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1. ABSTRACT 

Artificial Neural Networks (ANN's) are largely used in applications 

involving classification or functions approximation. It has been proved that 

several classes of ANN such as Multilayer Radial-Basis Function Networks 

(RBFN) are universal function approximators . Therefore, they are widely used 

for function approximation .  

In this paper ,we examine the similarities and differences between 

RBFNNs compare the performance of learning with each representation applied 

to the interpolation problem. Nonetheless, this paper should help the reader to 

understand which basis function and which efficient method should be employed 

for particular reconstruction problem. It should also encourage the reader to 

consult the literature pointed out in the bibliography for further studying. 

2. INTRODUCTION 

A radial basis function network is a neural network approached by 

viewing the design as a curve-fitting (approximation) problem in a high 

dimensional space. Learning is equivalent to finding a multidimensional function 

that provides a best fit to the training data, with the criterion for “best fit” being 

measured in some statistical sense .Correspondingly, regularization is equivalent 

to the use of this multidimensional surface to interpolate the test data. This 

viewpoint is the real motivation behind the RBF method in the sense that it 

draws upon research work on traditional strict interpolations in a 
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multidimensional space. In a neural network, the hidden units form a set of 

“functions” that compose a random “basis” for the input patterns (vectors). 

These functions are called radial basis functions, [1]. 

Radial basis functions were first introduced by Powell to solve the real 

multivariate interpolation problem . This problem is currently one of the 

principal fields of research in numerical analysis. In the field of neural networks, 

radial basis functions were first used by Broomhead and Lowe . Other major 

contributions to the theory, design, and applications of RBFNs can be found in 

papers by Moody and Darken, Renals, and Poggio and Girosi . The paper by 

Poggio and Girosi[2] explains the use of regularization theory applied to this 

class of neural networks as a method for improved generalization to new data . 

The design of a RBFN in its most basic form consists of three separate 

layers. The input layer is the set of source nodes . The second layer is a hidden 

layer of high dimension. The output layer gives the response of the network to 

the activation patterns applied to the input layer. The transformation from the 

input space to the hidden-unit space is nonlinear. On the other hand, the 

transformation from the hidden space to the output space is linear [3].  

3. RADIAL FUNCTIONS [4],[5] 

Let X be a normed linear space .A function f : X → R is said to be radial if 

there exists a function h : R
+
 → R such that f(x) =  h( ║x║)  for all  x  X.                  

 A radial basis function is any translate of f; that is a function of the form  

g(x) = f(x-θ) = h(║x - θ ║), where θ is any prescribed point of X. In other word , 

Radial functions are          a special class of functions show the characteristic 

feature that their response decreases or increases monotonically with distance 

from a central point .  

4. INTERPOLATION PROBLEM 
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This section talks about the interpolation problem let us consider a feed 

forward network with an input layer, a single hidden layer, and an output layer 

having a single unit. The network can be designed to perform a nonlinear 

mapping from the input space to the hidden space, and a linear mapping from the 

hidden space to the output space. The network represents a map from p-

dimensional input space to the single dimensional output space, expressed as       

F : R
p
 → R. 

The theory of multivariable interpolation in high-dimensional space has a 

long history starting with Davis . The interpolation problem, in its strict sense 

can be stated as follows: 

Given set of N different points{xi R
p
 | i = 1, 2,...., N}and a corresponding set 

of N real numbers{di R| i =1,2,....,N}find function F:R

R that satisfies the 

interpolation condition: 

F(xi) = di   ,  i = 1,2,...., N                                          . . . . . . . . . . . . . . . . . . . . (1) 

 The interpolating surface (i.e. function F) has to pass through all the training 

data points . The radial basis function technique consists of choosing a function 

that has the following form given by Powell ,[6]. 

 F(x) = 


N

1i

wi φ(║x- xi║)                                       . . . . . . . . . . . . . . . . .  . . .( 2 ) 

where {(║x- xi║)  | i = 1,2,…N} is a set of N random (usually nonlinear) 

functions, known as radial basis functions, and || . || represents a norm that is 

generally Euclidean. The known data points xi R
p
 , i =1,2,…N are the centers 

of radial basis functions, [7]. 

