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Structure topology of magnetic field close to a null point
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Abstract

Magnetic reconnection is a very important and fundamental plasma process in
transferring energy from magnetic field into plasma. Previous theory, numerical
simulations and observations mostly concentrate on 2-dimensional (2D)
model.Configuration of magnetic fields near anull point is re-examined by a
topological analysis. The so-called X-and O-type magnetic field respectively occupy
their own seat in our classified table. Then the existence of the spiral and node of
configuration will be shown by the analysis.

1- Introduction

Magnetic null points are classified by the number of field lines passing through
them [8]. A bundle of field lines having a common tangent at a null point is counted
as one line only. It has been known that there exist two kinds of null points [2]. If
there is only one field line passing through a null point, it is called ( by the shape of
field lines in vicinity ) an O-type null point. Alternatively, if there field lines pass
through it, it is known as an X-type null point. All current-free null points belong to
this category.These two types of null points have considerably been investigated by
many workers, among whom Dungey [2] found out an excellent concept of the so-
called reconnection of magnetic field lines. He showed that the energy of magnetic
field may be effectively converted into kinetic and thermal energies of plasma by the
reconnection at the X-type null point. His idea has been followed by Sweet [9], Parker
[5],Petschek [7]Yeh&Axfored [10] and Fukao&Tsuda [3,4]. Now it may be
worthwhile to call up the original of idea of Dungey in order to clarify this sort of
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energy conversion . We assure that reconsideration of the magnetic fields follows, the
classification of magnetic fields in the vicinity of null point will be strictly re-
examined in terms of the phase trajectories. Much of what will be said is the extension
and the generalization of Dungey's work, but some types of the null points which
have not been recognized by the pioneers are first proposed here.

2-Review of two-dimensional neutral points
In two dimensions the matrix M is simply

_[a11 alZ]
a1 Az

where aj;are real constants. The solenoidal constrainty’ B = 0 gives a;;=a,, thus

the trace of M iszero. The diagonal entries in the matrix are associatedwith the
potential part of the field so we let a;; = pand since the current associated with the
neutral pointis

1
J =—1(0,0,a;; — ayy).
Mo
We define,

1 ) 1 )
Az = E(CI —Jjz) and ap; = E(q +Jz)

Clearly, for a current-free neutral point a,;=a,, = %and the parameter q is therefore

also associated withthe potential field whilst j,is the magnitude of thecurrent
perpendicular to the plane of the null point. The matrix M may now finally be written
as

1
p E(q —Jz)
M =
" .
E(q +Jjz) —p

We will find it useful to define a threshold current,
Jthresh = 4p?% + q?, 1
which we note only depends on the parameters associated with the potential part of

the field. It is equal to the square root of the discriminant of the characteristic equation
of the symmetric part of M.We now calculate the flux function A, which satisfies,

9A 94
BX_E andBy——a
So that
1 . 2 . 2
A=Z[(q—JZ)Y —(q +j)X*] + pXY 2
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If we rotate the XY-axes through an angle 0 to givexy-axes using the relations

X =xcosO—y sinH}
Y =xsinf +y cosf)’

and substitute (3) into (2) with
tan 260 = —2 B,
q

With jipresn @S in (1) then A becomes

1_ . . . .
A= Z [Gtnresn _]z)yz = Uthresn +]z)x2]- 4

We thus see that in two dimensions the two parameters j,,.sn and j, govern the
magnetic configuration.
The eigenvalues of the matrix M are given by

j2

17
A= iz ]Zthresh —J

2

hence, depending on whether the current j, is greater or less than the threshold value
Jenresn the eigenvalues will be real or imaginary and the field will have a different
structure(Parnell et al. (1996)) [6].

3- Topology of magnetic field lines

Since the magnetic field must be a solution of Maxwell’s equation, it must be
differentiable, and hence expansible in Taylor series. Taking the null point as the
origin, the magnetic field (magnetic flux density) B near a null point may be

expressed by lowest order terms, that is,

B=M.r
Where M is a matrix with the elements of theJacobian of B

_aBX OBX OBX‘

X oY oz
9By 0By 0By

X o9Y oZ
9B, 0B, 0By

LoX dY 0Z-

and r is the position vector (X,Y, Z)T. Only one constraint is that a must have zero
trace, since the magnetic field is solenoidal.
Here we consider of

