (0,64). Once transformed, a probability coder (e.g., Arithmetic 

coding) can be used to code both the data and the counts[1,2,11,12].  
   

2.2 Using Discrete Cosine Transformation (DCT) 

After divide DFT on the value1=1600, we use the Inverse DFT to get 

approximately original image then the difference between original image and 

approximately original image (i.e. Difference = Original image - Inverse DFT ) 

stored in the new matrix called Matrix D(spatial). This matrix converted into 

frequency domain (Matrix D(frequency)) using DCT, the following equations 

shows DCT, and Inverse DCT[1,2,4,11]:- 
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The following figure shown the difference between original matrix, and Inverse 

DFT for the image converted into DCT. 
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(a) matrix D(spatial) = Original matrix – Inverse DFT    (b) matrix D(frequency) = DCT(matrix D(spatial)) 
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(c)  matrix D(frequency)  divided by 10 
 

Figure – 3 (a-c) Converting the matrix D(spatial)  into 

frequency domain by DCT 
 

The DCT is similar to the DFT: it transforms an image from the spatial domain 

to the frequency domain. One of the advantages of DCT over DFT is the fact 

that it is a real transform, whereas DFT is complex[2,4,11]. This implies lower 

computational complexity, which is sometimes important for real-time 

applications [3,4,9,11,12]. The discrete cosine transformation is used to 

decorrelate the pixels of image or to pack as much information as possible into 
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the smallest number of transform coefficients (See Figure -3(b)). The 

coefficients for the matrix D(frequency) divided by a value to convert most of 

coefficients to zero's (See Figure-3(c)). The main idea for using DCT to reduce 

the matrix size (i.e. eliminate part of the matrix coefficients from high 

frequency domains) by eliminate last two columns and last two rows (See 

Figure – 4(a,b)). 

 

Finally we use weight vector multiply with each three coefficients from 

minimized matrix D(frequency), to produce the new matrix G. The weights vector 

containing floating point numbers, and total of weights equivalent to one. 

Assume the weights values W= [0.5, 0.3, 0.2], used for compression and 

decompression. The idea of weights values is similar to (Mask Filter 3x3) used 

in image enhancement and image restoration, and total of Mask Filter 3x3 

equivalent to one[7-10]. The matrix G converted into stream of bits by 

Arithmetic coding,  
 

List -1 

W=[0.5, 0.3, 0.2]; 

For i=1 to Row 

  J=1; v=1 

  While (j<=Column) 
  


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2

0

)(frequency   k)j(i, Matrix_DMinimized_*W[k]),(

k

vIG
  

   v=v+1;  

  j=j+3; 

  End; // while 

End;// for 
 

The Figure -4 illustrates matrix G generated from matrix D(frequency), and 

weight vector. 
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           c) Multiply weight vector produce Matrix                  (d) multiply each  coefficients with 10 

 
Figure- 4  (a-d)  Matrix G generated from Matrix D(frequency) and Weight Vector. 

 

3. Decompression by using Genetic Algorithm 
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The genetic algorithm is a parallel search algorithm by using a number of 

strings and computing fitness value for each string, these strings are shared 

with each others by crossover until reached to the result [13,15]. In this section 

we will explain how the genetic algorithm reached to the original coefficients 

in the matrix D(frequency). The genetic algorithm reverse the operation to find 

matrix D(frequency) by using weight vector =(0.5, 0.3, 0.2) and matrix G, the 

genetic algorithm generate lost coefficients by using fitness function and 

crossover. The following equation represents fitness function: 
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Where \ i= 1,2,3,….matrix G size 

 

The genetic algorithm generates strings, and each string consists from 3 

elements, because the weight vector size is 3. The genetic algorithm string is 

integer numbers, these numbers ranges depend on the matrix D(frequency) content, 

for example in Figure-4(b) the matrix D(frequency) probability data: -94, 1, -1, 0, 

2, and the genetic algorithm depend on this probability to generate strings, and 

genetic algorithm search for the string depending on the fitness function 

compared with matrix G.  

 

These strings are generated randomly consist from integer numbers depend on 

the probability of data; this leads the genetic algorithm, to find matrix 

D(frequency) coefficients[13,14,16]. The crossover and fitness function play an 

main rule in genetic algorithm, the genetic algorithm search for X1, X2, and 

X3, depending on the fitness function is described at Equation (5) it is used for 

comparison with matrix G coefficients (i.e. fitness values matched with matrix 

G coefficients). While the crossover its meaning exchange between any two 

strings randomly, and this operation done by selecting an element randomly 

from the strings, then make exchange between them. For example assume we 

have the following two strings and then make exchange between them [13-16]: 

 

The genetic algorithm generates 25 strings for the probability data: -94, 1, -1, 0, 

2 used in Figure-4(b), the data are used distributed randomly in 25 strings. The 

following example illustrated genetic algorithm generates matrix D(frequency) 

coefficients: 
 

Strings represents 
 Matrix D(frequency)      Fitness Function                                 

 S1:  0 0 -1             (-0.2*10)   = -2    matched      

 S2:  0 -1 2             (0.1*10)    =  1 

 S3:  2 0 0              (1*10)       = 10     matched 

 S4: -94 2 1            (-46.2*10)= -462  

 S5:   0  0  1           (0.2*10)   = 2 

   …….                       ……                         

 S25: 0 -1 0            (-0.3*10)  = -3    matched                                     

 

(a) Genetic algorithm generates random  strings and compared with Matrix G 
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                                 (b) Genetic algorithm find Matrix D(frequency), and padded with zeros. 
 