       If the interpolation conditions equation (1) is inserted in (2), the following 

set of simultaneous linear equations can be obtained for the unknown 

coefficients (weights) of the expansion {wi}: 
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Where  

)ixjx(
ji

      j,i= 1,2,…,N                              . . . . . . . . . . . . . . . . . . . . (4) 

 Let  Nd,,2d,1d d                                               . . . . . . . . . . . . . . . . . . . . (5) 

 Nw,,2w,1w w                                                  . . . . . . . . . . . . . . . . . . . . (6) 

The vectors d and w represent the desired response vector and linear 

weight vector  respectively. Let denote an NxN matrix with elements   ji : 

={ji \  j , i =1,2,…,N}                                              . . . . . . . . . . . . . . . . . . . . (7)                                                                                                                                                                              

The matrix is called the interpolation matrix. Equation (3) can be 

written  in the compact form: w = d                                                  . . . . . . . . . 

. . . . . . . . . . . (8) 

Light gives a remarkable property for a class of radial basis functions 

which obtains a positive definite interpolation matrix . Because a positive 

definite matrix has always an inverse, this specific class of radial basis functions 

will always solve the Interpolation  problem.  

        Powell declares that theoretical investigation and practical results show that 

the type of nonlinearity () is not vital to the performance of RBFNs . 

Considering Light’s Theorem, it is noted that if the data points are all distinct, 

the interpolation matrix is positive definite, and the weight vector w can be 

formed as follows: 

w = 
-1

 d                                                                 . . . . . . . . . . . . . . . . . . . . (9) 
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Even though in theory a solution to the strict interpolation problem exists, 

in practice equation (8) cannot be solved when the matrix is arbitrarily close to 

singular. Regularization theory can solve this problem by perturbating the matrix 

to I, as described in Section 6. This problem leads us to examine the 

solving of an ill-posed hypersurface reconstruction problem because this inverse 

problem can become an ill-posed problem. The next section talks about how an 

ill-posed problem can be solved. 

5. SUPERVISED LEARNING AS AN ILL-POSED HYPERSURFACE 

RECONSTRUCTION PROBLEM 

The strict interpolation procedure as defined above may not be a good 

method for the training of RBF networks for certain classes of tasks because of 

poor generalization to new data for the following reason. When the number of 

data points in the training set is much larger than the number of degrees of 

freedom of the underlying physical process, and the network cannot have radial 

basis functions greater than the number of data points, the problem is over 

determined.  

The design of a neural network trained to have an output pattern when 

presented with an input pattern is equivalent to learning a hypersurface (i.e. 

multidimensional mapping) that defines the output in terms of the input. That is, 

learning is considered as a hypersurface reconstruction problem, given a set of 

data that may be sparse. Therefore, the hypersurface reconstruction or 

approximation problem belongs to a “generic” class of problems called inverse 

problems . 

An inverse problem can be well-posed or ill-posed. The term “well-posed” 

has been used in applied mathematics since the time of Hadamard in the early 

1900s. Haykin gives an explanation about an inverse problem as follows: 
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 Assume that we have a domain X and a range Y taken to be metric spaces, and 

that are related by a fixed but unknown mapping F. The problem of 

reconstructing the mapping F is said to be well posed if three conditions are 

satisfied: 

1. Existence. For every input vector x X, there exist an output  y = F(x), where   

y Y, 

2. Uniqueness. For any pair of input vectors x, t X. We have F(x) =F(t) , if 

and only if, x = t 

3. Continuity. The mapping is continuous, that is, for any >0, there exists 

=() such that the condition x (x, t) <  implies that Y (F(x), F(t)) < ,   

where (,) is the symbol for distance between the two arguments in their  

respective spaces. 

If these conditions are not satisfied, the inverse problem is said to be ill-

posed. 

Haykin supports reasons why learning is an ill-posed inverse problem when 

learning is viewed as a hypersurface reconstruction problem. First, there is 

insufficient information in the training data in order to reconstruct the input-

output mapping uniquely, thus the uniqueness criterion is not satisfied. Second, 

the existence of noise and imprecision in the input data adds uncertainty to the 

reconstructed input-output mapping. Particularly, if the noise level in the input is 

too high, the neural network may produce an output outside of the range Y for a 

specified input x in the domain X; hence the continuity criterion is not satisfied . 