(1) = M.r (1) 5
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Where 7(t)is the derivative with respect to an arbitraryz. It is apparent that a solution
r(t)describes a field line, since r(t)indicatesBitself. Therefore we can show
magnetic field lines in terms of phase trajectories, which satisfy (5). It is readily seen
that M must have at least one real eigenvalue, and that the orthogonal coordinate
system (x,y, z) can always be chosen such that the z-axis is in the direction of the
eigenvector corresponding to the real eigenvale. In such a coordinate system, M may
be describe as

a;; a0
M*: 321 azz 0 6

dzi; dzz asz

Where

3

Z a;; =0 (zero trace) 7

i=1
In this case the current density J in the vicinity of a null point is given by
asz
WoJ = [ 7431 8
Qo

Where y, is the magnetic permeability in vacuum and a,, is defined as

ao(E Mofz) = az1— 012
The characteristic equation of M*, f," (1), becomes
fa ) = fa(D). (A — az3) 9
Where
f2() =22+ dazgs — X
In terms of X define as
X = a42091 — A11A27.

The eigenvalues of M™ are the root of equation ( 9). Let the two roots of f,(1) be a
and S, which are not necessarily real (not that otptasz; =0).
As already mentioned, three linearly independent vectors k; k, and ksare chosen
such that ks is the eigenvector corresponding to as5. It may be quite sufficient, if only
we illustrate magnetic field lines in the orthogonal Cartesian system, since the affine
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transformation is always possible. Hereafter k;andk, aare respectively projected
onto the x and y-axis, and all figures are illustrated in the xyplane.

3.1. Real eigenvalues
Both o and B are real if
4X + a233 > 0.

In this case the roots of (9) can be classified into the following three cases.

3.1.1. The case of & = B = a33(= 0).
This is satisfied if
X = as; = 0. 10
There are three cases according to the dimensions of the eigenspacel,.

(1) When J=0 (i.e., az; = a3, = a¢ = 0), it is readily shown from (7) and (10) that
M=0 and, therefore, the dim W,=0, which means no field in the whole space.

.. a1 Qo az1 QA .
ii) If J#=0 and both | |=O and | |= 0 are simultaneousl
(i) J asz; dsp asz; dsp y

satisfied, dim W,=2. Either J, = 0 or J, =], = 0 satisfies these conditions. In this
case W, becomes a plane including the z-axis (e. 9., az1x + as,y = 0 if |az|[+|as,|#
0). Then there exist three vectors hs, h,andh,each of which satisfiesM*h; =
Oh;, M*h, = Oh,(h; and h, are in the plane W,) and M*h, = h, (if J, =0, h; is
taken instead of hs) respectively. Therefore the general solution of (5) is expressed as

T(T) = C3h3 + Czhz + Cl(th + h’l) = Clhl + fzhz + Cgh3,

Where &, = C;t+ C, and C;'s (i = 1,2,3) are arbitrary (real) constants. Therefore
phase trajectories describe a pair of antiparallel magnetic field lines directed to h,.
The plane W,is the so-called magnetic neutral sheet where the magnetic field
vanishes.

(iii) For the other values of M*, dim W, =1. In this case both J, # 0 or |/,| + |],| # 0
must hold. W, is the z-axis this was studied by Al-hachami et al.[*]. Then there exist
three vectors hs, h,andh,each of which satisfies M*h; = Oh;, M*h, = Oh, and
M*h, = h, respectively. Therefore the magnetic field lines are written by

2
T
T(T) = C3h3 + Cz(hgT + hz) + Cl(hl? + Thz + hl) = Clhl + fzhz + €3h3,

Where &, = C;t+ C, and & = (C,/2)1% + C,T + C5. This shows that W, is the
magnetic null line along which the magnetic field vanishes. In the plane defined by h,
and h; (i.e.,C; = 0) a pair of antiparallel fields are formed in the direction of hs. in
the planes parallel to it the magnetic field lines are parabolic and formed by
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superposition of two sets of antiparallel fields shown in (ii).It is apparent that the field
lines mentioned here are due to the current near the null point; there remains no field
when J = 0.

3.1.2. The case of two equal eigenvalues.
This is the case, either if

X —2a%33=0 (az; #0),
or if

4X —2a’33,=0 (azz # 0).

