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Abstract
In this paper, we have given some necessary and sufficient conditions for all non-

oscillatory solutions to the nonlinear neutral differential equation

[v(t) — p(O)¥(x(E) 1"+ q(t) fF(v(e(t))) =0

So that converge to zero as t —+ 2. Some examples are given to illustrate the obtained

results.

1. Introduction

Consider the second order non-linear neutral differential equations

[y(®) = p(Oy(z(N]" + q()f(y(a(£))) = 0 (1.1)

Under the standing hypotheses:

(A,) p(t) € C([ty, 20); (0,00)),q(t) € C([ty, 0);R).
(A,) t(t),a(t) € C([ty0); R),lim, . 7(t) = oo, lim__,_ o(t) = oo, and =(t), o (t) are

increasing functions.
(A;) f(u) € C(R;R); uf(u) > 0foru=0; |[f(uw)l = Blul, B =0.

By a solution of eq.(1.1),we mean a function v(t) € C([p(t), ®); R) such

thaty(t) — p(t)¥(z(t)) is two times continuously differentiable andy(t) satisfies (1.1), where


mailto:hussainmohamad22@gmail.com
mailto:intidhar%20Albayaty@yahoo.com

p(t) =min {1(t),o(t), ty,}. A solution y(t) is said to be oscillatory if it has arbitrarily large
zeros otherwise ¥(t) is said to be non-oscillatory. Hence there has been much research

activity concerning oscillatory and nonoscillatory behavior of solutions to different classes of

neutral differential equations, we refer the reader to [1-13].
2. Main Results

Before we present the results we begin with the following lemma which is helpful to establish

our main results

Lemma 2.1 ([14], Lemma 2.1 and Lemma 2.2, pp.477-478)

Assume that p € C([ty.0);RT), T € C([ty, 20);R), fort = t,

i. Suppose that 0 < p(t) = 1,fort = t;.Let ¥(t) be a non-oscillatory solution of a
functional inequality v (£)[ () — p(£)¥(z(£))] < 0, in a neighborhood of

infinity. Suppose that =(t) < t for t = tg, then y(t) is bounded. If moreover

0 < p(t) <8< 1,t = t, for some positive constant &, thenlim, _, .. v(t) = 0.

ii. Suppose that 1 < p(t) fort = t,. Let y¥(t) be a non-oscillatory solution of a
functional inequality y(£)[v(t) — p(t)¥(z(£))] = 0 in a neighborhood of infinity.
Suppose that 7(t) = t for t = t,, then y(t) is bounded. If moreover

1< &= p(t), t = t,, for some positive constant &,then lim, . ¥(t) = 0.
Let

z(t) = y(t) —p()y(z(D)) (1.2)



Theorem 2.2 Assume that (A,) — (A;) hold, p(t) =p = 1,q(t) < 0,672 (z(t)) = ¢

(t) = t, and

= lg(s)I 1
limsu —Ei.'i' — .
Pt L-'—{rc:}j?ﬂ(’f'l(ﬂ(s})) "B ()

Wheref as in(A;). Then every nonoscillatory solution of equation (1.1) tends to zero

ast — oo,

Proof. Suppose that ¥(t) be anonoscillatory solution of (1.1). Without loss of

generality assume that y(t) = 0,y(a(t)) = 0, y(z(t)) = 0 for t = t,.
Then from (1.1) and (1.2) it follows that
2" =—a®f (y(e(®)) = 0 (14)
Hence z(t), z"(t) are monotone functions, we have two cases for z'(t)
1. 2'(t) =0 for t=t; =¢ty;, 2. z' () <=0 for t =1t =t,.

Case 1: Inthiscase z""(t) =0, z'(t) = 0, z(t) = 0, leads to lim,_, . z(t) = oo

Then from (1.2) it follows that z(t) < y(t) which implies that lim,_, . y(t) = co.

On the other side by lemma[2.1-ii],it follows that ¥(t) is bounded , this is a

contradiction.

Case 2: z""(t) =0, z'(t) = 0, we have two sub-cases for z(t)

Case (@) z(t)=0, for t=t,=1t,; Case(b) z(t) <0 for t = ¢t, = t,.



