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Introduction:  
Materials with supernatural properties or metamaterials are materials with ideal 

properties (in the spectrum of electromagnetic waves) and with an infinitesimal cell size 

compared to the wavelength, it take attention of scientist due to its special properties such, 

Ideal lenses [2], negative refractive index [3] back word wave [4] split ring resonators [5], 

nonlinear phenomena [6] lattice structure [7], perfect absorber [8] clocking [9] , background 

waves [10], and many more other structures have been suggested in the literature to achieve 

the electromagnetic properties of materials with super properties [11]. Most of the structures 

proposed for metamaterials depend primarily on a metal resonator that fluctuates greatly 

within the design frequency range with large energy losses that are never inevitable which 

negatively affect its performance. On the other hand, these losses play a fundamental role in 

optical frequencies.  

    The world witnessed the first perfect absorber in 2002 by Landy et al.[12], with an 

absorption capacity of 88%. It consisted of a separate loop and a separated wire by an insulating 

substrate [12]. Also, in 2008, they demonstrated an ideal absorption of electromagnetic waves 

using a carefully engineered interconnected structure [13]. Since then, ideal absorbers based 

on metallurgical material technology have received a large amount of attention, and numerous 

engineering designs have been proposed in this field [15,14]. This effort is due to its ability to 

achieve 100% absorption of electromagnetic waves due to its importance in many applications 

such as spectral detection, phase determination, thermal imaging, accurate thickness gauge, 
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and solar cell applications. It is very difficult to find natural substances with an ideal absorption 

capacity to develop an absorber to generate a very high value in the terahertz frequency band. 

This absorber can be used in airport security systems, imaging systems, thermal detectors, and 

more [26,27]. The need for absorbers that operate in the microwave package increases due to 

the importance it carries in reducing interference in radars, collecting energy, using it in 

wireless charging, and hiding from detection in the military industries, sensors, and others. 

Great efforts have been made to achieve the ideal absorption of electromagnetic radiation in 

gigahertz limits. For example, Hampotur et al.  [16] achieved a single beam absorbance with an 

absorption rate of 98%. Landy et al. [17] obtained an imperceptible absorption polarization 

with an absorption rate of 77%. Skolokov [14] showed a single absorption with a wide 

polarization angle. Unfortunately, all of these efforts share a weakness, which is the narrow 

width of the absorbed wave packet that greatly hinders practical applications. Later on, some 

methods were followed to develop the absorption beam or multiplexed absorption beam with 

gigahertz boundaries such as two- and three-beam absorbers [18,19]. Also, some efforts have 

worked on developing broadband absorbent materials by stacking multiple layers of metal 

resonators within a single cell [20,27].  

However, in many cases, the narrow-band absorber is essential for spectroscopic imaging 

and sensors. Unfortunately, the absorption of narrow-band materials shares some 

disadvantages. First, the absorption performance of the proposed design is sensitive to the 

polarization of incident waves that greatly impede scientific applications. Second: The uneven 

surface of the structures makes it very difficult to manufacture, especially at frequencies such 

as terahertz, infrared, and visible areas. Finally, and most importantly, it is difficult to increase 

the absorption capacity [28-34].  

   This study introduces a dual-beam absorber within a microwave frequency band.  

In many designs, a three-layer structure is adopted, with two metal layers separated from 

each other by electrical insulation. The shape and dimensions of the first metal layer are chosen 

according to the work requirements. The last metal layer is often in the form of a flat surface 

that prevents any transmission of the electromagnetic wave and reflects waves like a mirror at 

the same time. The design consists of a metal ring placed on an insulating layer separating it 

from the copper ground layer. The results showed the presence of two distinct absorption 

regions that reach a peak of more than 99%.  

The absorption mechanism of the dual absorbent consists of the interference of two 

different resonant frequencies. Additionally, the dimensions and design characteristics are 

controllable to expand the number of absorption zones to three or more. 

 

Design: 

In this paper, an absorbent is designed as a copper of X-shaped resonator separated from 

the ground layer by a type of insulation FR-4 with a thickness (h=1mm). The value of the 

relative permittivity 3.4.  

Figure(1) displays the vertical projection of one cell of the proposed design on which the 

details of the dimensions are fixed as shown in Table (1). It should be noted that the metal used 

is copper with a conductivity of 5.8 x 107 s / m. 

