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 Abstract: 

 In this paper, we introduce a study of understanding the physical 

sputtering of target by energetic ions bombardment as a result from cascades 

of linear collisions. There are two stages of collision cascade: high energy 

collisions which Thomas – Fermi cross section is applied and low energy 

collisions that Born – Mayer cross section is characterized. The sputtering 

may be divided into two parts sputtering potential and sputtering yield. In 

this paper, we emphasize on sputtering yield which is evaluated under the 

slowing down of energetic ions in a medium. The resulted yield equation is 

extended from Boltzmann transport equation. The resulted sputtering yield of 

Ag, Cu and Pd targets has been measured with different incident ions. There 

is a variation in the yield with projectile atomic number and a deviation in 

the maximum of energy is found for both heavy and light projectiles. Also, 

we also study a formula proposed by Thompson to describe the energy 

spectrum of atoms sputtered from a target material irradiated by heavy ions 

and this formula may be expressed in terms of a normalized energy 

distribution function. A program in matlab is written in order to program the 

equations and obtain the results. 

  

 Keywords: sputtering, sputtering yield, collision cascade, Thomas – Fermi 

interaction, Born– Mayer interaction, energy spectrum. 

1. Introduction 

      Sputtering is the erosion of material by single – particle impact[1]. 

Sputtering occurs when displaced atoms in the near surface region have 

enough energy to escape from the surface. This type of sputtering is called 
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physical or knock – on sputtering, as opposed to chemical sputtering which 

involves a chemical reaction[2]. The elastic sputtering is induced by the 

momentum transfer from the primary particle to the target atoms.  

     In recent years, many results of experiments concerning with sputtering 

by energetic bombardment have been collected. Most experiments dealt with 

measurements of the sputtering yield versus energy for many ion – target 

combinations, but a great amount of work has been done in investigating the 

angular and energy distribution of sputtered particles, or their average 

energy. Sputtering experiments concern with amorphous targets, polycrystals 

of diverse degrees of texture, and single crystals[3].  

In the last fifteen years, theoretical efforts are increasingly successful in 

understanding the main features of sputtering in terms of a series of quasi – 

elastic collision processes induced by the bombarding ion. Although the 

sputtering process is a common feature which governs the concept of a 

collision cascade in all recent sputtering theories, there are substantial 

differences in the main processes that various authors consider responsible 

for sputtering[3].  

Advanced theories of energy loss of heavy particles in matter through 

Lindhard et al. work [4]and the theory of sputtering by Sigmund have much 

stimulated this growth[3]. Sigmund's analytical theory is the standard theory 

for sputtering which is based on Boltzmann transport theory. The obtained 

solution is in the limit of high primary energy compared to the instantaneous 

energy of the cascade atoms[3,5].  

Lindhard et al. [6] established cross sections governing collisions of ions 

and atoms in KeV from Thomas – Fermi theory and showed that one can 

predict ions ranges exactly by using these cross sections[4]. Sanders[7] 

generalized Lindhard's procedure to calculate the spatial extension of a 

collision cascade and the momentum distribution of recoiling atoms based on 

the Thomas–Fermi scattering cross section[6] and assumed that all collisions 

are elastic.  

       In Thompson formula for the energy distribution function of atoms 

sputtered, it supposes that sputtered atoms originate in a well – developed 

collision cascade created only by heavy ions in a material [8]. However, an 

experiment shows that the energy spectrum due to low-energy light ions 

differs from that calculated with the formula. This deviation can be 
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understood from the fact that light ions cannot produce such a cascade, but 

rather a single or multiple collision sequence[9].  

 

 

2. The Theoretical side 

2.1 Slowing – down of Charged Particles in a Solid   

     The stopping force (dE dx)⁄  can be defined as the force which the 

medium exerts on the penetrating particle[10]: 

dE dx = NS(E)⁄                                                                                                  

(1) 

where N is the number density of atoms in the medium and S(E) is the 

stopping cross section which depends on the kinetic energy E of the primary 

particle. The collisions between the primary ions and the atoms in a solid can 

be divided into collisions between the primary particle and the nuclei and 

those between the primary and the electrons. S(E) can be split up into[10] 

S(E) = Sn(E) + Se(E)                                                                                       

(2)                                                                                             Sn(E) =

∫ Tdσ(E, T)
Tm

0
                                                                                      (3)                                                                                                                                                

Tm = γE                                                                                                              

(4)                                   

γ = 4M1M2 (M1 + M2)2⁄                                                                                    

(5)                                      

where Sn(E) is the nuclear stopping cross section, Se(E) is the electronic 

stopping cross section ,dσ is the interaction cross section, T is the transferred 

energy (or recoil energy), Tm is maximum value of  T achieved in a head – 

on collision,  γ is sputtering efficiency which turned out to be independent of 

ion energy for a given power cross section and is also insensitive to m, M1 is 

the mass of ion,  M2 is the mass of target atom and E  is the energy of the 

impinging particle. 