Figure -5 (a-b) Genetic algorithm searches  

for matrix D coefficients 

  

After the crossover between all 25 strings, we not need to ignore some string or 

make copy for some strings has minimum error at next generation. In this paper 

the crossover will done between all 25 strings, and then they all transferred to 

the next generation, because these strings has all probability of data and one or 

more string reaches to the solution (See Figure -5). The matrix D(frequency) 

padded with zeros transformed to spatial domain by inverse DCT, this matrix is 

represents matrix D(spatial). Finally using Inverse DFT to transformed the 

matrices in Figure – 2 (d,e) into spatial domain, then add with matrix D(spatial) to 

produce decompressed matrix approximately equal to original matrix (See 

Figure-2(a)), the Figure -6 shown decompression by using Inverse DCT, and 

Inverse DFT.     
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                  (b) Apply Inverse Fourier Transformation on Real, and imaginary matrices Matrix A 
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                                        (c) Add matrix D(spatial) with matrix A to get  approximately original image 

 

Figure – 6 (a-c) using Inverse DCT, and Inverse DFT produce decompressed image 
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Algorithm 
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4. Computer Simulation 

Our approach applied on Pentium4 – 1.7GHz, with RAM – 1GByte, and 

using MATLAB language, the images are tested on our approach as shown in 

Figure – 7. 
 

   
(a)  Original Lena Image                                 (b) Original Cat Image 

 

Figure – 7 (a) Gray level size 64KByte with dimension 256 x 256, (b) Color Image size 

363KByte, with dimension 352 x 352. 

 

The Lena Image consists from 8-bit gray level tested on our approach. At DFT 

part the frequency domain matrix divided by the Value1=16000, and also at the 

DCT the matrix D(frequency) is divided by the Value2=20, The compressed size 

for Lena image is 11.7KByte, after decompression the PSNR= 31.6 dB for 

Lena image as shown in Figure -9(a). Peak signal to noise ratio (PSNR) can be 

calculated very easily and is therefore a very popular quality measure [6,10,13]. 

The PSNR it is measured on a logarithmic scale and is based on the mean 

squared error (MSE) between an original image and decompressed image, 

relative to (255)
2 (i.e. the square of the highest possible signal value in the 

image). 

    

The Cat Image consist from three layers (i.e. consist from 3-dimensional array; 

Red, Green, and Blue). This mean each layer is compressed independently 

using our approach. Red, Green and Blue are transformed to YCbCr, the goal of 

this transformation is to obtain compression efficiency [1,2,7,10], figure 8 

shown the matrix transformation. 
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Figure – 8 (a) Transform matrix from RGB to YCbCr, (b) Transform matrix from YCbCr  to RGB 
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At the compression part the matrix in Figure - 8(a) used to transform the Cat 

Image from Red, Green, and Blue to YCbCr these three forms reduce the 

image levels from 255 to less than 50, for each layer, this transformation 

increases compression performance. The transformed image compressed by 

using our approach, which the Value1=8000, and Value2=5. The compressed 

image size is 17.8Kbyte, and the PSNR=32.5 dB for Cat image. The Figure - 

9(b) shown decompressed Cat Image. 
 

               
(a) Decompressed Lena Image, PSNR = 31.6 dB   (b) Decompressed Cat Image, PSNR = 32.5 dB 

 

Figure – 9 (a,b)Decompressed Images by our approach 
 

Our approach compared with JPEG and PNG, these method are popular used in 

image compression specially when transmits through internet [1,2,4,7,10,11]. 

The JPEG is a lossy data compression scheme for color and gray-scale images, 

based on DCT and Arithmetic coding. It works on full 24-bit color, and was 

designed to be used with photographic material and naturalistic artwork, also 

the JPEG can produce a smaller file than PNG for photographic images since it 

uses a lossy encoding method specifically designed for photographic image 

data [1,2,9]. The PNG use lossless data compression methods, which are used 

in compression of library. The most common general-purpose, lossless image 

compression algorithm used with LZW[1,2,9]. These algorithms compared 

with our approach by image size, and PSNR as shown in Table1.  
 

