On Uncertain Martingale

By

Noori .F.A.AL-Mayahi

And

Zainab .H.A.AL-Zaubaydi

Department of Mathematics

College of Computer and Mathematics Science

AL-Qadisiyah University

<u>Abstract</u>

We introduce some a new properties of uncertain conditional expectation, also we give a new kind of martingale and study some theorems related with it.

Key words

uncertain measure, uncertain variable, conditional uncertain measure, uncertain conditional expectation and uncertain martingale.

<u>1-Introduction</u>

Probability theory often profitable to interpret results in terms of a gambling situation . for example $if X_1, X_2, \dots$ is a sequence of random variables, we may think of X_n as our total winnings after n trials in a succession of games. Having survived the first n trial, our expected fortune after trial n+1 is $E(X_{n+1} | X_1, \dots, X_n)$. If equals X_n , the game is "fair" since expected gain on trial the n+1is $E(X_{n+1} - X_n | X_1, \dots, X_n) = X_n - X_n = 0$. If $E(X_{n+1} - X_n | X_1, \dots, X_n) \ge X_n$ the game is "favorable" and $E(X_{n+1} - X_n | X_1, \dots, X_n) \le X_n$, the game is "unfavorable "[2].Uncertainty theory was founded by Liu [3] in 2007 and refined by Liu [5] in 2010. Let (Ω, F) be a measurable space, where Ω is a set and F is a σ -field on Ω . A subset A of Ω is called measurable (measurable with respect to the σ -field F), if $A \in F$, i.e., any member of F is called a measurable set [2]. A set function μ from F to [0,1] is a real-valued set function μ defined on σ -field F is called an uncertain measure , if it satisfies the following four axioms:

Axiom 1.(Normality Axiom) $\mu(\Omega) = 1$.

Axiom 2.(Self-duality Axiom) $\mu(A) + \mu(A^c) = 1$ for any event A.

Axiom 3.(Countable subadditivity Axiom) For every countable sequence of events $\{A_i\}$, we have $\mu(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} \mu(A_i)$ (1)

Axiom 4.(Product measure Axiom) Let Ω_k be a nonempty sets on which μ_k are uncertain measures, k = 1, 2, ..., n, respectively. Then the product of uncertain measures μ_k is an uncertain measure μ on the product σ – field $\Omega_1 \times \Omega_2 \times ... \times \Omega_n$ satisfying

$$\mu(\prod_{k=1}^{n} A_k) = \min_{1 \le k \le n} \mu_k(A_k)$$
(2)

That is, for each $A \in \Omega$, we have

$$\mu(A) = \begin{cases} \sup_{\substack{A_1 \times A_2 \times \dots \times A_n \subset A}} \min_{\substack{\forall \le k \le n \\ 1 - \sup_{A_1 \times A_2 \times \dots \times A_n \subset A^c}} \min_{\substack{\forall \le k \le n \\ 1 \le k \le n \\ 0.5, \\ 0.5, \\ 0.5}} \min_{\substack{if \\ A_1 \times A_2 \times \dots \times A_n \subset A^c}} \sup_{\substack{\forall \le k \le n \\ 1 \le k \le n \\ 1 \le k \le n \\ 1 \le k \le n \\ 0.5}} \min_{\substack{\mu_k(A_k) \\ 1 \le k \le n \\ 0.5}} \mu_k(A_k) \end{cases} > 0.5$$
(3)

Then the triplet (Ω, F, μ) is called an uncertainty space.

<u>Remark (1-1)</u>

The probability measure is not uncertain measure as shown by the following example:

Example (1-2)[4]

Let $g: R \to R$ is a nonnegative and integrable function such that $\int_{R} g(x)dx = 1$. Define $P: \beta(R) \to R$ by $P(A) = \int_{A} g(x)dx$, is a probability measure but not uncertain measure.

Ans:

Step1: we prove the normality .i.e., P(R) = 1.

$$P(R) = \int_{R} g(x) dx = 1$$

Step2: we prove the self-duality .i.e., $P(A) + P(A^c) = 1$.