 

2.2 Cross Section for Elastic Scattering 

      Elastic collisions are characterized by an atomic potential, which may be 

written in the form[11] 

V(r) =
Z1Z2

r
Φ (

r

a12
)                                                                                            

(6)                                    
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where r is internuclear distance, Φ is a universal screening function most 

often independent of Z1 and Z2 (atomic number of the incident ion and target 

atom), and a12 is a screening radius for the collision partners. Any 

dependence on charge states is usually neglected.  

Φ(ξ) = e−ξ                                                                                                          

(7)                                  

Φ(ξ) = (1 + y + 0.3344y2 + 0.0485y3 + 0.00264y4)e−y                           

(8)                                     

y = √9.67ξ     

Φ(ξ) = 0.35e−0.3ξ + 0.55e−0.55ξ + 0.1e−6.0ξ                                                   

(9)                                     

Φ(ξ) = 0.02817e−0.2016ξ + 0.28018e−0.4029ξ + 0.50986e−0.9423ξ +

                    0.18179e−3.2ξ                                                                              

(10) 

 

Most frequent amongst options for a universal screening function Φ(ξ) are 

from Bohr eq.(7) [12], Lenz – Jensen eq.(8) [13,14], Moliere eq.(9) [15] and 

Ziegler et al. eq.(10) [16]. For the screening radius the following options 

have most frequently been adopted by Lindhard radius eq.(11)[4], Firsov 

radius eq.(12)[17] and Ziegler et al. radius eq.(13)[16] 

a12 = 0.8853a0/√Z1
2 3⁄

+ Z2
2 3⁄

                                                                       

(11)                                    

a12 = 0.8853a0/(Z1 + Z2)2 3⁄                                                                          

(12)                                    

a12 = 0.8853a0/(Z1
0.23 + Z2

0.23)                                                                     

(13)                                        

      An especially useful is the power approximation of the Thomas – Fermi 

cross section. The differential cross section is assumed to have power[6] 

dσ = C E−m T−1−m dT                                                                                    

(14)                                  

dσ(1) = C(1) E−m T−1−m dT                                                                           

(15)                                  

eq.(15) represents approximately a Thomas – Fermi interaction for any value 

of m between 0 and 1 except 0 and a Born–Mayer interaction for m =

0 [18]. Where  m is a numerical constant,  (0 ≤ m ≤ 1). m = 1 holds for 
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Rutherford scattering, m =
1

2
  is a fair approximation over a major portion of 

the KeV range and for medium – mass ions and atoms and m =
1

3
 should be 

adequate in the lower – KeV and upper – eV region[6].  

     In the eV region where the Thomas – Fermi potential overestimates the 

interaction, a Born – Mayer potential may be appropriate, but even in this 

case, equation may be a reasonable approximation if  m is taken close to 

zero[19]. The constant C and C(1) are well – defined parameter depending on 

atomic numbers and masses of the collision partners which are given by[6] 

C =
1

2
πλma22

2 (2Z1
2e2 a22⁄ )2m                                                                         

(16)                                  

C(1) =
1

2
πλma12

2 (M1 M2⁄ )m(2Z1Z2e2 a12⁄ )2m                                               

(17)                                    

a12 and  a22 are Thomas – Fermi screening radii, and  λm are dimensionless 

constant equal to[6] λ1 = 0.5 ,    λ1 2⁄ = 0.327    and  λ1 3⁄ = 1.309. It will 

be convenient to characterize collisions in the eV range by a power cross 

section.  For m = 0 eqs.(14 , 15, 16 and 17) become 

dσ = C dT T⁄                                                                                                    

(18)                                  

dσ(1) = C(1) dT T⁄                                                                                             

(19)                                     

