New Class of Meromorphic Univalent Functions

Waggas Galib Atshan and Faiz Jawad Abdulkadhim

Department of Mathematics,

College of Computer Science and Mathematics,

University of Al-Qadisiya, Diwaniya, Iraq

waggashnd@gmail.com, waggas_hnd@yahoo.com, faiz.jawad@yahoo.com

Abstract: In this paper We define a new class of meromorphic univalent functions in the punctured unit disk. We obtain coefficient inequalities, Closure Theorem, convex companion, distortion bound, Partial sums and neighborhood property, and Hadamard product. Atshan[9], Cho et al.[6], Atshan and Kulkarni[3], Seoudy and Aouf [7] studied the meromorphic univalent functions for another classes.

Keywords: Meromorphic univalent functions, Closure Theorem, convex combination, distortion bound, Partial sums and neighborhood property

1- **Introduction**: Let \mathcal{A}_1^* be a class of functions f of the form:

$$f(z) = z^{-1} + \sum_{k=1}^{\infty} a_k z^k,$$
(1.1)

which are analytic and meromorphic univalent in the punctured unit disk $U^* = \{z \in \mathbb{C}: 0 < |z| < 1\}.$

Let Σ be a subclass of \mathcal{A}_1^* , consisting of functions of the form:

$$f(z) = z^{-1} + \sum_{k=1}^{\infty} a_k z^k$$
, $(a_k \ge 0, k \in \mathbb{N} = \{1, 2, ...\}),$ (1.2)

which are analytic and meromorphic univalent in U^* .

For $f \in \Sigma$ given by (1.2) and $g \in \Sigma$ given by

A function $f \in \Sigma$ is said to be meromorphic starlike function of order ρ ($0 \le \rho < 1$) if

$$Re\left\{-\frac{zf'(z)}{f(z)}\right\} > \rho, \qquad (f(z) \neq 0, z \in U = U^* \cup \{0\}).$$
 (1.3)

The class of all such functions is defined by $\Sigma^*(\rho)$.

A function $f \in \Sigma$ is said to be meromorphic convex function of order ρ ($0 \le \rho < 1$) if

$$Re\left\{-\left(1+\frac{zf''(z)}{f'(z)}\right)\right\} > \rho, \qquad (f'(z) \neq 0, z \in U = U^* \cup \{0\}).$$
 (1.4)

For $f \in \Sigma$ given by (1.2) and $g \in \Sigma$ given by

$$g(z) = z^{-1} + \sum_{k=1}^{\infty} b_k z^k$$
, $(b_k \ge 0, k \in \mathbb{N} = \{1, 2, ...\}),$ (1.5)

the Hadmard product (or convolution) of f and g is defined by

$$(f * g)(z) = z^{-1} + \sum_{k=1}^{\infty} a_k b_k z^k = (g * f)(z).$$

Definition (1): A function $f \in \Sigma$ is said to be in the class $\Sigma(\alpha, \gamma)$ if and only if

$$\left| \frac{z(z^2 f'(z))' - z^2 f'(z)}{\gamma - z^2 f'(z)} \right| < \alpha \text{ , where } (0 < \alpha \le 1, \gamma > 0).$$
 (1.6)

Lemma (1)[1]: Let $\alpha \ge 0$. Then, $Re(w) > \alpha$ if and only if $|w - (1 + \alpha)| \le |w + (1 - \alpha)|$, where w be any complex number

The first theorem gives a necessary and sufficient condition for a function f to be in the class $\Sigma(\alpha, \gamma)$.

2- coefficient bounds:

Theorem (1): Let $f \in \Sigma$. Then $f \in \Sigma(\alpha, \gamma)$ if and only if

$$\sum_{n=1}^{\infty} n(n+\alpha) a_n \le \alpha (1+\gamma), \ \ (0 < \alpha \le 1, \gamma > 0).$$
 (2.1)

The result is sharp for the function

$$f(z) = z^{-1} + \frac{\alpha(1+\gamma)}{n(n+\alpha)} z^n, \qquad (n \ge 1).$$
 (2.2)

