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Abstract: In this paper We define a new class of meromorphic univalent functions in the

punctured unit disk. We obtain coefficient inequalities, Closure Theorem, convex

companion , distortion bound , Partial sums and neighborhood property, and Hadamard
product. Atshan[9], Cho et al.[6], Atshan and Kulkarni[3], Seoudy and Aouf [7] studied the

meromorphic univalent functions for another classes.
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1- Introduction: Let A7 be a class of functions f of the form:

[ee]

f@=z7"4 ) apz*, (1.1)
k=1

which are analytic and meromorphic univalent in the punctured unit disk
Ur={zeC:0<|z| <1}

Let ¥ be a subclass of Aj , consisting of functions of the form:

o0

f@D=z1+ ) apz¥, (ax,=0,keN={12,..}), (1.2)
k=1

which are analytic and meromorphic univalent in U*.

For f € ¥ given by (1.2) and g € Z given by
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A function f € Z is said to be meromorphic starlike function of order p (0 < p < 1) if

R { zf'(2)

ed— @ }>p, (f(z) #0,z€e U =U"u{0}). (1.3)

The class of all such functions is defined by X *(p).

A function f € £ is said to be meromorphic convex function of order p (0 < p < 1)

Re {— <1 + Z]]:,(—S)>} > p, (f'(z) #0,z€e U =U" U {0}). (1.4)

For f € £ givenby (1.2) and g € X given by
g(z) =271 + z buzk , (be=0,keN={12.3}), (15)
k=1
the Hadmard product (or convolution) of f and g is defined by
(F @ =271+ ) aizk = (g (@),
k=1

Definition (1): A function f € X is said to be in the class X (a, y) if and only if

2(z*f'(2)) — 2*f'(2)
y —z%f'(2)

<a,where (0<a<1y>0) (1.6)

Lemma (1)[1]: Let a >0. Then, Re(w)>a if and only if |[w—(1+a)| <

lw + (1 — )|, where w be any complex number

The first theorem gives a necessary and sufficient condition for a function f to be in the

class Z (a,7).
2- coefficient bounds:

Theorem (1): Let f € £. Then f € Z (a,y) if and only if



oo

z nn+a)a, <a(l+y), O<a<1ly>D0). (2.1)

n=1

The result is sharp for the function

a(l+y)

o (n=1). (2.2)

f@=2z""+
Proof: Suppose that the inequality (1.6) holds true and |z| = 1. Then, we have

2(Z2f' (D) = 22f' ()| - aly - 22f' (D)

= Z n?a,z"*! 1+y) - Z na,z"t?

n=1 n=1
[ee]

-

< Z na,|z"™—a(1+y) + z ana,|z|™*?

n=1 n=1

[0e]

=Zn(n+a)an—a(1+y)so,

n=1

by hypothesis. Thus by maximum modulus principle, f(z) € Z(a,y). To show the
converse, suppose that f(z) € Z(a, y). Then from (1.6), we have

2(2*f'(2)) - 2*f'(2)
Yy —z*f'(2)

00 2 n+1
B Ymi N°a,Z

= <a.
(1 +y) - Xy na,zntt

Since Re(z) < |z| forall z (z € U), we have

o nza Zn+1
Re Zn=1 < a. (2.3)
(1+vy) — 2n-ina,z"tt

We choose the value of z on the real axis so that z2f’(z) is real. Upon clearing the

denominator of (2.3) and letting z — 17, through real values so we can write (2.3) as

o

Z nn+ a)a, < a(l+y).

n=1



Sharpness of the result follows by setting

o, a+y)
f(Z)—Zl‘FmZ, n=1).
Corollary (3.2.1): Let f € X(«,y). Then
a(l+y)
n = m , (Tl = 1)

3- Convex Linear Combination.
Theorem (2): The class XZ(«,y) is closed under convex linear combinations .

Proof: Let f; and f, be the arbitrary elements of £(a,y). Then forevery ¢t (0 <t < 1),
we show that (1 — t)f; + tf; € Z(a,y). Thus we have

(0]

A-tfi+th=2z"1+ ) [(1 —t)a, + th,]z" .