C =
1

2
πλ0a22

2                                                                                                     

(20)                                   

C(1) =
1

2
πλ0a12

2                                                                                                 

(21)                                    

For the purpose of numerical evaluations we replace eqs.(20 and 21) by[3] 

C0 =
1

2
πλ0a2 ,              λ0 = 24  ,                a = 0.219  A0,                            

(22)                                       

A part from the differential cross sections, we need the elastic stopping cross 

section after substituting eq.(14 into 3) and eq.(15 into 3) and integrating 

them, we get on[3] 

Sn(E) = ∫  T dσ =
1

1−m

E

0
C E1−2m                                                                  

(23)                                   
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S(1)n(E) = ∫  T dσ(1)  =
1

1−m

Tm

0
C(1) γ1−m E1−2m                                         

(24)                                    

These expressions can be used to define rough energy limits within which 

cross sections for various values of  m apply.  

2.3 Phenomenological Description of Sputtering 

    The nuclear stopping process generates displacement cascade in which a 

large number of higher – order low energy recoil atoms are produced and 

contributed to sputtering process[2]. The sputtered atoms are those that move 

toward the surface with sufficient energy to overcome the surface binding 

forces. These atoms have small ranges therefore it must locate initially 

within a few atomic layers below the surface[2]. 

    The sputtering yield Y, defined as the average number of target atoms 

ejected per incident particle, depending on the combination of projectile – 

target variables, including the particle energy E, the atomic numbers and 

masses of the projectile and the target Z1, M1 and  Z2, M2 respectively, the 

structure of the target surface and the experimental geometry[3,20]. 

     The linear cascade theory for Sigmund is used to calculate the sputtering 

yield [3]. This theory predicts that a linear dependence of Y on the energy 

deposited in displacement cascade at the surface of a random, FD(E, θ, 0)[2]: 

Y(E) = ΛFD(E, θ, 0)                                                                                         

(25)                                     

Λ =
X0

π2U
                                                                                                             

(26)                                   

By substituting eq.(25) into eq.(26), sputtering yield Y becomes[2] 

Y(E) =
X0

π2U
FD(E, θ, 0)                                                                                     

(27)                                      

X0 =
3

4NC0
                                                                                                          

(28)                                   

The constant Λ is a material constant, including the surface binding energy 

and a cross section for target atoms colliding with each other at low 

energies[11]. X0 is the effective depth of origin of the sputtered atoms[2] and 

U is the surface binding forces. By substituting eq.(28) into eq.(26), we 

get[10] 
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Λ =
3

4π2NC0U
                                                                                                      

(29)                                    

where C0 is a constant governing the low – energy stopping cross section 

given in eq.(22) for m = 0, by using the conventional value of λ0 = 24 and 

a=0.0219 nm (Born – Mayer constant). Hence, C0 = 0.0181 nm2[3].The 

substitution the value of C0 into eq.(29), it  becomes[3] 

Λ =
0.0420

N U A2
                                                                                                          

(30)                                   

The surface deposited energy FD(E, θ, 0) can be obtained from the depth 

distribution of the energy deposited in nuclear collisions in the solid, 

FD(E, θ, X), by an incident particle of energy E aligned at an angle θ with 

respect to the surface normal (x – direction) [2] 

FD(E, θ, 0) = αNSn(E)                                                                                    

(31)                                       

After substituting eq.(31) into eq. (25), Sigmund uses a linear Boltzmann 

transport equation for the well – known expression of the sputtering yield 

from a planar surface is[3] 

Y(E) = ΛαNSn(E)                                                                                           

(32)                                  

Sn(E) is the only quantity entering eq.(32) that depends on the ion – target 

interaction cross section[3]. For  m = 0, the elastic stopping cross section 

Sn(E) given by eq.(24) becomes [6] 

Sn(E) = C0 γ E                                                                                                 

(33)                                      

Sn(E) = C0 Tm                                with      Tm = γ E                                     

(34) 

From eqs.(29 and 34), the sputtering field in eq.(32) at perpendicular 

incidence is[3]  

Y(E) = (
3

4π2) α Tm U⁄                                                                                        

(35)                                    

This expression does not depend on either λ0 or a. A part from the mass 

number M2 and U is the only target property that enters eq.(35) [3].  

where α is a numerical factor depending primarily on the mass ratio 

(M2 M1⁄ ) and the angle θ of the incident and α is relatively insensitive for 

variations in the primary energy E [2]. For (M2 M1 ≤ 0.5)⁄ , α is nearly 
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constant ~0.2. However, it rises sharply with increasing (M2 M1 > 0.5)⁄ . 