Proof: Suppose that the inequality (1.6) holds true and |z| = 1. Then, we have

$$\left| z \left(z^{2} f'(z) \right)' - z^{2} f'(z) \right| - \alpha |\gamma - z^{2} f'(z)|$$

$$= \left| \sum_{n=1}^{\infty} n^{2} a_{n} z^{n+1} \right| - \alpha \left| (1+\gamma) - \sum_{n=1}^{\infty} n a_{n} z^{n+1} \right|$$

$$\leq \sum_{n=1}^{\infty} n^{2} a_{n} |z|^{n+1} - \alpha (1+\gamma) + \sum_{n=1}^{\infty} \alpha n a_{n} |z|^{n+1}$$

$$= \sum_{n=1}^{\infty} n(n+\alpha) a_{n} - \alpha (1+\gamma) \leq 0,$$

by hypothesis. Thus by maximum modulus principle, $f(z) \in \Sigma(\alpha, \gamma)$. To show the converse, suppose that $f(z) \in \Sigma(\alpha, \gamma)$. Then from (1.6), we have

$$\left| \frac{z(z^2 f'(z))' - z^2 f'(z)}{\gamma - z^2 f'(z)} \right| = \left| \frac{\sum_{n=1}^{\infty} n^2 a_n z^{n+1}}{(1 + \gamma) - \sum_{n=1}^{\infty} n a_n z^{n+1}} \right| < \alpha.$$

Since $Re(z) \le |z|$ for all $z (z \in U)$, we have

$$Re\left\{\frac{\sum_{n=1}^{\infty} n^2 a_n z^{n+1}}{(1+\gamma) - \sum_{n=1}^{\infty} n a_n z^{n+1}}\right\} \le \alpha.$$
 (2.3)

We choose the value of z on the real axis so that $z^2 f'(z)$ is real. Upon clearing the denominator of (2.3) and letting $z \to 1^-$, through real values so we can write (2.3) as

$$\sum_{n=1}^{\infty} n(n+\alpha)a_n \le \alpha(1+\gamma).$$

Sharpness of the result follows by setting

$$f(z) = z^{-1} + \frac{\alpha(1+\gamma)}{n(n+\alpha)} z^n, \qquad (n \ge 1).$$

Corollary (3.2.1): Let $f \in \Sigma(\alpha, \gamma)$. Then

$$a_n \le \frac{\alpha(1+\gamma)}{n(n+\alpha)}$$
, $(n \ge 1)$.

3- Convex Linear Combination.

Theorem (2): The class $\Sigma(\alpha, \gamma)$ is closed under convex linear combinations.

Proof: Let f_1 and f_2 be the arbitrary elements of $\Sigma(\alpha, \gamma)$. Then for every t $(0 \le t \le 1)$, we show that $(1-t)f_1 + tf_2 \in \Sigma(\alpha, \gamma)$. Thus we have

$$(1-t)f_1 + tf_2 = z^{-1} + \sum_{n=1}^{\infty} [(1-t)a_n + tb_n]z^n.$$

Hence,

$$\sum_{n=1}^{\infty} n(n+\alpha)[(1-t)a_n + tb_n]$$

$$= (1-t)\sum_{n=1}^{\infty} n(n+\alpha) + t\sum_{n=1}^{\infty} n(n+\alpha)b_n$$

$$\leq (1-t)\alpha(1+\gamma) + t\alpha(1+\gamma) = \alpha(1+\gamma).$$

This completes the proof.

4. The arithmetic mean

Theorem (3): Let the functions f_k defined by

$$f_k(z) = z^{-1} + \sum_{n=1}^{\infty} a_{n,k}$$
 , $(a_{n,k} \ge 0, n \in \mathbb{N} , k = 1,2,...,l)$

be in the class $\Sigma(\alpha, \gamma)$ for every k = 1, 2, 3, ..., l, then the function h defined by

$$h(z) = z^{-1} + \sum_{n=1}^{\infty} e_n z^n, \qquad (e_n \ge 0, n \in N)$$

also belong to the class $\Sigma(\alpha, \gamma)$, where $e_n = \frac{1}{l} \sum_{n=1}^{\infty} a_{n,k}$.