Since
$$P(A \cup A^c) = \int_{A \cup A^c} g(x) dx = \int_R g(x) dx = 1$$
, and $P(A) + (A^c) = P(A \cup A^c)$

Thus, $P(A) + (A^c) = P(A \cup A^c) = 1$

Step3: Let $\{A_i\}$ be a sequence of sets in $\beta(R)$, then $P(\bigcup_{i=1}^{\infty} A_i) = \int_{\substack{x \\ i=1 \\ i \neq i}} g(x) dx = \int_R g(x) dx = 1$, and $\sum_{i=1}^{\infty} P(A_i) = 1$

Then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$, and then *P* is not uncertain measure.

Example(1-3)[3,4,5,6]:

Suppose that $g: R \to R$ is nonnegative satisfying $\sup\{g(x) + g(y) : x \neq y\} = 1$, define $\mu: \beta(R) \to R$, the set function

$$\mu(A) = \begin{cases} \sup\{g(x) : x \in A\}, & \sup\{g(x) : x \in A\} < 0.5\\ 1 - \sup\{g(x) : x \in A^c\}, & \sup\{g(x) : x \in A\} \ge 0.5 \end{cases}$$
(4)

for all $A \in \beta(R)$ is an uncertain measure.

Definition (1-4) [2]

Let (Ω, F) and (Ω', F') be two measurable spaces. A function $g: \Omega \to \Omega'$ is said to be a measurable with respect to F and F', if $g^{-1}(A) \in F$ for all $A \in F'$.

Definition (1-5) [5,6]

an uncertain variable is a measurable function from an uncertainty space (Ω, F, μ) to the set of real numbers, i.e., for any Borel set *B* of real numbers. The set $\{X \in B\} = \{x \in \Omega \setminus X(x) \in B\}$ is an event.

Definition (1-6) [2]

Let $A \subseteq \Omega$. A function $I_A : \Omega \to R$ defined by :

$$I_{A}(\omega) = \begin{cases} 1 & , \omega \in A \\ 0 & , \omega \notin A \end{cases}$$
(5)

Is called indicator function or (characteristic function) of A.

Definition (1-7)

Let μ and λ be two uncertain measures on measurable space (Ω, F) . We say that λ is absolute continuous with respect to μ (written $\lambda \ll \mu$) if $\lambda(A) = 0$ for every $A \in F$ with $\mu(A) = 0$, i.e., for all $A \in F$ with $\mu(A) = 0$, we have $\lambda(A) = 0$.

Definition (1-9)[1]

A filtration $\{F_n, n \in N\}$ is a sequence of sub σ -fields of F such that for all $n \in N, F_n \subset F_{n+1}$.

Definition (1-10)[6]

Let X be an uncertain variable. Then the expected value of X is defined by

$$E(X) = \int_{0}^{+\infty} \mu(X \ge r) dr - \int_{-\infty}^{0} \mu(X \le r) dr$$
(6)

Provided that at least one of the two integrals is finite.

Lemma (1-11) (Jensen's Inequality) [5,6]

Let *X* be an uncertain variable and $f : R \to R$ a convex function. If E(X) and E(f(X)) are finite, then

$$f(E(X)) \le E(f(X)) \tag{7}$$

Especially, when $f(X) = |x|^p$ and $p \ge 1$, we have $|E(X)|^p \le E(|X|^p)$.

Proof:

Since f is a convex function, for each y, there exists a number K such that $f(x) - f(y) \ge K \cdot (x - y)$. Replacing x with X and y with E(X), we obtain

$$f(X) - f(E(X)) \ge K.(X - E(X)).$$

Taking the expected value on both sides, we have

 $E(f(X)) - f(E(X)) \ge K.(E(X) - E(X)) = 0.$

Which proves the inequality.