Within the range of (0.5 < M2 M1 ≤ 10)⁄ , α can be approximated by [21] 

α = 0.3(M2 M1⁄ )2 3⁄                                                                                          

(36)                                    

    The nuclear stopping cross section Sn(E) increases approximately linearly 

with E at very low energies (m ≅ 0), reaches a (maximum) plateau at 

intermediate energies (m ≅ 1 2⁄ ), and then decreases at higher energies 

(1 2⁄ < m ≤ 1) [2].  

We take the expression of Lindhard et al. to calculate the nuclear stopping 

cross section Sn(E) by assuming Thomas – Fermi interaction[6].  

Sn(E) =
4πZ1Z2e2a12 M1

[M1+M2]
Sn(ε)                                                                           

(37)                                           

where Sn(ε) is the reduced nuclear stopping cross section. For ε ≥ 10−3, 

Sn(ε) can also be calculated analytically using the following expression 

derived recently by Matsunami et al.[22] 

Sn(ε) =
3.44ε1 2⁄ log(ε+2.718)

1+6.355ε1 2⁄ +ε(6.882ε1 2⁄ −1.708)
                                                              

(38)                                                                      

ε =
M2E

M1+M2
∙

a12

Z1Z2e2
                                                                                             

(39)                                                                 

where a12 is the Lindhard's screening radius given by eq.(11), a0 = 0.0529 

nm (Bohr radius), E is the energy in KeV, masses M1 and  M2 are in amu., 

and ε is the reduced energy . 

2.4 The Sputtering Process 

       The interaction of fast ions with a crystalline solid has a number of 

results. The kinetic energy of the incoming ions is transferred to the atoms 

and electrons of the target. Some ions may be backscattered from the target  

and the rest stop within it. If the kinetic energy transferred to a target atom is 

enough, it causes to displace it from its lattice site with substantial energy 

generating more recoiling atoms to slow down in their turn, until the initial 

kinetic energy of the primary ion is completely dissipated. Some recoiling 

atoms may reach the target surface with enough kinetic energy to escape 

from it. They are mostly neutral atoms ejected in a wide angular distribution 

which contain important information about the solid, some ejected atoms are 

in excited state which may accompany with by small number of ions[23].    
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     The atom in a monatomic medium is displaced with an initial kinetic 

energy E0. By differentiation, the number of new recoils with kinetic 

energies between E1 and E1 + dE1 is proportional to (1 E1
2)⁄ [24]. In 

Thomson for the energy spectrum of the sputtered atoms is proportional to 

[23] 

F(E1) =
E1

(E1+U)3                                                                                                

(40)                                    

    It is found that the high – energy tail of those EDF's decreased inversely 

proportional to the square of the particle energy[8]. This formula was derived 

assuming that sputtered atoms come from a well-developed collision cascade 

in a material. This cascade is generated by a heavy ion bombardment. He 

actually measured the EDF for several poly – crystalline metal targets[8]. 

EDF can be written as[8] 

F(E1) =
1−√E1+U γEinc⁄

E1
2(1+

U

E1
)

3 =
1−√E1+U γEinc⁄

E1
2(

U+E1
E1

)
3                                                          

(41)                                   F(E1) =
1−√E1+U γEinc⁄

(E1+U)3

E1

                                                                                    

(42)                                  

F(E1) =
E1

(E1+U)3 (1 − √
E1+U

γEinc
)                                                                          

(43)                                    

where E1 and Einc are the energies of sputtered atoms and incident ions, 

notice that, eq.(40) is reduced to eq.(43) when γEinc > E1. The maximum in 

the energy distribution is reached at U 2  ⁄ and can be found from 

experimentally measured energy distributions of sputtered atoms[25]. The 

energy distributions of sputtered atoms peak in lower energy that was 

explained by a contribution of primary recoil atoms[26]. The dependence of 

the energy distribution of sputtered particles on ion energy and ion type has 

been systematically simulated by Biersack and Eckstein[27].  