Proof: Since $f_k \in \Sigma(\alpha, \gamma)$, it follows from Theorem (1) that

$$\sum_{n=1}^{\infty} n(n+\alpha)a_{n,k} \le \alpha(1+\gamma),$$

for every k = 1,2,3,...,l. Hence

$$\sum_{n=1}^{\infty} n(n+\alpha)e_n = \sum_{n=1}^{\infty} n(n+\alpha)(\frac{1}{l}\sum_{k=1}^{l} a_{n,k})$$

$$=\frac{1}{l}\sum_{k=1}^{l}\left(\sum_{n=1}^{\infty}n(n+\alpha)a_{n,k}\right)\leq\frac{1}{l}\sum_{k=1}^{l}\alpha(1+\gamma)=\alpha(1+\gamma).$$

Then $h \in \Sigma(\alpha, \gamma)$.

5- The growth and distortion bounds for the functions in the class $\Sigma(\alpha, \gamma, \lambda)$

Theorem (4): If $f \in \Sigma(\alpha, \gamma)$, then

$$\frac{1}{r} - \frac{\alpha(1+\gamma)}{(1+\alpha)}r \le |f(z)| \le \frac{1}{r} + \frac{\alpha(1+\gamma)}{(1+\alpha)}r, (|z| = r < 1).$$
 (5.1)

The result is sharp for the function

$$f(z) = z^{-1} + \frac{\alpha(1+\gamma)}{(1+\alpha)}z.$$
 (5.2)

Proof: Let $f \in \Sigma(\alpha, \gamma)$. Then by Theorem (1), we get

$$(1+\alpha)\sum_{n=1}^{\infty}a_n \le \sum_{n=1}^{\infty}n(n+\alpha)a_n \le \alpha(1+\gamma)$$

or

$$\sum_{n=1}^{\infty} a_n \le \frac{\alpha(1+\gamma)}{(1+\alpha)}.$$
(5.3)

Hence,

$$|f(z)| \le \frac{1}{|z|} + \sum_{n=1}^{\infty} a_n |z|^n \le \frac{1}{|z|} + |z| \sum_{n=1}^{\infty} a_n$$

$$= \frac{1}{r} + r \sum_{n=1}^{\infty} a_n$$

$$\le \frac{1}{r} + \frac{\alpha(1+\gamma)}{(1+\alpha)} r.$$
(5.4)

Similarly,

$$|f(z)| \ge \frac{1}{|z|} - \sum_{n=1}^{\infty} a_n |z|^n \ge \frac{1}{|z|} - |z| \sum_{n=1}^{\infty} a_n$$

$$= \frac{1}{r} - r \sum_{n=1}^{\infty} a_n$$

$$\ge \frac{1}{r} - \frac{\alpha(1+\gamma)}{(1+\alpha)} r. \tag{5.5}$$

From (5.4) and (5.5), we get (5.1) and the proof is complete.

Theorem (5): If $f \in \Sigma(\alpha, \gamma)$, then

$$\frac{1}{r^2} - \frac{\alpha(1+\gamma)}{(1+\alpha)} \le |f'(z)| \le \frac{1}{r^2} + \frac{\alpha(1+\gamma)}{(1+\alpha)} \quad (|z| = r < 1). \tag{5.6}$$

The result is sharp for the function f is given by (2.2).

Proof: The proof is similar to that of Theorem (4).

6. The Partial sums and neighborhood property

Theorem (6): Let $f \in \Sigma$ be given by (1.2) and define the partial sums $S_1(z)$ and $S_k(z)$ as follows $S_1(z) = z^{-1}$ and

$$S_k(z) = z^{-1} + \sum_{n=1}^{k-1} a_n z^n, \quad (k \in \mathbb{N} \setminus \{1\}).$$
 (6.1)

Also suppose that

$$\sum_{n=1}^{\infty} c_n a_n \le 1, \quad \left(c_n = \frac{n(n+\alpha)}{\alpha(1+\gamma)}\right). \tag{6.2}$$

Then, we have

$$Re\left\{\frac{f(z)}{S_k(z)}\right\} > 1 - \frac{1}{c_k}, \quad (z \in U, k \in \mathbb{N})$$
 (6.3)

and

$$Re\left\{\frac{S_k(z)}{f(z)}\right\} > \frac{c_k}{1 + c_k}, \qquad (z \in U, k \in \mathbb{N}). \tag{6.4}$$

Each of the bounds in (6.3) and (6.4) is the best possible for $n \in \mathbb{N}$.