2- Radon-Nikodym theorem on uncertain measure

Let μ and λ be two uncertain measure on the σ -field F of subsets of Ω . Assume that $\lambda \ll \mu$, then there is a Borel measurable function $g: \Omega \to R$ such that $\lambda(A) = \int_{A} g d\mu$, for all $A \in F$. g is called the Radon-Nikodym derivative of λ with respect to μ . It is sometimes denoted by $\left[\frac{d\lambda}{d\mu}\right]$, i.e. $g = \left[\frac{d\lambda}{d\mu}\right]$.

Proof:

Let $\{g_n\}$ be a bounded increasing sequence of nonnegative measurable function in F.

Since every monotonic and bounded sequence is converge.

Then there exists a unique function g in F such that $\lim_{n\to\infty} g_n = g$

Now, we must to show that $\lambda(A) = \int_{A} g d\mu$ for all $A \in F$.

Define $\lambda_1(A) = \lambda(A) - \int_A g d\mu$ for all $A \in F$, and $\lambda_1 \ll \mu$

Since $\mu(A) = 0$ for all $A \in F$, then $\lambda_1(A) = 0$. By absolute continuity thus

$$\lambda(A) = \int_A g d\mu$$
 for all $A \in F$.

3- The conditional uncertain measure

Definition (3-1)

Let (Ω, F, μ) be an uncertainty space and $A, B \in F$, then the conditional uncertain measure of *A* given *B* is defined by

$$\mu_{B}(A) = \mu(A \mid B) = \begin{cases} \frac{\mu(A \cap B)}{\mu(B)}, & \text{if } \frac{\mu(A \cap B)}{\mu(B)} < 0.5\\ 1 - \frac{\mu(A^{c} \cap B)}{\mu(B)}, & \text{if } \frac{\mu(A^{c} \cap B)}{\mu(B)} < 0.5\\ 0.5, & o.w \end{cases}$$
(8)

Provided that $\mu(B) > 0$.

Definition (3-2)

Let (Ω, F, μ) be an uncertainty space and let *G* be a sub σ -field of *F*. Then the conditional expectation of *X* given *G* is any uncertain variable *Z* which satisfies the following two properties:

(a) Z is G – measurable.

(b) if
$$A \in G$$
, then $\int_{A} Xd\mu = \int_{A} Zd\mu$.

We denote Z by E(X | G).

Theorem (3-3)

If X, X_1 , X_2 ,be an uncertain variables on (Ω, F, μ) , a and b real numbers. Then

1- If
$$X = a$$
 a.e., then $E(X | G) = a$ a.e.[μ]
2- If X is G-measurable, then $E(X | G) = X$ a.e.[μ]
3- $E(E(X | G)) = E(X) .[\mu]$
4- $E(aX_1 + bX_2 | G) = aE(X_1 | G) + bE(X_2 | G)$ a.e.[μ]
5- If $G = \{\phi, \Omega\}$, then $E(X | G) = E(X)$ a.e.[μ]
6- If $X \ge 0$ a.e., then $E(X | G) \ge 0$ a.e.[μ]
7- If $X_1 \le X_2$ a.e., $E(X_1 | G) \le E(X_2 | G)$ a.e.[μ]
8- $|E(X | G)| \le E(|X||G)$ a.e.[μ]

- 9- If Y is G measurable and XY is integrable then E(XY | G) = YE(X | G) a.e.[μ]
- 10- If X_n and X are integrable, and if either $X_n \uparrow X$ or $X_n \downarrow X$, then

$$E(X_n \mid G) \to E(X \mid G) \text{ a.e.}[\mu]$$

Proof:

1-If X = a a.e., then it is G – measurable and $\int_{A} X d\mu = \int_{A} a d\mu$ for all $A \in G$ and then E(X | G) = a a.e. $[\mu]$

2- If X is G-measurable and $\int_{A} Xd\mu = \int_{A} E(X \mid G)d\mu$ for all $A \in G$, then $E(X \mid G) = X$ a.e. $[\mu]$

3- Take $A = \Omega$ in condition (b) of definition (3-2), we have that $\int_{\Omega} X d\mu = \int_{\Omega} E(X \mid G) d\mu$ and this implies that $E(E(X \mid G)) = E(X)$. a.e. $[\mu]$