Hence,

[00]

z n(n + [ - ay, + thy]

n=1

(0]

=(1—t)Zn(n+a)+th(n+a)bn

n=1
<A-ta(l+ypy)+tal+y)=all+y).
This completes the proof.
4. The arithmetic mean
Theorem (3): Let the functions f;, defined by

i@ =z"1+ z ank » (@ue=20n€N k=120

n=1

be in the class Z(a, y) for every k = 1,2,3, ..., [, then the function h defined by



h(z)=z‘1+Zenz", (e, =0,nEN)

n=1

also belong to the class Z(«, y), where e,, = %Z;‘{;l An k-

Proof: Since f; € 2(a,y), it follows from Theorem (1) that

(0]

z nn+a)a,, < a(l+y),

n=1
forevery k = 1,2,3, ..., 1. Hence

o [o9]

;n(n + a)e, = ;n(n + a)(%kzl:zl an k)
= %Z <Zn(n + a)ank> %Z: a(l+y) =a(l+y).

Then h € Z(a, y).
5- The growth and distortion bounds for the functions in the class 2(a, y, 4)

Theorem (4): If f € Z(a,y), then

1 1
- s+ S =< G
The result is sharp for the function
B a(1+y)
f(z) = m (5.2)

Proof: Let f € 2(a,y). Then by Theorem (1), we get

(1+a)ZanSZn(n+a)an <a(l+y)

n=1 n=1

or



ia <a(1+y)
"T(A+ta)’

n=1

Hence,
1 < 1 =
@IS+ ) anlal <+ l2l ) a
n=1 n=1
=)
n=1
1 a(l+vy)
“r (1+a) T
Similarly,

1 z‘” 1 Z
- — n -
If(Z)l 2 |Z| a’TlIZI 2 |Z| IZI aTL

n=1 n=1
_1 i
= ; -7 an
n=1
1 a(l+vy)

>——— 7.
“r (Q+a r
From (5.4) and (5.5), we get (5.1) and the proof is complete.

Theorem (5): If f € Z(«,y), then

i_a(1+]/) < |f’(Z)| < l_i_M (lzl =r< 1)

r2 (1+a) r2 (1+a)
The result is sharp for the function f is given by (2.2).

Proof: The proof is similar to that of Theorem (4).

(5.3)

(5.4)

(5.5)

(5.6)



6. The Partial sums and neighborhood property

Theorem (6): Let f € X be given by (1.2) and define the partial sums S;(z) and S, (z) as

follows S;(z) = z~! and

=

-1

S«(@)=z"14 ) a,z" (keN\({1}). (6.1)
Also suppose that
i cha, <1 Cn = M (6.2)
n=1n1‘t— Y n a(1+)/) '
Then, we have
f(2) 1
Re{Sk(Z)}>1_a' (ze U,k €EN) (6.3)
and
Sk(2) Ck
Re{f(z)}>1+ck' (ze U,k €N). (6.4)

Each of the bounds in (6.3) and (6.4) is the best possible for n € N.

Proof: We can see from (6.2) that ¢,,,.; > ¢, > 1 ,n = 1,2,3.... Therefore, we have

a, + cg Z a, < Z Cnly < 1. (6.5)

=

-1

n=1 n=k n=1
By setting
_[f@ ( 1 ) 3 Ck Yt Q2"
gl(z) = Cg Sk(Z) 1 Ce =1+ 1+ 11;;% anzn+1 ’ (66)
and applying (6.5), we find that
g1(2) — 1 < Ck Xim =k An ' 6.7
912+ 1] 7 2 =251  an — ¢k iy On

which readily yields the assertion (6.3). If we take



Zk

f@)=z"-—, (6.7)
Ck
then
fz) _ _ﬁ_} I
Sk(Z)_l Ck ! Ck (z=17,

which shows that the bound in (6.3) is the best possible for k € N.

Similarly, if we put

Sk (Z) Cx (1 + Ck) Z?lo=k anzn+1
= (1 — =1- , .8
gZ(Z) ( + Ck) lf(z) 1 + Ck 1 + Zg;i anZk+1 (6 )
and make use of (6.8), we have
g2(2) — 1 < (1 + cx) Xk An ' (6.9)
922+ 1|7 2 =231 ay + (1 —c) Xy @n

which leads us to the assertion (6.4). The bound in (6.5) is sharp for each k € N with the
function given by (6.7). The proof of the theorem is complete.

Now, following the earlier works on neighborhoods of analytic functions by Goodman
[4] and Ruscheweyh [6], we begin by introducing here the § —neighborhood of a function
f € X of the form (1.2) by means of the definition below:

Ns(f) = {g €EX:g(z)=z"1+ z byz* and Z klaxy —by| <6,0<6 < 1}. (6.10)
k=1 k=1
Particularly for the identity function e(z) = z1, we have
Ns(e) = {g €X:gz)=z"1+ Z biz* and Z klby| <6,0<6<1 }.(6.11)
k=1 k=1

Definition (2): A function f € M is said to be in the class Z,(a,y) if there exists a

function g € Z(a,y), such that

f(2)
‘ﬁ_1‘<1—y, (zeU,0<y<1).