 

Table 1 comparison our approach with JPEG   

Algorithm 
Image  

Name 

Before 

Compression 

After 

Compression 
PSNR 

Our  

Approach 

Lena 64Kbytes 11.7Kbyte 31.6 

Cat 363Kbyte 17.8Kbyte 32.5 

JPEG 
Lena 64Kbytes 12.8Kbyte 33.5 

Cat 363Kbyte 18.4Kbyte 39.7 

 

 

 

 

http://en.wikipedia.org/wiki/Photography
http://en.wikipedia.org/wiki/Lossy_data_compression
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5. Conclusion  

The advantage of our algorithm can be illustrated in the following steps:- 

1- The main reason for using DFT most of data transform to zero, when divided 

by Value1 (See Figure – 2 (d,e)). Also the DCT used to transform most of data 

to zero, when divided on Value2 (See Figure – 3 (c)). This process leads for 

increasing compression performance. 

2- Our algorithm gives a best performance for color image compression more 

than gray level images.  

3- The Genetic Algorithm used in Decompression part, looking for Minimized 

Matrix D(frequency), based on the probability of Matrix D(frequency) and the Matrix 

G. The genetic Algorithm finds the result as fast as possible, because not needs 

for mutation just needs for crossover between strings, and not need to increase 

number of strings at next generation.  

 

The disadvantage of our approach can be illustrated in the following steps: 

1- Using more than one transformation (i.e. using DFT and DCT) these 

processes reduce image quality more than JPEG technique (See Table 1). 

2- The arithmetic coding and decoding used two times by our approach, this 

led more computations and recurrence calculating may be led to increase time 

execution for compression and decompression, also the Genetic Algorithm 

increase decompression time. These reasons make our approach slower than 

JPEG.   
 

 

 

 
 

 

REFRENCES 

[1] K. Sayood, "Introduction to Data Compression", Morgan Kaufmann 

Publishers, Inc., San Francisco, CA, 2nd dition, 2000. 

[2] Rafael C. Gonzalez, Richard E. Woods "Digital Image Processing", 

Addison Wesley publishing company – 2001. 

[3] S. G. Chang, B. Yu, and M. Vetterli, "Adaptive wavelet shareholding for 

image denoising and compression",. IEEE Trans. Image Process. vol. 9, 

no. 9, pp. 1532.1546, 2000. 

[4] K. R. Rao, P. Yip, Discrete cosine transform: Algorithms, advantages, 

applications, Academic Press,San Diego, CA, 1990. 

[5] S. S. Pradhan, K. Ramchandran, Enhancing analog image transmission 

systems using digital side information: A new wavelet-based image coding 

paradigm, in:Proc. IEEE Data Compression Conf. (DCC), Snowbird,UT, 

2001, pp. 63–72. 

[6] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding 

using wavelet transform,” IEEE Trans. on Image Processing, vol. 1, no. 2, 

pp. 205–220, Apr. 1992. 



 

 
11 

[7] C. Christopoulos, J. Askelof, and M. Larsson, “Efficient methods for 

encoding regions of interest in the upcoming JPEG 2000 still image 

coding standard,” IEEE Signal Processing Letters, vol. 7, no. 9, pp. 247–

249,Sept. 2000. 
 

[8] M.A.Figueiredo and R.D.Nowak, “Anew algorithm of wavelet-based 

image restoration,” IEEE Trans. On Image Processing,vol. 12, no. 8, pp. 

906–916, August 2003. 

[9] I. E. G. Richardson, Video Codec Design, John Wiley & Sons, 2002. 

[10] D. Marpe, H. Schwarz and T.Wiegand, “Context-Based Adaptive Binary 

Arithmetic Coding in theH.264/AVC Video Compression Standard”, IEEE 

Transactions on Circuits and Systems for Video Technology, to be 

published in 2003. 

[11] K. R. Rao and P. Yip, Discrete Cosine Transform, Academic Press, 1990. 

[12] 8. I. Witten, R. Neal and J. Cleary, Arithmetic coding for data 

compression, Communications of theACM, 30 (6), June 1987 

[13] John R. Koza, "Genetic Programming II: Automatic Discovery of 

Reusable Programs", MIT Press, 1994. 

[14] Reiko Tanese, "Distributed Genetic Algorithms. In Proceedings of the 

Third International Conference on Genetic Algorithms", pp. 434-

439,1989.  

[15] Eun Yi Kim, Se Hyun Park, Sang Won Hwang, Hang Joon Kim, "Video 

sequence segmentation using genetic algorithms", Volume 23 , Issue 

7May, Elsevier Science Inc. New York, NY, USA, 2002. 

[16] Y. Hill, S. O'Keefe, and D. Thiel. "An investigation of wavelet design 

using genetic algorithms". In Microelectronic Engineering Research 

Conference, 2001. 
 

 

 

 

RReecciivveedd  ………………………………………………………………………………....……………………………………..…………..  ((2200//1122//22001100  ))  

Accepted ………………………………………………...………..……... ( 3/1 /2011 )  

 
 


