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 الخلاصة

 
انًغُاطٍسً   زبظانأعادة ، يا ٌسًى )عُها ٌتزاجع أو( نًهغٍتيٍ انُمطت ا انذي ٌمتزب انًعشول انًجال هى خظ انعًىد انفمزي

 ٌتزكش انتٍار، وأٌ  فً انًُطمت انًجاورة نهًزوحت انًجال انًغُاطٍسً خطىط حمم ٌحذث عُذانذي  انًهتىي فً انعًىد انفمزي

انعًىد انُظاو  هذا فً .انتُاوب اَشلاقإنى   ٌخضع انحمم انًغُاطٍسً انًجاور خطىطأٌ  بحٍج يعهى طىل انعًىد انفمز

انتٍار ضًٍ  طبمت هُذست  .انًزوحت أو انعًىد انفمزي عبزانتذفك  ونٍس هُان َمم فً  ٌكىَاٌ يتعايذٌٍ وانًزوحتانفمزي 

 انعًىد انفمزي أعادة ربظ .انًغُاطٍسً نهحمم انتًاحم هىع بشذة ٌحذث تعتًذ انذي انًهتىي إعادة انزبظ فً انعًىد انفمزي

 يختهفت انمٍى انذاتٍت تكىٌ عُذيا بٍضاوي انشكم يمطع عزضً يع انعًىد انفمزي، ضٍك حىل فً أَبىب انًهتىي ٌحذث

 هى طىلع ٌجزي مصٍز نهمطع انُالصان انًحىر ضًٍ فً انمطع انُالص ٌشداد عُذ سٌادة  درجت عذو انتًاحم ،الاَحزاف و.

 .انتًاحم عهى درجت، لا تعتًذ بشذة انمٍاسٍت  إعادة الاتصال، ويعذل نهتٍار انذروة أٌضا تى انعخىر عهى  .انًجال انمىي اتجاِ

 
ABSTRACT 
The spine is an isolated field line which approaches the null (or recedes from it), so called 

torsional spine reconnection occurs when field lines in the vicinity of the fan rotate, with current 

becoming concentrated along the spine so that nearby field lines undergo rotational slippage. In 

of these region, the spine and fan are perpendicular and there is no flux transfer across spine or 

fan. The geometry of the current layers within which torsional spine reconnection occur is 

strongly dependent on the symmetry of the magnetic field. Torsional spine reconnection occurs 

in a narrow tube around the spine, with elliptical crosssection when the fan eigenvalues are 

different. The eccentricity of the ellipse increases as the degree of asymmetry increases, with the 

short axis of the ellipse being along the strong field direction. The spatiotemporal peak current, 

and the peak reconnection rate attained, are found not to depend strongly on the degree of 

asymmetry. 

 

1- INTRODUCTION 
 

Magnetic reconnection is a fundamental process in many areas of plasma physics, whereby the 

magnetic field, B, becomes restructured. When null points are present the global topology of the 

field changes. Our ideas on how this restructuring occurs come mostly from the well-studied 

case of reconnection in two dimensions. In two dimensions, reconnection occurs at hyperbolic 

null points of the magnetic field (see, e.g. Priest and Forbes, 2000 [1], for a review), commonly 

known as X-points (see Figure 1). A plasma flow transports magnetic flux towards the X-point, 

where the reconnection takes place, and the flow then transports the reconnected magnetic flux 



away from the X-point. In terms of magnetic field lines, the process of reconnection involves a 

pair of field lines being brought in from two quadrants on opposite sides of the null. At the X-

point each of these field lines breaks, when they lie along the separatrices of the field. They are 

then rejoined and move out in the other two quadrants of B. The result is that the field line 

footpoints are pair-wise differently connected when they leave the reconnection region. Magnetic 

reconnection is a fundamentally non-ideal process; in an ideal plasma, magnetic field lines 

maintain their identity for all time, and are said to be „frozeninto‟ the plasma. The non-idealness 

may be the result, for example, of a non-zero resistivity, ή, in which case, assuming no other 

non-ideal effects are important, the process satisfies Ohm‟s law in the form [7] 

 

E + v× B =ήJ,   

Where E, v, B, ή and J are the electric field, velocity, magnetic field,  resistivity and electric 

current respectively.          

 

 

 

 
 

FIGURE 1 Two-dimensional reconnection at an X-point. The thin lines are magnetic field lines and the bold arrows 

indicate the direction of the plasma flow. 