          Poggio and Girosi state that some form of prior information about the 

input-output mapping is necessary to make the learning problem well-posed so 

that generalization to the new data can be accomplished. In other words, the 

process responsible for generation of input-output examples used to train a 
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neural network must show redundancy in an information-theoretic sense to 

establish the prior information about the input-output mapping. This necessity is, 

indeed, satisfied by the physical processes such as speech, pictures, radar, and 

sonar signals in practice. These processes are all redundant by their nature. 

Moreover, the generator of the data is generally smooth. As long as the data 

generation is smooth, small changes in the input can cause large changes in the 

output and can still be approximated successfully. Haykin notes that the 

smoothness of data generation is a fundamental form of functional redundancy . 

     As was said in Section 4, the interpolation problem can not be solved when 

the matrix is arbitrarily close to singular or ill-posed. The next section gives a 

solution to this problem using regularization theory. 

 

6. REGULARIZATION THEORY  

Regularization Theory was first introduced by Tikhonov in (1963) . The 

fundamental idea of regularization is to stabilize the solution in terms of some 

auxiliary nonnegative functional that embeds prior information, e.g., smoothness 

constraints on the input-output mapping, and make an ill-posed problem into a 

well-posed one . 

 Let the set of input-output data available for approximation be described 

by  

Input signal :   xi R
p
, i =1, 2, ..., N     

Desired signal: di R , i =1, 2, ..., N     

      The dimensionality of the output is chosen as one. This choice does not limit 

the general applicability of the regularization theory in any way. The 

approximation function is denoted by F(x). The weight factor w of the network 

is omitted from the argument of the function F for convenience of presentation.  
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According to Tikhonov’s regularization theory, the function F is obtained 

by minimizing a cost functional (F) that maps functions to the real line. Haykin 

expresses the cost functional using two terms of regularization as follows: 

(F) = s (F) +  c (F)                                         . . . . . . . . . . . . . . . . . . . . (10) 

where s(F) is standard error term that measures the standard error (distance) 

between the desired response di and the actual response yi training samples          

i = 1, 2, .., N. The term   c(F) is regularization term that depends on the 

geometric properties of the approximation function F(x). The symbol is a 

positive real number called regularization parameter. The main aim of the 

regularization is to minimize the cost functional (F). The cost functional can be 

written in terms of the desired response di, the actual response yi, and the 

regularization parameter as follows: 

 



N

1i

2
P

2

12
)

i
x(

i
d

2

1
)( FFF                      . . . . . . . . . . . . . . . . . . . .

where P is a linear (pseudo) differential operator that contains the prior 

information about the form of the solution. Haykin refers to P as a stabilizer in 

the sense that stabilizes the solution F making it smooth and therefore 

continuous. 

The regularization parameter, is considered as indicator of the 

sufficiency of the given data set as examples that specify the solution F(x). If 

0, the problem is unconstrained and the solution F(x) can be completely 

determined from the examples. 

On the other hand, if, , the  priori smoothness constraint is sufficient 

to specify the solution F(x); that is, the examples are unreliable. In practice, is 

assigned a value somewhere between 0 and , so that both the sample data and 

the  priori information contribute to the solution F(x). Therefore, the regularizing 
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term c (F) represents a model complexity penalty function, the influence of 

which on the final solution is controlled by the regularization parameter .  

This section gave broad explanation of the cost functional (F) and its 

parameters. The next section gives detailed mathematical review of the solution 

of the regularization problem minimizing the cost functional (F). 

6.1. Solution to the Regularization Problem 

                                                                                                                                                                                                                                                       

The principle of regularization is to find the function F(x) that minimizes 

the cost functional (F), defined by equation (10) [8]. To manage the 

minimization of the cost functional (F), an evaluation of the differential of (F) 

is necessary. The Frechet differential can be employed to do the minimization. 