4- It's clearly that $E(aX_1 + bX_2 | G)$ is *G*-measurable and if $A \in G$, apply condition (b) of definition (3-2) to X_1 and X_2 to see that

$$\int_{A} (aE(X_1 \mid G) + bE(X_2 \mid G))d\mu = a \int_{A} X_1 d\mu + b \int_{A} X_2 d\mu = \int_{A} (aX_1 + bX_2)d\mu.$$

5- Since $\int_{A} X d\mu = \int_{A} E(X) d\mu$ for all $A = \phi$ or $A = \Omega$, we have E(X | G) = E(X)a.e. $[\mu]$

6- Take $A = \{E(X | G) < 0\} \in G$. then by condition (b) of definition (3-2), we have, $0 \ge \int_{A} E(X | G) d\mu = \int_{A} X d\mu \ge 0 \Rightarrow \mu(A) = 0$.

7- Since $X_1 \le X_2$ a.e., then $Z = X_2 - X_1 \ge 0$ a.e., by (6) we have $E(X_2 \mid G) - E(X_1 \mid G) \ge 0$ a.e., thus $E(X_1 \mid G) \le E(X_2 \mid G)$ a.e. $[\mu]$

8- Since $-|X| \le X \le |X|$, it follows from (7), that $|E(X | G)| \le E(|X| | G)$ a.e. [μ]

9- Let
$$Y = I_B$$
 (I_B is indicator function) for some $B \in G$. Then

$$\int_A YE(X \mid G)d\mu = \int_A I_B(X \mid G)d\mu = \int_{A \cap B} E(X \mid G)d\mu = \int_{A \cap B} Xd\mu = \int_A YXd\mu$$

Thus the condition (b) of definition (3-2), holds in this case.

10- It follows from definition (3-2), by letting Z = E(X | G) and for all $A \in G$. We have $\int_{A} Zd\mu = \lim_{n \to \infty} \int_{A} Z_n d\mu = \int_{A} Zd\mu$.a.e[μ]

Thus *Z* satisfies both (a) and (b) of definition (3-2), and therefore equals E(X | G)

4-Uncertain martingale

Definition (4-1)

An uncertain stochastic process is a family of uncertain variables defined on the same uncertainty space.

Definition (4-2)

An uncertain stochastic process $X = \{X_n, n \in N\}$ is an uncertain adapted to the filtration $\{F_n, n \in N\}$ if for all n, X is F_n –measurable.

Definition (4-3)

An uncertain stochastic process $X = \{X_n, F_n, n \in N\}$ is said to be an uncertain martingale if it is satisfying the following conditions:

- (1) X is an uncertain adapted to filtration $\{F_n, n \in N\}$.
- (2) X_n is integrable for all $n \in N$.

(3)
$$E\{X_{n+1} | F_n\} = X_n \text{ a.e.}[\mu], \text{ for all } n \in N$$
 (9)

Definition (4-4)

An uncertain stochastic process $X = \{X_n, F_n, n \in N\}$ is said to be an uncertain sub-martingale (resp, uncertain super-martingale) with respect to the filtration $\{F_n, n \in N\}$ if it is satisfying the following conditions:

- (1) X is an uncertain adapted to filtration $\{F_n, n \in N\}$.
- (2) X_n is integrable for all $n \in N$.
- (3) $E\{X_{n+1} | F_n\} \ge X_n \text{ a.e.}[\mu], (\text{ resp}, E\{X_{n+1} | F_n\} \le X_n \text{ a.e.}[\mu]) \text{ for all } n \in N$

Example (4-5)

An uncertain stochastic process $X = \{X_n, F_n, n \in N\}$ is an uncertain submartingale iff $-X = \{-X_n, F_n, n \in N\}$ is an uncertain super-martingale.

Ans:

Since $E\{X_{n+1} | F_n\} \ge X_n$ a.e., iff $E\{-X_{n+1} | F_n\} \le -X_n$ a.e. for all $n \in N$.