Case (a): In this case we have z"(t) =0, z'(t) <0, z(t) = 0.

By lemma [2.1-ii], it follows that lim, . y(t) = 0.

Case(b) z''(t) =0, z'(t) < 0, z(t) < 0

From (1.2) we get z(t) = —p(£)y(z(£)) thatis v(z(t)) = ﬁz[t}

then

y(o(t) > ————=
() }p(r_ltcr[t:]))

2 (o(e) (15)
Integrating (1.4) from ¢ to @ we get

=@z~ " a@f (¥(o()) s (16)
Using (4,) in (1.6) it follows that

=92 4 [ "4y (e®)ds (17)

Substituting (1.5) in (1.7)we obtain

—2' (1) zﬁr a(s)

A mz[r_ (G[E]:]:]d.‘:’-‘ (18:']

Now from condition (1.3) we have

- |q[:.5‘]| Slq[:'gjl
ek tfr RO f tae) PT (0 ())

We claim that the condition (1.3) implies that



sl
L P(T_l(ﬂ(b‘)]]ds , for t=t, (1.9)

Otherwise

= slg(s)l o
L GO

We can choose t; = t, large enough such that

Jr*x =lg(s)l
t

——— __ds <=1 which is a contradiction.
g it Hola))

Multiplying (1.4) by t and integrating from t, to t, we have forall t = t,

J.:s z"(s)ds = — J:s q(s)f(v(a(s))ds

z

b2 (6) — ty2'(8,) — 2(8) +2(t,) = —B f s q(s)y(o(s)) ds

3

= Bz(z 7 (o(t2))) j ﬁi})] -

As t — oo the last inequality yields to

5 q(s)
p(t™ o (s))) ds

[ 12/ () — 209 — 12 (6) + 2] 2 B2 (0(e)) [
Then lim,__[tz'(t) —z(t)] = w0

Hence

tz'(t) = z(t) for t=ty;=t, (1.10)

From (1.8) we get



q(s)

mzh_l[”@)}d& (1.11)

—t z'(t) Eﬁ‘rJ.I

Substation (1.10) in (1.11) we get

lq ()]

————z(t Y a(5)))ds
Py O

—z(t) = —ft J:E

= lg(s)| _
> — ———z(t Y o(5)))ds
ﬁtL-‘-u:ru:r:-:o?’[’f'l(ﬂ(ﬁ))] )

[t e
=kt (tjJ;-‘-u:ru::}}l"(’f_l(ﬂtsm

. = lg(s)]
1=F¢ J;—'_I:r,:ﬂ}p[r_l(ﬂ'[.'i'j]]

Which is a contradiction. The proof is complete. O

Example 1: Consider the following neutral delay equation
[(rj i1 (2::]” - 1+1 ‘ t—n t::=~1 E1l
v - G- gDy =1+ =0 = (E1)

p(t) =>—— 1) =2t, o(8) =Z,9() = = .f(¥(a(D)) = [1+ YD),

o (z(t)) = 6t, T a(s)) = g, and 5 =1.

= lg(s)l = &%
——————ds = ———ds
L—:,:r.:r})p(’r_l(ﬂ'[sjjj fgr %[1 —21—3]

limsupﬁtfm &ﬁ:%hmt m[ 2 —E]d.'s:m
t—roo E_Llir':r}jlp (T_i[G(E]:]:] 9 oo ar 25—1 =



All condition of theorem 2.2 hold. Then every solution of (E1) tends to zero as

. 1 . .
t — oo, For instance v(t) = - is such a solution.

Theorem 2.3 Assume that 0 < p(t) =p,q(t) =0, (t) <t, ¢ (z™"(t)) = tand

n i—1

lim supﬁtfm‘ }f(l +Zl_[p[:«;n(g[sjjjjq[5]ds =1 (1.12)
e M)

E—*oa
i=1 k=0
Wheref as in(A;), Then every nonoscillatory solution of (1.1) tends to zero

ast — oo,

Proof. Suppose that ¥(t) be nonoscillatory solution of (1.1). Without loss of
generality assume that y(t) is an eventually positive so there exists t; such that

v(t) = 0,y(z(t)) = 0 and y(a(t)) = 0 for t = t,.
From (1.1) it follows that
2"(8) = —q(®f (y(o (D)) =0 (1.13)
Then we have two cases for z'(t)
Casel.z'(t) <0 for t =t; =t, ;Case2. z'(t) =0 for t = t; = t,.