 

 

2- STRUCTURE OF THREE DIMENSION NULL POINTS 
 

The simplest linear null point (for which the magnetic field increases linearly from the null) has 

field components 
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in Cartesian coordinates or 
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in cylindrical polar so that   · B = 0  identically, where    and    are constant. The field lines 

are given by 



                           
 

  
      

where   and   are constants. The  -axis is the spine and the   -plane is the fan. For this so-

called proper radial null the fan field lines are straight [Figure 2a]. It is a particular member (with 

a=1) of a wider class of current-free improper radial null points    with curved fan field lines, 

having field components 

 

  
  
  
[      (   ) ]                      

This is the generic form for a current-free null since the proper radial null is structurally unstable 

in the sense that it occurs only for a particular value of a, but for simplicity much of the theory so 

far has used a proper radial null. More generally, each of the three field components of a linear 

null may be written in terms of three constants, making nine in all. However, Parnell et al. [2] 

built on earlier work [3]–[4] and showed, by using   · B =0, by normalizing and by rotating the 

axes, that the nine constants may be reduced to four (          )such that 
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where     is the current parallel to the spine and    is the current perpendicular to the spine. 

Furthermore, both nulls and separators are susceptible to collapse to form current sheets when 

the boundary conditions allow it. 
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FIGURE 2. Field lines for a proper radial null. 

 

3- General method  
We seek to find solutions to the kinematic, steady state, resistive Magnetohydro- dynamic 

equations in the vicinity of a 3D magnetic null point. Thus, we solve 

 

E + v× B =ήJ,          (2) 

 × E = 0,                  (3) 

 × B = ήJ,                (4) 

  · B = 0.                  (5) 

 

From Eq. 3 we can express the electric field as E=−     where    is a scalar potential. The 

component of Equation (2) parallel to B   
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Now, since 
  

  
 
  

  
 
  

  
  by the chain rule and 
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and we can calculate   by integrating along magnetic field lines: 

 

        ή            .                     (6) 

 



where     is a constant of integration. This integral is solved by using the field line equations in 

(     ) expressed in terms of the parameter s and some initial position(        ).  The field line 

equations are obtained by solving 
  ( )

  
  ( ( ))          (7). 

These equations are invertible so φ can be represented as a function of    and initial position to 

carry out the integral in Eq. 6 and then transferred back into a function of      and   to find the 

electric field from 

E = −    .                      (8) 

Thus for a given magnetic configuration we can find the electric field due to nonideal effects 

(i.e., those due to J ≠ 0). Using this we can also find the resulting flow velocity perpendicular to 

the magnetic field by taking the vector product of Equation 2 with B to give 
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4- TORSIONAL SPINE RECONNECTION 
 

The type of reconnection set up at 3D null depends crucially on the nature of the flows and 

boundary conditions that are responsible for the reconnection. Let us suppose first that a rotation 

of the fan plane drives a current along the spine and gives rise to torsional spine reconnection, as 

sketched in Figure 3a. The nature of the reconnection is that in the core of the spine current tube 

there is rotational slippage, with the field lines becoming disconnected and rotating around the 

spine (see Ref. 5): Figure 3b shows on the left side a particular magnetic field line and its plasma 

elements at     ; in the upper part of the figure (above the shaded diffusion region) this field 

line and its attached plasma elements rotate about the spine through positions at times   ,   , and 

  ; in the lower part of the figure (below the diffusion region) the plasma elements that were on 

the field line at    rotate to positions at   ,   , and    that are on different field lines. A steady 

kinematic solution may be found following the approach of Section 3. The electric field may be 

written as the sum           (E =   =        +     ) of a nonideal pure (elementary) solution 

satisfying 

 

 

 



 
FIGURE 3. (a)  A rotational motion of the fan (open arrows) driving torsional spine reconnection with a strong 

current (solid arrows) along the spine.(b)  Rotational slippage of fields entering through the top of the diffusion 

region on a curved flux surface, showing as solid curves the locations of the plasma elements at     ,     , 

and     , that initially (    )  lay on one field line. (c)  The reconnection rate measures a rotational 

mismatching of flux threading the diffusion region, namely, the difference between the rates of flux transport 

through surfaces A and B. 
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and an ideal solution satisfying 

              
 