 $\Rightarrow X = \{X_n, F_n, n \in N\} \text{ is an uncertain sub-martingale iff}$ $-X = \{-X_n, F_n, n \in N\} \text{ is an uncertain super-martingale.}$

Example (4-6)

If $X = \{X_n, F_n, n \in N\}$ is an uncertain sub-martingale and K a constant, then $\max\{X, k\} = \{\max\{X_n, K\}, F_n, n \in N\}$ is an uncertain sub-martingale.

Ans:

$$\max\{X_{n+1}, K\} \ge X_{n+1} \implies E\{\max\{X_{n+1}, K\} \mid F_n\} \ge E\{X_{n+1}ZF_n\}$$

Since $E\{X_{n+1} | F_n\} \ge X_n \implies E\{\max\{X_{n+1}, K\} | F_n\} \ge X_n$

And similarly

$$E\{\max\{X_{n+1}, K\} | F_n\} \ge K \Longrightarrow E\{\max\{X_{n+1}, K\} | F_n\} \ge \max\{X_n, K\}$$
$$\Longrightarrow \max\{X, K\} = \{\max\{X_n, K\}, F_n, n \in N\}$$

is an uncertain sub-martingale.

Example (4-7)

If $X = \{X_n, F_n, n \in N\}$ is an uncertain super-martingale and K a constant, then $\min\{X, k\} = \{\min\{X_n, K\}, F_n, n \in N\}$ is an uncertain super-martingale.

Ans:

By the same way we get the answer.

Theorem (4-8)

Let $X = \{X_n, F_n, n \in N\}$ is an uncertain martingale and $f : R \to R$ a convex function, such that $f(X_n)$ is integrable for all n, then $f(X) = \{f(X_n), F_n, n \in N\}$ is an uncertain sub-martingale.

Proof:

By Jensen's inequality for uncertain conditional expectations we have,

 $E\{f(X_{n+1} | F_n\} \ge f\{E(X_{n+1} \setminus F_n)\}$. Since $X = \{X_n, F_n, n \in N\}$ is an uncertain martingale, it follows that $E\{X_{n+1} | F_n\} = X_n$

then $E\{f(X_{n+1} | F_n)\} \ge f\{E(X_{n+1} | F_n)\} = f(X_n)$

thus $f(X) = \{f(X_n), F_n, n \in N\}$ is an uncertain sub-martingale.

Theorem (4-9)

Let $X = \{X_n, F_n, n \in N\}$ is an uncertain sub-martingale and $f: R \to R$ a convex increasing function, such that $f(X_n)$ is integrable for all n, then $f(X) = \{f(X_n), F_n, n \in N\}$ is an uncertain sub-martingale.

Proof:

By Jensen's inequality for uncertain conditional expectations we have,

$$E\{f(X_{n+1} | F_n)\} \ge f\{E(X_{n+1} | F_n)\}$$

Since $X = \{X_n, F_n, n \in N\}$ is an uncertain

sub-martingale, it follows that $E\{X_{n+1} | F_n\} \ge X_n$ a.e.,

since is increasing function, then $f\{E(X_{n+1} | F_n)\} \ge f(X_n)$ and then

$$E\{f(X_{n+1} \mid F_n)\} \ge f(X_n)$$

Thus $f(X) = \{f(X_n), F_n, n \in N\}$ is an uncertain sub-martingale.

<u>Theorem (4-10) (Doop Decomposition)</u>

Let $X = \{X_n, F_n, n \in N\}$ is an uncertain sub- martingale with respect to the filtration $\{F_n, n \in N\}$. Then there exists an uncertain martingale $M = \{M_n, F_n, n \in N\}$ and an uncertain process $A = \{A_n, n \in N\}$ such that

- 1- *M* is an uncertain martingale relative to $\{F_n, n \in N\}$.
- 2- *A* is an increasing uncertain process: $A_n \leq A_{n+1}$ a.e.
- 3- A_n is F_{n-1} -measurable for all $n \in N$.

$$4-X_n = M_n + A_n$$

Proof:

1- Set $A_0 = 0$, and $A_n = A_{n-1} - (X_{n-1} - E(X_n | F_{n-1}))$ for all $n \ge 0$.

$$\Rightarrow A_n = \sum_{k=0}^{n-1} (E(X_{k+1} | F_n) - X_k) \text{ for all } n \ge 0 \text{ and } A_{n+1} - A_n = E(X_{n+1} | F_n) - X_n \text{ for all } n \ge 1.$$

Since $X = \{X_n, F_n, n \in N\}$ is an uncertain sub-martingale

$$A_{n+1} - A_n = E(X_{n+1} | F_n) - X_n \Longrightarrow E\{X_{n+1} | F_n\} \ge X_n$$
$$\Longrightarrow E\{X_{n+1} | F_n\} - X_n \ge 0$$
$$\Longrightarrow A_{n+1} - A_n \ge 0$$

 $\Rightarrow \{A_n\}$ is increasing sequence of uncertain variables.

Take, $M_n = X_n - A_n$ for all n $\Rightarrow M_{n+1} - M_n = (X_{n+1} - A_{n+1}) - (X_n - A_n)$ $= X_{n+1} - X_n - (A_{n+1} - A_n)$ $= X_{n+1} - E(X_{n+1} | F_n)$ $\Rightarrow E(M_{n+1} - M_n | F_n) = E(X_{n+1} | F_n) - E(E(X_{n+1} | F_n) | F_n)$ $\Rightarrow E(M_{n+1} | F_n) - E(M_n | F_n) = E(X_{n+1} | F_n) - E(X_{n+1} | F_n)$

$$\Rightarrow E(M_{n+1} | F_n) - M_n = 0$$

$$\Rightarrow E(M_{n+1} | F_n) = \mu_n$$

$$\Rightarrow M = \{M_n, F_n, n \in N\} \text{ is an uncertain martingale.}$$

2- Set $A_0 = 0$, and $A_n = A_{n-1} - (X_{n-1} - E(X_n | F_{n-1}) \text{ for all } n \ge 0.$

 $\Rightarrow A_n = \sum_{k=0}^{n-1} (E(X_{k+1} | F_n) - X_k) \text{ for all } n \ge 0 \text{ and } A_{n+1} - A_n = E(X_{n+1} | F_n) - X_n \text{ for all } n \ge 1.$

Since $X = \{X_n, F_n, n \in N\}$ is an uncertain sub-martingale

$$A_{n+1} - A_n = E(X_{n+1} | F_n) - X_n \Longrightarrow E\{X_{n+1} \setminus F_n\} \ge X_n$$
$$\Longrightarrow E\{X_{n+1} | F_n\} - X_n \ge 0$$
$$\Longrightarrow A_{n+1} - A_n \ge 0$$

 \Rightarrow {*A_n*} is increasing sequence of uncertain variables.

3- since A_n is F_n -measurable and $F_n \subseteq F_{n-1}$, then A_n is F_{n-1} -measurable for all $n \in N$.

4- Let $X = \{X_n, F_n, n \in N\}$ is an uncertain sub-martingale

Set $A_0 = 0$, and $A_n = A_{n-1} - (X_{n-1} - E(X_n | F_{n-1}))$ for all $n \ge 0$.

 \Rightarrow {*A_n*} is increasing sequence of uncertain variables.

Take, $M_n = X_n - A_n$ for all n

 $\Rightarrow M = \{M_n, F_n, n \in N\}$ is an uncertain martingale.

Reference

[1] Kannan .D. "An introduction to stochastic process", Elsevier North Holland, Inc,1979.

[2] R.B. Ash," Real analysis and probability ", Academic process, New York, 1992.

[3] Liu .B. "Uncertainty theory ", 2 nd ed ., Springer-Verlag, Berlin, 2007.

[4] Liu .B. "Theory and practice of uncertain programming", 3ed., UTLAB, 2009.

[5] Liu .B. " Uncertainty theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer-Verlag, Berlin, 2010.

[6] Liu .B. "Uncertainty theory", 4th ed ., UTLAB, 2011.