Case 1: Wehave z''(t) = 0, z'(t) = 0, z(t) < 0, it follows that

lim, . z(t) = —co since z(t) = —p(t)v(z(t)) then lim,_ . v(t) = co.



On the other hand by lemma [2.1-i] it follows ¥(t) is bounded, which is a

contradiction.

Case 2: Inthis case z"'(t) =0, z'(t) = 0, we have two sub-cases for z(t)

Case (@) z(t) <0 fort=1t,=t,; Case(b) z(t) =0 for t = t, = t,.

Case (a): z"(t) =0, z'(t) =0, z(t) <0
By lemma][ 2.1-i] it follows that lim, . v(t) = 0.
Case (b): z""(t) =0, z'(t) =0, z(t) =0

y(t) = z(t) + p(t)¥(z(t))
=z(t) +p(O[z(x(®) + p(z(O) )y (z2())]
=z(t) + p(Dz(z()) + (O (D) [z(z* (D)) + p(z2())y(z3 ()]

As in thermo [2.4] From [15] we can written the following inequality

y(o(®) = flL +Z [ [2(=*e@)N (@)

Integrating (1.13) from t to oo we get

o< — f T 4 F (o)) ds

t
Using (4,) the last inequality implies
~2@<-8| a©y(e©)ds
E

Using (1.14) we get

(1.14)

(1.15)



n i—1

~2@<-8] @+ [ [peFEOnaeEs (e

i=1 k=0

We claim that
fsf[l +Zl Ep(rk(a(sm a()ds = oo
Otherwise

J, e +Z Eptfktatsm a()ds < oo

We can find t, = t, large enough such that

J.Isf[l +iﬁp(r"(a(s})]q(sﬁs <1

Which is a contradiction. Then (1.17) holds.

From (1.13) we obtain

J:S z'(s)ds = _J:S a()F (v((s)))ds

]

(1.17)

for t>=t,

t2'(6) — ty2" () — 2(D) +2(t) < —B f s q(8)y(o(s))ds

[ L

<-p f sq(s)f[1+

i=1 k

< —Bz(z™ (a[tzjjj sF[1+

1

=0

p(t*(e(s))] z(z™(o(s)) ds

T L

i=1 k

1

0

p(r*(a(s))]a(s) ds



hence as t — o the last inequality implies that

}ﬂ[z(t] —tz'(t)] = w

Thenfor t=t; =t,

z(t) = tz'(t) (1.18)
From (1.16)
@28t [ a1+ Y | [peH e (o@)s (119

Substituting (1.18) in (1.19) we get

n i—1

() = pt f T a9 + [ [peemeerie)as
= ﬁrf: . a(s)f[1+ Z ﬁp(r“‘(a(s))]z(r” (o(s))ds
> Bez(t) f :r_nrr}}qis]f[l + Z f[p(rk(a(sm ds

1= 8 f:-‘—.:r-“.::}} q(s)f[1+ X%, [ p(t*(o(s))] ds which is a contradiction.

The proof is complete. m

Example 2: Consider the following neutral delay equation

s | 2
b oAl + [5- 3] (5) =0 23 @
R

10



B=1Ln=10(8)="5S10 =vio '@ (t) =2t,p(H) =8, () =5 -

2 B’

fr®) = Vv®, fl1+Z5 e (e(@)] =V3

n i—1
] k _G[El2
-L“-u:r‘“u::}}f[l_F;HPET (e(t))] q(s)ds EJ.R [53 53] ds
oo n i-1 ;
lim sup ft fa+ "(o(s)) a(s) ds = V3 lim [4 — —] = 4v3
e f}} ( Z]_[p( (o()) a(s) lim [4 - —] = 4v
=1

All condition of theorem [2.3] hold. Then every solution of (E2) tends to zero as

. 1 . .
t — oo, For instance v(t) = = Is such a solution.
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