 



34 
 

 

 

FIGURE 1.(a) perspective view showing the dimensions of one cell, (b) a side view. 
 

TABLE 1. Dimensions details for the proposed design 
Parameter Value (mm) 
Px 20 
Py 20 
h 1 
L 24 
w 8 
g 1 

 

The design was analyzed using (CST Microwave studio MWS) program in the frequency band 
from 8 GHz to 12 GHz, assuming that the waveform is of the basic type TE10. The wave 
propagation vector k is along the direction of the z-axis, and the electric field vector E is parallel 
to the direction of the y axis, the magnetic field vector H is parallel to the x-axis, and the type of 
analysis used is (Frequency domain analyzing). 

 
FIGURE 2.CST program settings. 
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Results 

After extracting the S values using the CST program, the absorption values for the frequency 
are calculated according to the equation:  

𝐴 =  1 −  𝑅 − 𝑇 (1) 
Where the value of 𝐴 represents the absorption coefficient, 𝑅 represents the reflection 

coefficient, and 𝑇 represents the permeability coefficient [22-25].  

 
FIGURE 3. shows the spectrum of absorption, reflection, and transmission of 

electromagnetic radiation. 
 
The design provides two absorption bands; The first is at a frequency of 8.65 GHz and with 

an absorption rate of 99.85%, and the second absorption area at a frequency of 10.60 GHz and 
the absorption rate of 99% as in Figure (3), presents the simulated results for the incident wave 
under normal incidence. Importantly, the incident wave is reflected with the unity magnitude 
R at two frequencies 8.65 GHz and 10.6 GHz, respectively. The absorption is equal to perfect at 
these frequencies.  

 
For further clarification, the effect of the thickness change of the substrate FR-4 on the 

absorption level (Figure 4) was studied. The results showed that the increase in the insulating 
substrate thickness leads to a nonlinear increase in the absorption level. The results gave the 
highest value of absorption with h = 1 mm) thickness of the substrate. We also note that the 
resonant frequency decreases by increasing the dielectric substrate thickness, and also, we 
notice an increase in the frequency bandwidth. The results of the absorption is change by 
increasing the thickness of the substrate due to the higher substrate has to be compensated by 
increasing the loss component of the substrate. 

 
FIGURE 4. The effect of change in the substrate thickness on absorption level. 
 
Negligible electric polarization effects are found in the change of azimuth angle, and 

therefore the change in phi angle cannot regulate the resonance frequency of this mode. 
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However, the variation of the phi could not change the absorption intensity therefore we can 
say this design electromagnetic polarization insensitive as shown in Figure (5).  

 

 
FIGURE 5. The effect of the change in the electrical polarization angle on the absorption level.  
 
The results in Figure 5. shows that the absorption spectra does not change at different TE 

polarization angles, this due to the axisymmetric structure of the resonance unit cell. This 
indicates that the proposed metamaterial absorber is insensitive to TE polarization. This 
characteristic is very important in practical applications. 

Figure 6 shows the simulated absorption, when the proposed design adopted the gap value 
of g = 0.5 mm, 1 mm, 1.5 mm and 2 mm. By adopting g, the absorption was improved obviously 
shifted from left to right for first peak. While second peak nonlinear change. Hence, by selecting 
a proper value for g = 1 mm, the proposed design obtained the good absorption results. The 
results of the absorption capacity and resonance frequency is change by increasing the gap 
between structure parts due to the higher electric coupling between metallic parts.  

 
FIGURE 6. The effect of a change in the gap g on the absorption level.  
 

Conclusion 

      The simulation results showed the possibility of producing an electromagnetic absorber 
with two perfect absorption bands as an X-shaped structure with its simplicity of design and 
thinness. This design can be used in many scientific applications such as weather satellites, 
solar cells and reduce the effects of electromagnetic waves. However, the results of controlling 
the geometric dimensions of the design showed the possibility of obtaining more control over 
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the absorption levels and the absorption frequency. The results showed the highest value of 
absorption with h = 1 mm) and the proposed design obtained good absorption results by 
selecting a proper value for g = 1 mm. It is also worth noting that the design can be modified to 
operate at a variety of frequencies, including microwaves, terahertz, and optical.frequencies.  
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