3. Results and Discussion 

       Figure(1) shows the results of universal screening function as a function 

of (r a⁄ ) that are obtained from Bohr eq.(7) [12], Lenz – Jensen eq.(8) 

[13,14], Moliere eq.(9) [15] and Ziegler et al. eq.(10) [16]. From the figure, it 

is noted that all results of universal screening function are comparable in 

magnitude at low values of (r a⁄ ), while the results are divergent at high 
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values of (r a⁄ ) except the results from Lenz – Jensen and Ziegler et al. 

which remain nearly comparable in magnitude at all values of (r a⁄ ). The 

Lenz – Jensen potential are found to represent a considerable approximation 

to experimental scattering cross section, but deviation from universal 

behavior are comparable in magnitude to the difference between Moliere and 

Lenz – Jensen.  

 
Figure (1) Universal screening functions employed in calculations of elastic 

collisions 

  

        Figure (2) shows the ratio of screening radii versus  Z1 Z2⁄ . The ratio of 

screening between Lindhard radius [4] and Firsov radius [17] 

(Lindhard Firsov⁄ ) is obtained from eqs.(11 and 12). It is noted that the 

Lindhard radius differs from Firsov radius by nearly 12%. The figure also 

explains the ratio of screening between Lindhard radius[4] and Ziegler et al. 

radius [16] (Lindhard ZBL⁄ ) which is evaluated from eqs.(11 and 13) and 

calculated for various values of atomic number of target Z2 = (100, 10, and 

1). It is seen that the ratio screening effects with Z2 and it is proportional 

parallel with it therefore, the values of screening ratio at high Z2 are greater 

than that at low Z2. The figure also shows that for the Ziegler et al. radius, 

the difference between Lindhard radius and Ziegler et al. radius is much 

more evident.  
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Figure(2) Ratio of screening radii 

 

       Figure (3) show the results of sputtering yields of polycrystalline Cu with 

binding energy (U=3.51eV),  Z2 = 29 and mass ratios is from about 0.5 to 3, while 

the figure (4) explains yields for Ag with binding energy (U=2.96eV), Z2 = 47 and 

mass ratios from about 0.8 to 5 but the figure (5) shows a similar curve of yield for 

Pd to Ag with binding energy (U=3.9eV),  Z2 = 46 and mass ratios from about 0.8 

to 5. All the curves are calculated for different incident noble gas ions 

(Xe, Kr, Ar and Ne) with atomic number (Z1 =54, 36, 18, and 10) versus ion 

energy. The sputtering yields are evaluated from Born – Mayer interaction at ion 

energies smaller than 1 KeV in eq.(35). The yield increases with increasing ion 

energy E at low energy where m is close to zero. One must regard that the incident 

ion is a light ion in order to check the validity of α versus M2 M1⁄  curve for larger 

values of M2 M1⁄ . The yield curves are linear at energies below 100 eV but in the 

energy range larger than 100 eV, the yield curves are not really linear because of 

the supposition of an infinite medium and neglect the scattering out of the surface. 

 

10
-2

10
-1

10
0

10
1

10
2

0.4

0.6

0.8

1

1.2

1.4

1.6

Z1/Z2

R
at

io
  o

f  
sc

re
en

in
g 

 r
ad

ii

 

 

Bohr/ZBL ,Z2=100

Bohr/ZBL ,Z2=10

Bohr/ZBL ,Z2=1

Bohr/ Firsov



Journal of Thi-Qar University Vol.11 No.2 June 2016 

89 

 

 
Figure(3)Sputtering yields for Cu calculated from eq.(35) with  Xe,  Kr,  

Ar,  Ne  ions 
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Figure(4)Sputtering yields for Ag calculated from eq.(35) with  Xe,  Kr,  

Ar,  Ne  ions   

 

 
Figure(5)Sputtering yields for Pd calculated from eq.(35) with Xe,  Kr,  

Ar,  Ne  ions 

 

