Effect of Post-Buckling on the Stiffness and Stress of Plate
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ABSTRACT

This paper presents a theoretical investigation of post and pre buckling of the
simply supported plate. The effect of post and pre buckling on the stiffness of plate is
determined. The full derivation of the equation described the ratio of stiffness of plate
in the post to pre buckling is derived and from this equation it can be deduced that the
simply support plates loss about (3/5) of its initial compressional stiffness after
buckling also it can be concluded that after buckling the maximum stress increases at
almost four times the pre-buckling.
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INTRODUCTION

uckling is the general term frequently used to describe the failure structure

between the stable and unstable case. When the magnitude of the load on a

structure is such that the equilibrium is changed from stable to unstable, the
load is called a critical load or (buckling load). Buckling means loss of the stability of
an equilibrium configuration, without fracture or separation of the material or at least
prior to it [1]. It is an important type of failure that occurs widely in many structural
applications, it is characterized by an abrupt large deformation that occurs in a
structure when the load that is applied reaches a certain critical value. One problem
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faced in the design of structures is buckling, in which structural members collapse
under compressive loads greater than the material can withstand. The nature of
buckling pattern in plate not only depends upon the type of the applied loading but
also on the shape (dimension) of the problem and the material properties and also
upon the manner in which the edges are supported [2].

The compression of plate is discussed by Von Karman et al ,1932, [3]. Marguerre ,
1938 [4] investigated the elastic plate post-buckling , this analysis aided to determine
the in-plane strains and stresses from the exact compatibility conditions with the out-
of plane deflections. Rhodes, 1968 [5], modified the explicit expression obtained
from basis of a Marguerre model. Rhodes, 1982 [6] studied the post-buckling
behavior of bending elements and in 2003 [7] studied the post-buckling analysis of
plates and plate structure, under eccentric load also investigated the application of
plate analysis to strut, beam and column design. Michael, 1996 [8], studied the effect
of a cutout on the buckling and post-buckling behavior of rectangular plates made of
advanced composite materials. Rakesh, 2010 [9], studied the elastic buckling of thin
plates were studied with shell finite element eign-buckling analysis.

This paper presents a theoretical investigation of post and pre buckling of the
simply supported plate, which is ofstrong interest in the design of structures. The
prediction of the stiffness of plate and stress due to buckling is thus a challenging
task. This paper has a novel discussionof the effect of post and pre buckling on the
stiffness of plate.

Basic Equations

In order to study the behavior of plate after buckling, account must be taken of the
effects of out — of — plane displacements on the middle surface strains of a buckled
plate. Fig.(1) shown the rectangular plate.

L

; 3
"
Figure. (1) Rectangular plate

forthe middle strain in the x-direction , can be deduced that[2]

du . 1[ow)>2
Ex = a-}‘z(a) ..... (1)
2
similarly, ¢, =Z—;+§(Z—”y”) e (2)
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Also it can be shown with a slightly more complex geometrical construction that

6u ov . owow
yxy +ax+ag (3)

It can be shown that these three equations are obtained from the geometry of the

displacements and constitute compatible requirements which must be adhered to if
an energy method of analysis is to be used in the post- buckling range.
To eliminate the in-plane displacements,equation (1)differentiated twice with respect
to y and equation (2) with respect to x , and equation (3) once with respect to x and
again with respect to y and add, obtaining a single differential equation linking the
mid- surface strains to the out — of — plane displacements. This is

aZEx + aZEy _ az‘yxy _ (62w)2 _ (azw) (azw) (4)
dy? x? xdy  \dxdy ax2 ) \ay2
Now for a linear elastic material .The stresses o, , o, and 7,,, can be related by the

introduction of a stress function F(x,y)[7] .Substitution of these equations into
equation(4) yields the final equation

Z:c +2 axazaFyz + 6; =V'F=E [(axé‘;;)z N (ZZTV:) (ZZTV:)] """ ©)

If an energy approach is to be used to investigate the post- buckling behavior of
plates then equation (5) must be satisfied by the post- buckling stress variations. So,if
the initial out of plane displacements w, are present the equation then becomes

[ T B (A 0]

Where
(wo) is the local imperfection, since the middle surface stress are assumed to act
uniformly through the thickness this gives the strain energy

t
Vy = gﬂ(Uxfx + 0y€y + TyyVay)dx dy )

Or in other form

= DG G ) a2 5w
.(8

Rearranging gives
0%F 9%F a2F \?
=5ff{(m+—) —2(1+u)(@.a—ﬁ—(m) )} dx dy .. 9)

Post- Buckling Behavior of Plates with Simple Supported Loaded Edges

Consider a plate compressed in one direction to such an extent that buckling has
occurred. The total compression displacement is u = —u and the stress system o, at
the plate ends corresponding to this is as yet unknown.
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It can be assumed the following deflection form for the post- buckling analysis

nmx

w=AY(). sm— ..... (10)

Since the post-buckling isconsideredand it must satisfy equation (5) , Von Karmans
compatibility equation[??].
Substituting for w into equation (5) gives

VAF = E( ) A? {(Y )Zcos2 ™ 4+ Y Y'sin? mlrx} ..... (11)

Rearranged gives

nm

V4F = 5(7)2 a{[(r)? + Y Y]+ ()2 =¥ Y '|cos

Zmrx}

From this equation it can seen that the stress function F may be considered in two
parts, one part varying periodically with x and the other constant with respect to x.