Consider a spiral magnetic null point  
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and suppose the diffusion region is a cylinder of radius   and height    and that the magnetic 

diffusivity has the form    
 
(   ), where  (   )    and  (   ) vanishes on the boundary of 

the diffusion region and outside it. The field lines for this spiral null may be obtained by solving 

 
  

  
 
    
  

       
  

  
 
    
  

 
 

 
        

  

  
 
    
  

                

 

Suppose we start a field line at the point (     )  (        ) at    . Then the field line 

equations are 
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These give a mapping from an initial point (       ) to any other point  (     )along a field 

line. The inverse mapping is 
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where    
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4.1 Pure solution 

 
The pure elementary solution describes the core of the reconnection process. It is obtained 

following Refs. [5] and [10] by solving Equation (2), with Equations (3, (4), and 5. Thus we 

write E = −    . with      (nonideal) given by Eq. (6) and set      so that the flow vanishes 

outside the diffusion region. Inside the diffusion region the flow and flux velocities have no 



component across either the spine or the fan. For the spiral magnetic field (        )  
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      ) and mapping (11),     becomes               
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. (                                         ). Then, once a form for ή is assumed, this 

may be integrated to give    (       ). After using the inverse mapping (12), we can then 

deduce     (     ) and therefore E and    everywhere. If a diffusion region is isolated, a 

change in connectivity of field lines may be studied, by following field lines anchored in the 

ideal region on either side of the diffusion region. A diffusion region is, in general, isolated if 

(ήJ)  is localized in space. In practical cases in astrophysics, this is likely to be mainly because J 

is localized but, in addition, sometimes because as a consequence ή is also localized. Some 

numerical simulations have a localized ή, whereas others have a uniform ή or a purely numerical 

dissipation. However the important feature in all these cases is that the product ήJ is localized. 

Now, in each of our solutions below, we follow Refs. 6, 7, and 8 in choosing a spatially localized 

ήJ by imposing a spatially localized resistivity profile together with a J that is not localized. The 

reason for doing this is to render the mathematical equations tractable since we have not yet 

discovered a way to do so with a localized J. The quantitative spatial profiles of physical 

quantities will depend on the ή profile, but the qualitative topological properties of the field line 

behavior in such models are expected to be generic and independent of the particular profile 

chosen for  . There are four regions with different forms for     , as illustrated in Figure 4, 

which shows a vertical cut in the first quadrant of the   -plane. In region (1) threaded by field 

lines that enter the diffusion region (shaded) from above, we assume     (   )    so that there 

is no electric field or flow. The same is true in region (2) which lies above the flux surface 

        that touches the upper corner (   ) of the diffusion region. We calculate below the 

forms of     (   ) in the diffusion region (3) and in region (4) threaded by field lines that leave 

the diffusion region through its sides. For example, let us assume that ή vanishes outside the 

diffusion region (D) and that inside D it has the form 
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which peaks at the origin and vanishes on the boundary of D. First, we use mapping (11) to 

substitute for   and  , and integrate with respect to   from the point  (   ) on the top of  D to 

the point  (   ) inside D (Figure 4). Then we use the inverse mapping (12) to replace   and  , 
and finally we obtain the potential throughout D (region 3) in Figure (4) as 

 
 



 
FIGURE 4. The projection of magnetic field lines and the diffusion region in the first quadrant of the   -plane, 

showing four different regions, in which     (   ) is calculated. A magnetic field line whose projection intersects 

the top of the diffusion region in  (   ) and the side in  (a,  ) contains typical points  (   ) inside and beyond 

the diffusion region. The bounding field line         is shown as dashed. 
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This then determines the components of the electric field (       ) everywhere in D as 
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In order to find     (   ) in region (4) of Fig. 4, we start with the values of      at the point 

 (a,  ) on the side of the diffusion region (Figure 4) and then calculate       at any point 

 (   ) that lies on the same field line in region (4) to the right of  . Thus, after setting (   )  
(    ) in expression (13) for   that holds in the diffusion region, we obtain 
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Since ideal MHD holds in region (4),     (   ) is constant along the field line (       
 ) 

joining   to  , and so the value of     at   is simply 
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The solution for     can be obtained in a similar manner by integrating from     . We may 

now make various deductions from the solution. The reconnection rate depends on the form of ή 

and is given in order of magnitude by 
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where    is the electric field at the center of the diffusion region and    is the dimension of the 

diffusion region along the magnetic field direction. In our example,      (     )  
     

  
 

   , where    
    

   
 is the value of the current at the origin, and along the spine, Equation (13) 

implies that 
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and so the reconnection rate becomes, more accurately, 
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The other feature that we can deduce from the electric field components is the perpendicular 

plasma velocity given by Equation (9). In particular, on the fan plane (   ) inside D,      
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 so that there is a rotational component 

given by   
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where    
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. The nature of the flow becomes clear if we subtract a component 

parallel to B in order that   =0 (we are free to do this since the component of v parallel to B is 

arbitrary in the model). After doing this we find that    vanishes, leaving   (      ) i.e., the 

flow corresponds to a pure rotation (as in the solutions of Ref. 10).  