The Frechet differential has the following form: 

 
0β

βh)ξ(F
dβ

d
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where h(x) is a fixed function of the vector x, and is a multi index. A multi 

index =(1,2, ..., n) of order 
i
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A necessary condition for the function F(x) to be a relative extremum of 

the functional (F) is that the Frechet differential d(F,h) be zero at F(x) for all 

hH, as expressed by 

d(F,h) = ds(F,h) + dc(F,h) = 0                        . . . . . . . . . . . . . . . . . . . . (13)  
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where ds(F,h) and dc(F,h) are the Frechet differentials of the functionals s(F) 

and c(F), respectively. After the evaluation of the Frechet differential, the 

standard error term s(F,h) is expressed as follows:    

0β

βh)(F
s

ξ
dβ

d
h)(F,sdξ










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F(x
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d
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                             . . . . . . . . . . . . . . . . . . . . (14) 

Similarly, the regularizing term c(F) can be expressed by the following 

equation: 

 
0β

βh)(F
c

ξ
dβ

d
h)(F,

c
dξ


  

                
H
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where H represents Hilbert space and the symbol (,)H  represents the inner 

product in H space. Hilbert space is a normed vector space of functions. These 

functions are rapidly decreasing, infinitely continuously differentiable functions. 

Considering the definition of an adjoint differential operator, equation (15) can 

be written as: 

d c (F,h) = (h,P*PF)H                                              . . . . . . . . . . . . . . . . . . . .  (16) 

where P* is the adjoint of the differential operator P. 

Substituting the Frechet differentials of equation (14), and (16), in the equation 

(13), Haykin states that the Frechet differential d(F,h) is zero for every h(x) in 

H space if and only if the following condition is satisfied: 

0
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or, equivalently,  





 


N

1i
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xδ(x)
i

(x
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d
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1
(x)P*P FF                . . . . . . . . . .( 17) 

where )xx(
i

  or (
ix

 )  is a delta function located at x = xi . 

Poggio and Grosi refer to equation (17) as the Euler-Lagrange Equation 

for the cost functional (F) expressed in equation (11) . They also declare that 

the equation (17) symbolizes a partial pseudo differential equation in F. The 

solution of this equation can be obtained by applying the integral transformation 

of the right hand side of the equation with a kernel given by the influence 

function or Green’s Function for the self-adjoint differential operator P*P. The 

role of the Green’s function in a linear differential equation is the same as the 

role that an inverse matrix plays in a matrix equation.    

Let G(x;xi) be a Green’s function centered at xi. A Green’s function 

G(x;xi) is any function that satisfies the partial differential equation 

 P*PG(x;xi) = 0 

everywhere other than at the point x = xi, where the Green’s function has a 

singularity. Haykin gives the solution F(x) for the differential equation (17) after 

some mathematical steps resulting with the following equation: 



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 
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1
(x)F                              . . . . . . . . . . . . . . . . . . . . (18) 

Equation (18) shows that the minimizing solution F(x) to the regularization 

problem is a linear superposition of N Green’s functions. In this equation, the x i 

symbolize the centers of the expansion , and the weights  

[di – F(xi)] /]symbolize the coefficients of the expansion. Haykin declares 

that the solution of the regularization problem lies in an N-dimensional subspace 

of the space of smooth functions, and the set of Green’s functions G(x ; xi) 

centered at xi , i =1, 2,…, N, builds a basis for this subspace. 
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Since we have the solution F(x) to the regularization problem, our next step is to 

determine the unknown coefficients in the equation (18). Let us denote: 

 )
i

(x
i

d
λ

1

i
w F  , i=1,2,…,N                              . . . . . . . . . . . . . . . . . . . . (19) 

The minimizing solution can be symbolized by the following equation 
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After evaluation of the equation (20) at xj, j =1, 2,.., N, the equation can be 

expanded to 
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The definitions needed to be introduced can be given as follows; 
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Now, the equation (19) and equation (21) can be rewritten in matrix form as 

follows, respectively: 

F)(d
λ

1
w                                                      . . . . . . . . . . . . . . . . . . . . (26)      

F=Gw                                                                     . . . . . . . . . . . . . . . . . . . . (27) 

When F is eliminated between equations (26) and (27), the following equation 

can be obtained: (G + I)w = d                                          . . . . . . . . . . . . . . . . . . . 

. (28) 

The matrix G is called the Green’s Matrix. Since the combined operator P*P in 

equation (17) is self-adjoint, the associated Green’s function G(x;xi) is a 

symmetric function, as shown by Courant and Hilbert. 