Proof: We can see from (6.2) that $c_{n+1} > c_n > 1$, $n = 1,2,3 \dots$ Therefore, we have

$$\sum_{n=1}^{k-1} a_n + c_k \sum_{n=k}^{\infty} a_n \le \sum_{n=1}^{\infty} c_n a_n \le 1.$$
 (6.5)

By setting

$$g_1(z) = c_k \left[\frac{f(z)}{S_k(z)} - \left(1 - \frac{1}{c_k} \right) \right] = 1 + \frac{c_k \sum_{n=k}^{\infty} a_n z^{n+1}}{1 + \sum_{n=1}^{k-1} a_n z^{n+1}},$$
 (6.6)

and applying (6.5), we find that

$$\left| \frac{g_1(z) - 1}{g_1(z) + 1} \right| \le \frac{c_k \sum_{n=k}^{\infty} a_n}{2 - 2 \sum_{n=1}^{k-1} a_n - c_k \sum_{k=n}^{\infty} a_n},\tag{6.7}$$

which readily yields the assertion (6.3). If we take

$$f(z) = z^{-1} - \frac{z^k}{c_k},\tag{6.7}$$

then

$$\frac{f(z)}{S_k(z)} = 1 - \frac{z^k}{c_k} \to 1 - \frac{1}{c_k} \ (z \to 1^-),$$

which shows that the bound in (6.3) is the best possible for $k \in \mathbb{N}$.

Similarly, if we put

$$g_2(z) = (1 + c_k) \left[\frac{S_k(z)}{f(z)} - \frac{c_k}{1 + c_k} \right] = 1 - \frac{(1 + c_k) \sum_{n=k}^{\infty} a_n z^{n+1}}{1 + \sum_{n=1}^{k-1} a_n z^{k+1}}, \quad (6.8)$$

and make use of (6.8), we have

$$\left| \frac{g_2(z) - 1}{g_2(z) + 1} \right| \le \frac{(1 + c_k) \sum_{n=k}^{\infty} a_n}{2 - 2 \sum_{n=1}^{k-1} a_n + (1 - c_k) \sum_{n=k}^{\infty} a_n},\tag{6.9}$$

which leads us to the assertion (6.4). The bound in (6.5) is sharp for each $k \in \mathbb{N}$ with the function given by (6.7). The proof of the theorem is complete.

Now, following the earlier works on neighborhoods of analytic functions by Goodman [4] and Ruscheweyh [6], we begin by introducing here the δ –neighborhood of a function $f \in \Sigma$ of the form (1.2) by means of the definition below:

$$N_{\delta}(f) = \left\{ g \in \Sigma : g(z) = z^{-1} + \sum_{k=1}^{\infty} b_k z^k \text{ and } \sum_{k=1}^{\infty} k |a_k - b_k| \le \delta, 0 \le \delta < 1 \right\}.$$
 (6.10)

Particularly for the identity function $e(z) = z^{-1}$, we have

$$N_{\delta}(e) = \left\{ g \in \Sigma : g(z) = z^{-1} + \sum_{k=1}^{\infty} b_k z^k \text{ and } \sum_{k=1}^{\infty} k |b_k| \le \delta, 0 \le \delta < 1 \right\}. (6.11)$$

Definition (2): A function $f \in \mathcal{M}$ is said to be in the class $\Sigma_{\gamma}(\alpha, \gamma)$ if there exists a function $g \in \Sigma(\alpha, \gamma)$, such that

$$\left| \frac{f(z)}{g(z)} - 1 \right| < 1 - y, \ (z \in U, 0 \le y < 1).$$

Theorem (7): If $g \in \Sigma(\alpha, \gamma)$ and

$$y = 1 - \frac{\delta(1+\alpha)}{1-\alpha\gamma},\tag{6.12}$$

then $N_{\delta}(g) \subset \Sigma_{y}(\alpha, \gamma)$.