The former condition leads to a(or f)=as3;, and latter, a = f(=-az3/2). The
formerwe consider only the latter here. Let's denote the eigenspace corresponding to
the eigenvalue , @ = f(=-as3/2) by W,. Then the following two cases should be
considered according to the dimension of W,. (i) If J, =0, dim W, =2 and W,
becomes a plane given by 2asix + 2az,y + 2az3z = 0. When J, =], =0, W,
coincides with xy-plane. The three vectors hs;, h, and h, can be chosen such that
M h; = as3h;, M"h, = —(as3/2)h, and thatM*h, = —(as3/2)h, . Therefore the
general solution of (5) is given by

a a
(1) = C3hze®37 + CoheC 20 + Cihye2 P,

In the W, plane all field lines are straight and go towards the null point if a;; > 0 (see
Figure 1a), while outwards if a;; < 0. (ii) If J, # 0, dim W, = 1. W, is a straight line
given by the intersection of the two planes, i. e., (2a;; + a;1)x + 2a,,y = 0. When
Jx =], =0, W, coincides with xy-plane. The three vectors hs, h, and h; can be

chosen such that M*h; = — (%) h;, M*h, = — (%) h, + h, and that M*h; =
a;;h; . Therefore the general solution of (5) is given by

_ass

T(T) = Clhle(_%‘[) + Cz(th + hz)e( TT) + C3h3€a33r

a33, a33

== Elhle(_ 2 R + Czhz + hze(_ 2 R + C3h3€a33T

where & = C; + C,t. The field lines in the plane defined by h; and h, are shown in
Figure 1b. when J — 0, there remain such magnetic fields as shown in (i), which is
referred to some external currents.
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a b
Figure 1:Field lines for = 8 < 0. (a) dim W, = 2 and (b) dim W, = 1.
3.1.3.The case of three different eigenvalues.
This is the case if
4X —a%;3>0 (2a%33— X # 0).

Let's denote the eigenspaces corresponding to the eigenvalues a,f and ass
respectively by W, Wy and W,_, (the z-axis). Both W, and W} are also straight lines
and W,, for instance, is given by the line of intersection between the planes(a;; —
aA)x+a;,y=0 and azx+azy+ (a3 —a)z=0, if |a;; —a| +|az]| #0.
Otherwise ajix + (az; —a)y =0 is taken instead of the former plane.W; is
similarly determined. When J, = J,, = 0, both W,, and Wy are in thexy-plane. Then
the solution of (5) is expressed as

T(T) = Clhle(af) + Czhze(ﬁr) + C3h3ea33t.

Three eigenspaces form the principal axes, i.e., field lines passing the null point. In
the plane defined by h, and h,, a node is formed at the null point for a g > 0. all
field lines are directed towards the null point for a, § < 0 (Figure 2a) andoutwards for
a,f > 0. A saddle, on the other hand, appears for a f < 0 (Figure 2b), this was
considered by Al-hachami et al.(2010)[1].

It may be worthwhile to note that, when J = 0, the principal axes are orthogonal to
each other (since M* becomes symmetric). The special case that one eigenvalue
vanishes will be discussed latter.
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a b
Figure.(2):Field linesfor (@) a < p<0and (b)a <0< B.
3.2 comlex eigenvalues.

Both « and g are complex if
4X —a%;5 < 0.
The eigenvalues a and  may be written as

a=p+ivandf=a=p—iv (u=—%),

And corresponding eigenvectors can be chosen such that they are conjugate with each
other, i.e., hy and h. Then the general solution of (5) is expressed as

r(t) = Che® + Che@® + (C3hze%3T, 11

Where C is an arbitrary complex number. We put
1
h = E(h1 — ihy),

where h; and h, are in xy-plane if /, =], = 0. Since h, and h, are linearly
independent, they compose the bases of the phase space together with h5. Putting

E(r) =& +i& = Ce™, 12
Equation (11) is expressed as

r(1) = §hy + & hy + C3hze 3T,
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If h; and h, are projected onto (5) and i, respectively, the vector &, hy + &, h,

corresponds to the complex number given by (12). Putting C = Re'?, (12) is
expressed as

E(T) = ReWT,elvT+0),

Magnetic field lines in the plane defined by h, and h, therefore, become logarithmic
spirals. They are inwards when p < 0(azz > 0), while outwards whenu <
0(asz3 < 0). in the case of u= 0(as3 =0), each field line becomes a closed
trajectory, forming a so-called center of spiral (therefore the z-axis is the magnetic
null line). In the limitJ — 0, the closed fileld lines tend to vanish, which means that
these field lines are induced by the current near null, This was considered by Pontin et
al.[8].Hence the spiral field (as; # 0) are formed by the pointsuperposition of the
closed field lines upon those due to the external source currents as shown in Figure
la.

4. Conclusion

The classification of magnetic null points was stractully re-examind in terms of
the phase trajectries. It may be the extension and generlisation of Dungey's work but
the probable existence of some types of null points-spiral and node-was pointed out
first. The result indicates that the ordinary two dimensional problem is only a very
limited case. The magnetic volume force acting on the fluid may be discribed by the
same topological analysis.
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