G(xi;xj) = G(xj;xi)    for all i and j                           . . . . . . . . . . . . . . . . . . . . (29) 

Similarly, the Green’s matrix G defined in equation (24) is a symmetric matrix; 

G
T
 = G                                                                 . . . . . . . . . . . . . . . . . . . . (30) 

After revisiting Light’s theorem, defined in Section 4 in the context of the 

interpolation matrix , Haykin notes that Green’s matrix, G has a role in 

regularization theory similar to the role that of in RBF interpolation theory. 

Both G and are NxN symmetric matrices. Haykin also states that the matrix G 

is positive definite for certain classes of Green’s functions if the data points x1, 

x2,…,xN  are distinct.  

Multiquadrics and Gaussian functions are the classes of Green’s functions 

covered by Light’s theorem. In practice, can be chosen sufficiently large 

enough to suffice so that ( G + I ) is positive definite, and thus, invertible. 

Poggio and Girosi give a unique solution of the linear system of equations (28) 

as follows: 

w = (G + I)
-1

  d                                                    . . . . . . . . . . . . . . . . . . . . (31) 
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Haykin concludes that the solution to the regularization problem is expressed by 

the equation 

 F (x) = 


N

1i

wi G(x; xi )                                         . . . . . . . . . . . . . . . . . . . . (32) 

where G(xi;xj) is the Green’s function for the self adjoint differential operator 

P*P, and wi  is the ith element weight vector w. He also states that if the Green’s 

functions in equation (32) are radial basis functions, the solution can be rewritten 

as follows: 
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There is one more step left to reach the final solution of the regularization 

problem. We need to define the radial basis function in equation (33). The 

following functions can be employed in equation (33): 
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where G(x; xi) is a multivariate Gaussian function characterized by a mean 

vector xi and common variance  2 , except for a scaling factor that can be put in 

the weight wi. Now we can present our final solution to the regularization 

problem as follows: 
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which contains a linear superposition of multivariate Gaussian basis functions 

with centers xi (located at the data points) and widths i. In section 6, we 

discussed regularization theory and we declared the solution of the regularization 

problem in terms of radial basis functions. Now, we need to define our network 
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structure that supports the solution we found in this section. The next section 

talks about regularization networks that are built by the radial basis functions 

defined above. 

 

 

 

 

Remark 

1. If the regularization parameter   approaches zero , the weight vector w 

converges to the pseudo inverse  solution , which is the optimal solution of 

the overdetermined least-squares data fitting problem where m1 < N  

    w = G
+
d = (G

T
G)

-1
G

T
d 

2.  The value of the regularization parameter does not affect much the    

      performance   if  .1.0   

3. Increasing the number of centers (radial – basis functions) from 20 to 100  

improves the performance by about 45%. 

7. REGULARIZATION NETWORKS 

A regularization network, introduced by Poggio and Girosi because it uses 

the solution to the regularization problem expressed in Section 6. The network 

has three layers. The first layer of the network consists of input nodes whose 

number is equal to the dimension p of the input vector x (i.e., the number of 

independent variables of the problem). The second layer is a hidden layer, made 

up of nonlinear units that are connected directly to all of the nodes in the input 

layer. There is one hidden unit for each data vector xi ,  i = 1, 2,...., N, where N is 

the number of training samples. The activation function of the individual hidden 

units are described by the Green’s functions. Correspondingly, G(x; xi) 

represents the output of the ith hidden unit. The output layer has one single linear 
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unit which is fully connected to the hidden layer. The term “linearity” is 

introduced because the output of the network is a linearly weighted sum of the 

outputs of the hidden units. The weights of the output layer are the unknown 

coefficients of the expression described in equation (31) in terms of the Green’s 

functions G(x; xi) and the regularization parameter . Obviously, such a network 

structure can be readily extended to have any number of outputs desired [9]. 

The Green’s function G(x; xi) is assumed to be positive definite for  all i in 

the regularization network. Haykin states that if this condition is satisfied, which 

is true in the case where the Green’s functions G(x; xi) have the form of 

Gaussian functions, then this network will produce an “optimal” interpolant 

solution in the sense that it minimizes the functional (F). Furthermore, Poggio 

and Girosi give three properties of the regularization network from the viewpoint 

of approximation theory as follows: 

1. The regularization network is a universal approximator in that it can 

approximate arbitrarily well any multivariate continuous function on a 

compact subset of  R
p
 , given a sufficiently large number of hidden units. 