Theorem (7): If g € Z(a,y) and

_6(1+a)

: 6.12
—ay (6.12)

then Ns(g) € Zy(a, 7).

Proof: Let f € Ns(g). Then we find from (6.10)that

> Kla - bl <6,
k=1

which implies the coefficient inequality

Zlak—bkl <68, (keN).
k=1

Since g € X(a,y), then by using Theorem (1), we get

- 1+
angu,
1+ a
n=1
so that
f(Z)_ 1‘ <2$10=1|ag_bn| < 6(1+0{) —1—
g9(2) 1-=>r_1b, 1—ay

Hence, by Definition (2), f € Z, (a, y) for y given by (6.12).
This completes the proof.
7. the radii of starlikeness and convexity .

Theorem (8): If f € Z(a,y), then f is univalent meromorphic starlike of order ¢ (0 <

@ < 1)inthedisk |z| <7, , where

(@@t
7”1_12{(n—(p-i-Z)a(l+y)} '

The result is sharp for the function f given by (2.2).

Proof: It is sufficient to show that



zf'(2)

@) + 1‘ <1l—-¢ forlz|]<nmn. (7.1)
But
?'@ 1‘ '@+ @ _ S+ Daglz™
f(2) f(2) Tl =Eilanlzt

Thus, (7.1) will be satisfied if

Zaz1(n + Daylz|™

<1-—g¢,
1— 3o, gzt v
or if
= n—¢e+2
Z n=9*2) st (7.2)
1-¢
n=1
Since f € X(a,y), we have
4 nn+a
S,
a(l1+vy)

n=1

Hence, (7.2) will be true if

(n—(p+2)|Z|k+1<n(n+a)
1—¢ Ta(l+y)’

or equivalently

1

n(1l—@)(n+a) 7+t
1zl < {(n —p+2)a(l+ y)} o (21,

which follows the result.

Theorem (9): If f € X(a,y), then f is univalent meromorphic convex of order ¢ (0 <

¢ < 1)inthedisk |z| < r,, where

1-@)n+a) o
an—e+2)1+y) '

r, = inf
n

The result is sharp for the function f given by (2.2).

10



Proof: It is sufficient to show that

zf"(2)

10 + 2‘ <1-¢ forl|z]<m,. (7.3)
But
zf"(z) N 2‘ _ | @ +2f'@)| _ Eazin(n+ Da |z
f'(2) f' (@) T 1Y naglz[™t

Thus, (7.3) will be satisfied if

Yoo n(n+ Da,|z|™*?

<1-o,
1= na,|z|"t! ¢
orif
 n(n — + 2
nn=¢+2) st (7.4)
1-9¢
n=1
Since f € X(a,y), we have
= nn+a
S,
a(l+vy)
n=1
Hence, (7.4) will be true if
nn—q@+2) 2P+ < nn+ a) ,
1-— a(l1+vy)

or equivalently

1

(-pnta) |
R ey ey RCE)

which follows the result.
8. the convolution properties .

Theorem (10) : Let the functions f and g of the form

f@ =z +E0an2"  g(2) =271 + X5, bpz"

11



belong to the class 2(a,y). Then the Hadamard product (or convolution) of two

functions f and g belong to the class 2(«a, y;), where

a

- 1
=it

Proof: Since f and g € Z(«,y). Then from Theorem (2.1), we have

nn+ a) n(n+ a)
2™t Laaey s

n=1 n=1

We need to find largest number y; such that

[0e]

Zn(n+a) b <1
a+y) =T

n=1

By using Cauchy-Schwarz inequality, we have

[0e]

nn+ a)
Z a(l—_i_y)\/an.bn <1. (81)

n=1
Thus, it is sufficient to show that

n(n+ a) n(n+ a)
man.bn < a(l—_l_y)\/an. bn .

This is equivalent to

1+,
an.-by, < T+y (8.2)
From (8.1), we get
> a(l+vy)
n-On = nn+a)

Thus, it is sufficient to show that

a(1+y)<1+)/1
nn+a)” 1+y’

12



which implies

a

>
h_n(n+a)
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