Proof: Let $f \in N_{\delta}(g)$. Then we find from (6.10)that

$$\sum_{k=1}^{\infty} k|a_k - b_k| \le \delta,$$

which implies the coefficient inequality

$$\sum_{k=1}^{\infty} |a_k - b_k| \le \delta \,, \qquad (k \in \mathbb{N}).$$

Since $g \in \Sigma(\alpha, \gamma)$, then by using Theorem (1), we get

$$\sum_{n=1}^{\infty} b_n \le \frac{\alpha(1+\gamma)}{(1+\alpha)} ,$$

so that

$$\left|\frac{f(z)}{g(z)} - 1\right| < \frac{\sum_{n=1}^{\infty} |a_n - b_n|}{1 - \sum_{n=1}^{\infty} b_n} \le \frac{\delta(1+\alpha)}{1 - \alpha\gamma} = 1 - y.$$

Hence, by Definition (2), $f \in \Sigma_y(\alpha, \gamma)$ for y given by (6.12).

This completes the proof.

7. the radii of starlikeness and convexity.

Theorem (8): If $f \in \Sigma(\alpha, \gamma)$, then f is univalent meromorphic starlike of order φ ($0 \le \varphi < 1$) in the disk $|z| < r_1$, where

$$r_1 = \inf_{k} \left\{ \frac{n(1-\varphi)(n+\alpha)}{(n-\varphi+2)\alpha(1+\gamma)} \right\}^{\frac{1}{n+1}}.$$

The result is sharp for the function f given by (2.2).

Proof: It is sufficient to show that

$$\left| \frac{zf'(z)}{f(z)} + 1 \right| \le 1 - \varphi \quad \text{for } |z| < r_1. \tag{7.1}$$

But

$$\left| \frac{zf'(z)}{f(z)} + 1 \right| = \left| \frac{zf'(z) + f(z)}{f(z)} \right| \le \frac{\sum_{n=1}^{\infty} (n+1)a_n |z|^{n+1}}{1 - \sum_{n=1}^{\infty} a_n |z|^{n+1}}.$$

Thus, (7.1) will be satisfied if

$$\frac{\sum_{n=1}^{\infty} (n+1)a_n |z|^{n+1}}{1 - \sum_{n=1}^{\infty} a_n |z|^{n+1}} \le 1 - \varphi,$$

or if

$$\sum_{n=1}^{\infty} \frac{(n-\varphi+2)}{1-\varphi} a_n |z|^{n+1} \le 1.$$
 (7.2)

Since $f \in \Sigma(\alpha, \gamma)$, we have

$$\sum_{n=1}^{\infty} \frac{n(n+\alpha)}{\alpha(1+\gamma)} a_n \le 1.$$

Hence, (7.2) will be true if

$$\frac{(n-\varphi+2)}{1-\varphi}|z|^{k+1} \le \frac{n(n+\alpha)}{\alpha(1+\gamma)},$$

or equivalently

$$|z| \le \left\{ \frac{n(1-\varphi)(n+\alpha)}{(n-\varphi+2)\alpha(1+\gamma)} \right\}^{\frac{1}{n+1}}, \qquad (n \ge 1),$$

which follows the result.

Theorem (9): If $f \in \Sigma(\alpha, \gamma)$, then f is univalent meromorphic convex of order φ ($0 \le \varphi < 1$) in the disk $|z| < r_2$, where

$$r_2 = \inf_{n} \left\{ \frac{(1-\varphi)(n+\alpha)}{\alpha(n-\varphi+2)(1+\gamma)} \right\}^{\frac{1}{n+1}}.$$

The result is sharp for the function f given by (2.2).

Proof: It is sufficient to show that

$$\left| \frac{zf''(z)}{f'(z)} + 2 \right| \le 1 - \varphi \quad \text{for } |z| < r_2.$$
 (7.3)

But

$$\left|\frac{zf''(z)}{f'(z)} + 2\right| = \left|\frac{zf''(z) + 2f'(z)}{f'(z)}\right| \leq \frac{\sum_{n=1}^{\infty} n(n+1)a_k|z|^{n+1}}{1 - \sum_{n=1}^{\infty} na_n|z|^{n+1}}.$$