       Figure(6) shows sputtering yields of polycrystalline Cu with binding 

energy (U=3.51eV) and Z2 = 29 for different incident noble gas ions 

(Xe, Kr, Ar and Ne) with atomic number (Z1 =54, 36, 18, and 10) versus ion 

energy in (KeV). Sputtering yield is obtained from Thomas Fermi interaction 

at ion energies larger than order of some hundred eV in eq.(37). From the 

figure, it is seen that the there is a variation in yield with ion energy which 

reflects the sputtering yield should be proportional to the energy lost by the 

incoming ions. At low velocities, sputtering yields increase with increasing 

ion energy but then approach a maximum and ultimately decrease again at 

high energies. For a fixed target, the maximum in the sputtering yield 

appears to be more pronounced for very heavy ions because of the nonlinear 

effects in very dense collision cascade than that predicted for light ions 

because of the lack a surface correction term. For a fixed target material, the 

sputtering yield is a monotonically increasing function of atomic number of 

ion Z1 therefore, the greater the yield, the heavier the ion (Xe) and the 
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smaller the yield, the lighter the ion(Ne). The sputtering yield is 

overestimated probably for Ne because of the neglect of the surface. 

 

 

 
 Figure(6)Sputtering yields for Cu calculated from eq.(37) with  Xe,  Kr,  

Ar,  Ne  ions 

 

     Figure(7) shows a similar curve of yield for Ag with binding energy 

(U=2.96eV) and Z2 = 47. The (Xe − Ag), (Kr − Ag) and (Ar − Ag) curves 

have a tendency to underestimate the yield except for (Ne − Ag). 
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Figure(7)Sputtering yields for Ag calculated from eq.(37) with  Xe,  Kr,  

Ar,  Ne  ions 

 

       Figure(8) shows a similar curve of yield for Pd which is a very similar 

metal to Ag with binding energy (U=3.9eV) and Z2 = 46). The reverse is 

true in the case of Pd.The (Xe − Pd), (Kr − Pd) and (Ar − Pd)curves tend to 

overestimate the sputtering yield except for (Ne − Pd). 

 

 
Figure(8)Sputtering yields for Pd calculated from eq.(37) with Xe,  Kr,  

Ar,  Ne  ions 

 

        Figure(9) shows the results of energy spectra F(E1) of sputtered atoms 

Cu that obtained from eq.(43) versus energy of sputtered atoms for Kr ions 
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with different values of energy Einc = (80, 150, 300, 600, and 1200) eV. 

The figure confirms that the energy spectrum of moving sputtered atoms is 

proportional to 1 E1
2 ⁄ . It is clear the spectrum diverges for small energies 

which means that as the collision cascade develops in time and the energy of 

incident ion is shared between more and more recoiling atoms because the 

linearity of cascade collisions fail at low recoil energies and the linear – 

transport theory is no valid. Substantial deviations from an 1 E1
2 ⁄ recoil – 

atom energy spectrum must occur at higher energies, the higher the density 

of the cascade. In each curve, the energy spectrum has a maximum at U 2⁄  

(eV) and tail extending to tens and hundreds of (eV). From the curves, the 

maximum position is an increasing function of the incident energy, hence the 

spectrum of sputtered atoms increases with increasing incident ion energy, 

therefore at ion energy 1200 eV, the spectrum has greater values than that at 

other ion energies. 

 
Figure(9) Normalized yield of atoms sputtered from Cu material 

irradiated by Kr ions at normal incidence 

 

       Figure(10) shows the ratio F(E1) Fmax⁄  of sputtered atoms Cu versus 

energy of sputtered atoms for Kr ions with energy U 2⁄ . The figure 

demonstrates that the energy spectrum of sputtered atoms has  

a peak at 1~eV. 
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Figure(10) Ratio F(E1)/Fmax of atoms sputtered from Cu material 

irradiated by Kr ions  

at normal incidence 

4. Conclusions 

        Sputtering is the target atoms removed from the surface (in other words, 

the ions detach atoms from the target because of nuclear stopping) by a 

sequence of collisions cascade between a projectile and the atoms in the near 

surface layers of target material which causes a destruction of solid state and 

leads to the emission of atomic particles (a number of primary and higher 

order recoiling atoms). The recoil atoms are large number of target atoms 

displacing from their equilibrium positions when the energy and momentum 

of the ions transfer to the target atoms. 

      There is a necessary condition for sputtering that E > U (the ion energy 

is larger than the surface binding energy). If the energy of the recoil atoms is 

larger than the surface binding energy U, the recoil atoms reach the surface 

(sputtered atoms) and lose its remaining kinetic energy as heat.   

       Sputtering yield is the number of sputtered atoms per incoming ion and 

it is obtained from the weight loss of target and the number of incoming ions. 