2. Since the approximation scheme derived from regularization theory is 

linear in the unknown coefficients, it follows that the regularization 

network has the best approximation property. This means that given an 

unknown nonlinear function F, there always exists a choice of 

coefficients that approximates F better than all other possible choices. 

3. The solution computed by the regularization network is optimal. 

Optimality here means that the regularization network minimizes a 

functional that measures how much the solution deviates from its true 

value as represented by training data. 
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A regularization network is prohibitively expensive to build in computational 

terms for large N because there is a one-to-one correspondence between the 

training input data xi and Green’s function G(x; xi) for i = 1, 2,...., N. In 

particular, the inversion of NxN matrix is necessary to calculate the linear 

weights of the network (i.e., the coefficients of the expression in equation (32)). 

When N gets to large, the computational complexity will be very high. 

Moreover, the probability of ill conditioning is higher for larger matrices. 

Because of these reasons, we need a generalization of the solution in some sense. 

The next section introduces a generalization of the solution defining a new type 

of network structure which is called generalized radial basis function network. 

8. PROPERTIES OF  RBF 

Over the past decades radial basis functions or, more generally, 

(conditionally) positive definite kernels have very successfully been used for 

reconstructing multivariate functions from scattered data. This success is mainly 

based upon the following facts: 

(i) Radial basis functions can be used in any space dimension. 

(ii) They work for arbitrarily scattered data, bearing no regularity at all. 

(iii) They allow interpolants of arbitrary smoothness. 

(iv) The interpolants have a simple structure, which makes RBFs in particular 

interesting to users outside mathematics. 

However, these positive properties do not come for free. For example, 

building a smooth interpolant using a smooth basis function leads also to an ill-

conditioned linear system that has to be solved. Moreover, since most basis 

functions are globally supported, a large number of interpolation points leads to 

an unacceptable complexity concerning both space and time. 

For these reasons recent research concentrated on resolving these 

problems. Fast methods for evaluating and computing an RBF interpolant have  
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been developed and thoroughly investigated. Smoothing techniques have been 

employed to regularize ill-conditioned systems and to smooth out measurement 

errors. 

9. CHANGE OF BASIS  

So far, we have learned that smoothing is an adequate choice in the 

situation of highly non-uniform data sets. It also helps in the case of quasi-

uniform data sets and infinitely smooth basis functions, like Gaussians and 

(inverse) multiquadrics, since their associated interpolation matrices are already 

highly ill-conditioned in that particular situation for moderate separation 

distances. Unfortunately there exists no theoretical converage of error estimates 

in that situation, even if numerical test show promising results. 

Our final task, for basis functions of finite smoothness, is to deal with the 

case of really dense data sets. TPS is piecewise smooth RBFs but G, MQ ,IMQ 

are infinitely smooth RBFs.  We  recall that G, IMQ(inverse multiquadrics) and 

W2(wendland compactly supported .i.e. ф(r )= (1-r)
4 

+ (4r+1) are positive 

definite (PD), i.e. the corresponding collocation matrix A is positive definite for 

every choice of the (distinct) interpolation nodes, while TPS and MQ are 

conditionally positive definite (CPD). (note: Where A defined in linear system 

Ac=f (interpolation equations)and is symmetric matrix, usually termed 

collocation matrix of the RBF (see figure 1) several forms of   

RBF models.   

Amongst these, the Gaussian is probably the most popular basis function 

because it has attractive mathematical properties of universal and best 

approximation and its hill-like shape is easy to control with the parameter .  

Also Gaussian basis Functions are quasi-orthognal , the product of two 

basis functions, whose centers far away from each other with respect to their 

spreads , is almost zero. 
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a) Thin-Plate(2-d)                              b) Thin-Plate (3-d) 

      rlogr)r( 2                                    
3r)r(   

                                                                            

 c) Gaussian                                   d) Compactly Supported                                         

     
22 /re)r(                                    (r )= (1-r)

4
 + (4r+1) 

Figure (1) Comparison of different radial basis functions . 