Thus, (7.3) will be satisfied if

$$\frac{\sum_{n=1}^{\infty} n(n+1)a_n|z|^{n+1}}{1 - \sum_{n=1}^{\infty} na_n|z|^{n+1}} \le 1 - \varphi,$$

or if

$$\sum_{n=1}^{\infty} \frac{n(n-\varphi+2)}{1-\varphi} a_n |z|^{n+1} \le 1.$$
 (7.4)

Since $f \in \Sigma(\alpha, \gamma)$, we have

$$\sum_{n=1}^{\infty} \frac{n(n+\alpha)}{\alpha(1+\gamma)} a_n \le 1.$$

Hence, (7.4) will be true if

$$\frac{n(n-\varphi+2)}{1-\varphi}|z|^{n+1} \le \frac{n(n+\alpha)}{\alpha(1+\gamma)},$$

or equivalently

$$|z| \le \left\{ \frac{(1-\varphi)(n+\alpha)}{\alpha(n-\varphi+2)(1+\gamma)} \right\}^{\frac{1}{n+1}}, \qquad (n \ge 1),$$

which follows the result.

8. the convolution properties.

Theorem (10): Let the functions f and g of the form

$$f(z) = z^{-1} + \sum_{n=1}^{\infty} a_n z^n$$
, $g(z) = z^{-1} + \sum_{n=1}^{\infty} b_n z^n$

belong to the class $\Sigma(\alpha, \gamma)$. Then the Hadamard product (or convolution) of two functions f and g belong to the class $\Sigma(\alpha, \gamma_1)$, where

$$\gamma_1 = \frac{\alpha}{n(n+\alpha)} - 1.$$

Proof: Since f and $g \in \Sigma(\alpha, \gamma)$. Then from Theorem (2.1), we have

$$\sum_{n=1}^{\infty} \frac{n(n+\alpha)}{\alpha(1+\gamma)} a_n \le 1 \quad , \qquad \sum_{n=1}^{\infty} \frac{n(n+\alpha)}{\alpha(1+\gamma)} b_n \le 1.$$

We need to find largest number γ_1 such that

$$\sum_{n=1}^{\infty} \frac{n(n+\alpha)}{\alpha(1+\gamma_1)} a_n \cdot b_n \le 1.$$

By using Cauchy-Schwarz inequality, we have

$$\sum_{n=1}^{\infty} \frac{n(n+\alpha)}{\alpha(1+\gamma)} \sqrt{a_n \cdot b_n} \le 1.$$
 (8.1)

Thus, it is sufficient to show that

$$\frac{n(n+\alpha)}{\alpha(1+\gamma_1)}a_n.b_n \le \frac{n(n+\alpha)}{\alpha(1+\gamma)}\sqrt{a_n.b_n}.$$

This is equivalent to

$$\sqrt{a_n \cdot b_n} \le \frac{1 + \gamma_1}{1 + \gamma}.\tag{8.2}$$

From (8.1), we get

$$\sqrt{a_n \cdot b_n} \le \frac{\alpha(1+\gamma)}{n(n+\alpha)}$$
.

Thus, it is sufficient to show that

$$\frac{\alpha(1+\gamma)}{n(n+\alpha)} \le \frac{1+\gamma_1}{1+\gamma'},$$

which implies

$$\gamma_1 \ge \frac{\alpha}{n(n+\alpha)} - 1.$$

References:

- [1] E. S. Aqlan, Some Problems Connected with Geometric Function Theory, Ph. D. Thesis (2004), Pune University, Pune.
- [2] W. G. Atshan, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivative II, J. Surveys in Mathematics and its Applications, 3 (2008), 67-77.
- [3] W. G. Atshan and S. R. Kulkarni, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivative I, J. Rajasthan Acad. Phys. Sci. 6(2)(2007), 129-140
- [4] A. W. Goodman, Univalent functions and non-analytic curves, Proc. Amer. Math. Soc., 8(1975), 598-601.
- [5] N. E. Cho, H. Lee and S. Owa, A class of meromorpgic univalent functions with positive coefficients, Koebe Math., 4(1987), 43-50.
- [6] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc., 81(1981), 521-527.
- [7] T. M. Seoudy and M. K. Aouf, Some inequalities of meromorphic p-valent functions associated with the Liu-Srivastava operator, Proceedings of IAM, 2(1) (2013), 1-9.