 

5- GENERLISED MODEL FOR TORSIONAL SPINE RECONNECTION 

 
We now investigate how the properties of the solution vary when the rotational symmetry of the 

above system is broken. When the rotational symmetry is lost it is no longer possible to find 



closed-form expressions for the field line mapping. We therefore numerically integrate B to find 

field lines and solve Equations (6, 8 and 9) on a rectangular grid. We may break the symmetry 

either in the potential component    defining the magnetic null or in the component    defining 

the current tube. Our new potential component of the magnetic field is given by 
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in Cartesian coordinates where       is a parameter. As   varies the magnetic field along the 

spine direction is fixed while the ratio between the fan eigenvalues (associated with the 

eigenvectors along the   ̂  ̂ and directions) varies. We choose to break the symmetry in    by 

converting to Cartesian coordinates and setting 
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where           (note that this reduces to expression (10) when   = 1). This has the effect 

of distorting the current into a cylinder with elliptical cross-section, with major and minor axes 

along the  - and  -axes, extending to              √ . Pre-empting the results of the 

following section, we present here results for      , such that as p increases the current tube 

narrows along the direction associated with the large fan eigenvalue, i.e. the strong field 

direction in the fan. We set                                  and solve Eqs. (6,8 and 

9) on a rectangular grid with 81 gridpoints in each direction covering the volume           
             with the solution being symmetric about      . We restrict our attention to the 

range   , which simply selects the   ̂ direction as the strong field direction in the fan. The 

results of the above analysis are presented. As   is increased, the current tube shrinks in the  -

direction, with the dominant current component    intensifying in the part of the tube close to the 

 -axis (i.e. the direction of the short axis of the ellipse). The stronger current in this region 

results in an enhanced plasma flow speed. The direction of the flow is also distorted from the 

circular pattern at   = 1, but continues to flow on closed elliptical paths around the spine ( -

axis). As the fan plane is approached the radii of the elliptical shells of positive and negative 

azimuthal flow increase, owing to the hyperbolic nature of the field structure. In order to 

determine the reconnection rate we calculate “as defined in Equation (16). Due to the breaking of 

the symmetry it is no longer clear that the maximal value of “should occur along the spine field 

line, as was found in previous studies (note that the current modulus has maximum value away 

from the spine for large  ). However, it turns out that indeed the maximum occurs along field 

lines asymptotically close to the spine for all p. Figure 4 displays the peak value of the current 

density (which we impose) and the reconnection rate as a function of the degree of asymmetry. It 

is clear that the peak current scales linearly with (   ) and that correspondingly the 

reconnection rate scales linearly with  . 

 

5- CONCLUSION 



 

Here we have presented analytical model for torsional magnetic reconnection at 3D null points. 

The analytical models included for the first time fully localised current layers ( focused at the 

spine ) that determine the boundary of the non-ideal region, thus alleviating the requirement in 

previous models to have an artificially localized (“anomalous”) resistivity. We also for the first 

time investigated the particular case where the null point is radially symmetric (k  1), i.e. where 

the fan eigenvalues are equal. Second time we investigated the generic case where the null point 

is not radially symmetric, i.e. where the fan eigenvalues are not equal (k  1). 3D null points 

have been demonstrated to be present in abundance in the solar corona, and the same is likely to 

be true in other astrophysical environments.  We have shown that the geometry of the current 

layers within which torsional spine reconnection occur is strongly dependent on the symmetry of 

the magnetic field defining the null point. Torsional spine reconnection still occurs in a narrow 

tube around the spine, but with elliptical cross-section when the fan eigenvalues are different. 

The eccentricity of the ellipse increases as the degree of asymmetry increases, with the short axis 

of the ellipse being along the strong field direction. Furthermore, the current profile is not 

azimuthally symmetric around the spine, but is peaked in these strong field regions. 
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