 

While the thin-plate spline embedding function does indeed minimize 

bending energy , it has the following drawbacks in computation and usefulness 

for user interaction : 

1. O(n
8
) computation in required to build the system of equations . 

2. O(n
2
) storage is required (for the nearly-full matrix) to represent the 

system. 

3. O(n
2
) computation is required to solve the system of equations. 

4. O(n) computation is required per evaluation  

5. Because every known point affects the result, a small change in even one 

constraint is felt throughout the entire resulting interpolated surface ,an 

undesirable property for shape modeling.  
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       Figure (2) illustrates using both thin-plate and compactly-supported radial 

basis functions to compute embedding functions. The constraint points consist of 

36 points in an ovoid shape with 36 normal (positive valued) constraints placed 

just inside (2.a). A thin-plate radial basis function produces a globally –smooth 

embedding function(2.b). A compactly –supported radial basis function produces 

an embedding function that does not have global smoothness but is as smooth as 

the thin –plate spline interpolation in a narrow band surrounding the shape both 

inside and out. 

                        
 

 

 
Figure (2). A simple 36-point ovoid (a)interpolated using thin-plate (b) and 

compactly –supported (c) radial basis functions. 
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The previous analyses have shown that the MultiQuadrics (MQ) and Thin 

Plate Spline (TPS) give the most accurate results for scattered data 

approximations . However, the accuracy of the MQ method depends on a shape 

parameter and as yet there is no mathematical theory about how to choose its 

optimal value . Hence, most applications of the MQ use experimental tuning 

parameters or expensive optimization techniques to evaluate the optimum shape 

parameter .While the TPS method gives good agreement without requiring such 

additional parameters and based on sound mathematical theory . 

An m
th

 order TPS is defined as  ф (x, xj) =ф(rj) = rj
2m 

 log(rj),         m = 1, 2,3, …    

where rj = ║x- xj ║ is the Euclidean norm. Since ф is C
2m-1

 continuous, a higher-

order TPS must be used, for higher-order partial differential operators. The 

advection-diffusion equation is of second-order, m = 2 is used to ensure at least 

C
2
 continuity for F. Our numerical results confirm such observation and coincide 

with the result given in [7]. 
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الشبببت ال اليةبببتنا الةببب اطنا لتبببا جاتن بببال مببب  جاببباتل يا بببيا ج تبببا جابببا  الجةببب ن   ي الشبببت ال اليةبببتنا الةببب اطنا لتبببا جاتن بببال مببب  جاببباتل يا بببيا ج تبببا جابببا  الجةببب ن   ي   
الةبب اطنا اليةببتنا اال الج انببا الج  جنببا الةبب اطنا اليةببتنا اال الج انببا الج  جنببا جببع الشببت ال جببع الشببت ال   ط نبب  ط نبب    ج رنببا البب يا  يإتببل اع   ببيا ج رنببا البب يا  يإتببل اع   ببيا 

ججيببب    الات بببال اال  يا  ال ببباو الةبببستا ي يا  ال ببباو الشبببياطنا   بببج  جل مببب   ابببا  ججيببب    الات بببال اال  يا  ال ببباو الةبببستا ي يا  ال ببباو الشبببياطنا   بببج  جل مببب   ابببا  
    ..يا ع م  جاا  ج رنا ال يا  تش   طاميا ع م  جاا  ج رنا ال يا  تش   طام

الشببت ال الةبب اطنا اال الشببت ال الةبب اطنا اال     ببيا  جببع  ببيا  جببع  جببم ا جتببار ي را ببا الجشبباتق ياليري ببال تببنعجببم ا جتببار ي را ببا الجشبباتق ياليري ببال تببنع  ا التحبب ا التحبب مبب   ببامبب   ببا
   يا  ال او الشياطنا جع حن  ال اء يالجيسم ال اةا تج ائ  ات  راج . يا  ال او الشياطنا جع حن  ال اء يالجيسم ال اةا تج ائ  ات  راج .

   ..  ج ألا جين اج ألا جين الجيالاا لجيالاا طسى ا جنار  يا  ال او الج ا تا ال ييء  طسى ا جنار  يا  ال او الج ا تا ال ييء     اط  اط نن  ا التح ا التح  جا اع  ا جا اع  ا

   

 

 

 

 