Sigmund assumption of sputtering theory is based on that all the binary 

collisions within the cascade take place between a moving and a fixed atom 

and he uses the linear Boltzmann equation to describe these collisions. In the 

sputtering by elastic collisions which initiated by ion bombardment, it is 

necessary to determine the nuclear stopping cross section in the low energy 

regimes in order to evaluate the sputtering yield. The stopping cross section 

for elastic collisions can be calculated from Thomas – Fermi interaction at 

high energies (upper eV and in KeV) for 0 <  m ≤ 1 and Born – Mayer 

interaction at low energies (in eV) for m = 0. 
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      Sputtering yields are proportional to energy of ion. The dependence of 

sputtering yield on ion energy is proportional to the nuclear stopping power 

and the magnitude of yield increases with increasing ion energy at low ion 

energy E where m = 0, conversely, at high ion energy E where m = 1, the 

yield decreases with increasing ion energy E. Since m runs from 0 to 1 with 

increasing ion energy, it is noted that the yields have the maximum at 

intermediate energy. That maximum lies at KeV energies, and it magnitude 

increases strongly with projectile and target mass, therefore the maximum in 

the sputtering yield is due to nonlinear effect and more obvious for heavy 

projectiles than for light projectiles which is ascribed to the lack of surface 

correction.  

       The variation of sputtering with ion type reflects the influence of 

projectile atomic number Z1on sputtering yield which increases 

monotonically with Z1. For a same target material (Z2) and various projectile 

Z1, the larger the sputtering yield, the heavier the projectile (large Z1) and the 

smaller the sputtering yield, the lighter the projectile (small  Z1). 

      The energy spectrum of sputtered particles which represent mainly the 

recoil atoms from a heavy ions hit a solid target surface may be described by 

Thompson formula. The recoil atoms reproduce from the collision cascade 

when the ions interact with a target atoms and deposit the energy near the 

surface causing the recoil atoms to leave the surface if they receive enough 

energy to overcome the surface binding energy. The energy spectrum of 

sputtered particles exhibits a maximum at  E1 = U 2⁄  at lower energies and 

falls off in proportion to 1 E1
2 ⁄  which can be affected by many factors, 

including ion energy and ion type.  
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 الخلاصة

الهدف  مادةللرش المهبطي لل الفيزيائيمفهوم الث قدمنا دراسة من اجل توضيح في هذا البح        

في المادة التصادمات تعاقبات كنتيجة لعدد من  عالية الطاقة يوناتا من قذفعند تعريضها إلى 

التصادمات وهي التصادمات ذات الطاقة العالية والتي فيها يطبق تعاقبات . هناك نوعين من الهدف

اطئة والتي تتميز بالمقطع العرضي والتصادمات ذات الطاقة الوفيرمي   –المقطع العرضي لثوماس 

مردود  و الرش المهبطي إلى جزأين وهما جهد الرش المهبطي ماير. من الممكن تقسيم  –لبورن 

والتي من الممكن أن تقدر مردود الرش المهبطي قمنا بالتركيز على  . في هذا البحثالرش المهبطي

هي  الناتج مردود الرش المهبطيالمعادلة إن  تحت تأثير تباطؤ الايونات النشطة في الوسط المادي.

الفضة,  لأهداف من الناتج مردود الرش المهبطي إن للانتقال.من معادلة بولتزمان  تأتي الأساسفي 

هناك تباين واختلاف في مقدار  مختلفة عليها. ايونات قد حسبت نتيجة سقوطالبولوديوم,  و النحاس

المحسوبة مع اختلاف العدد الذري للجسيم الساقط المقذوف كذلك يوجد  مردود الرش المهبطي

انحراف في مقدار الطاقة العظمى لكلا النوعين من الجسيمات الساقطة )الثقيلة والخفيفة(. أيضا في 

من المادة  الملفوظةهذا ابحث تم دراسة صيغة مقترحه من قبل ثومسن لوصف طيف الطاقة للذرات 

وان هذه الصيغة من الممكن  )عملية الرش المهبطي( طة عدد من الايونات الثقيلةالهدف المشعة بواس

إن برنامج بلغة الماتلاب قد تم كتابته من اجل  طاقة المعدلة.أن يعبر عنها باستخدام دالة توزيع ال

          برمجه المعادلات والحصول على النتائج.