I.e.F = F; + F,cos 2nmx .. (13)
where
2
ViR =2 (5F) ()2 + v Y] .. (14)
and
2 E 2 2
v (Fycos %) = 2 (25) 42[(¥)? — ¥ Y "Jeos 22 ... (15)
Since
4

F, is a function of y only then V*F; can be replaced by Z;} = F"" . equation (14)
then becomes;

my _ E (nm 2 r "
Fr=2(50) A2[(r)? + v Y] ... (16)
Integrating gives

" E (nm 2 r
F=Z() a[ry]+c .. (17)
Integrating again gives

W 2
F =Z(%) 422+ Gy + G ... (18)
Since

9%F; d2F. 6 Fl "
F; is a function of y only then % = 7 a =0 and = F," is the only

derivative of F; which is of any consequence , since this constltutes a stress in the x
direction. The constants of integration C; and C, are used to satisfy the displacement
boundary conditions at the plate loaded ends, therefore,

Fy = ff{ (F ) A?Y? + Gy + Cz} dydy . (19)
For F,equation(15) is used and obtained

4 2nmx 2nm\? _, 2nm\*
v (Fcos =) = R =2(57) R+ ()

2nmx
l

Fz] cos
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2nmx

= g(ﬂ)z A?[(Y)?2 =Y Y ]cos

=2 (2 (2 =S vy e

. E (nm)2 I . . .
Putting F, = E(T) A% (y) and substituting in equation (20) gives

pr =220y (20 = 02 -y v @)

If the function i can be obtained from equation (21) the stress function F, is
known. The function 1 is composed of two parts, the particular integral solution and
the complementary function solution. The particular integral solution depends on the
function Y and can only be obtained for a specified Y.

The complementary function solution is as follows:

Yo = Blsinhzn% + Bzcoshzn% + B3y sinhzn% +B,y coshzmyf... (22)
The coefficientsB,,B,,B;, B, are used in conjunction with the particular integral
solution to satisfy the boundary conditions on the unloaded edges.

assumed for the present that i can be obtained and hence F, using equations (20),
(21) and (22) and continue with the analysis.

Boundary Conditions on the Loaded Ends
These are zero shear stress and uniform compression , i.e.

0%F
x=0,1 ~9may

Txy =

x=0 u = Oacross the plate ... (24)
x =1 u = constant

using equation(13) for F gives
ey = dxdy

0% [F o)+ F 2n7rx]
9xdy 1y 2(¥)cos I
Hence

= F' 2nm . 2nmx
Txy = ZTSLTL

Thus condition equation (23) is automatically satisfied.

To examine condition equation (24) equation(1) isrecall.
gives

u= fox [ex — %(Z—:)z] dx (26)

..... (25)

Substituting for w and €, gives

2
u= f;{%(g%—vz%)—AzYzcoszg(g) }dx .. (27)
Substituting for F from equation (13) gives
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(1], . 2nmx 2nm\? 2nmx
u=f =|F; + F,cos +v(—) F, cos
o |E l l l

1 NITX (NI 2
— _A2y2 2 (-
2AYcos l ( )}dx

atx =0 , u = 0and

_ _ - l " E 2v2 nm 2
atx =1 u——u—E[Fl—ZA Y (T) ] ..... (29)
substituting for F, from equation (18) gives
__1(E 2 E ).
—u= E{ZAZYZ (55) + iy + ¢, -2 A2v2 (5F) }l.e.—u =2(Gy+Cy) ... (30)

sinceu is constant across the plate then, C; = 0 and C, = —ETu . (31)

F,'is now fully known in terms of the end displacement % and the out — of — plane
deflection coefficient A. this is

" _BL L E jays (nm)?
F{ = -2+ 2a2v2 () .. (32)

On the assumption that v is also known it can evaluated the strain energy of the
middle surface stresses V), from equation (9). This is

Znn 2nmx . " 2nmx 2
f f ZCOST-l-Fl + F,cos i

2

2nm 2nmx [, . 2nmx
—-2(1+v) [— (T) F; cos (F1 + F,cos )
2
- (znTn) (F,"?sin? annx]} dxdy . (33)
Integrating in the x-direction gives
" nm 2 nm " '
Vy = %fob{[Fz - (&9 Fz] 2(F)? +2(1 +v) (57 ) [F,F; + (FZ)Z]}dy ... (34)
. . " . . E (nmt 2 .
Substituting for F; from equation (32) and using F2 = _(T) A%y |, gives
b " 2 2 _
=St (5 ) e o= () o] 5 () e -2 () v
2
zE 7%+ 2(1+v) (57) %(ﬂ) A"+ ) ]} .. (35)

From a consideration of zero shear stress on the unloaded edges of the plate it can
be get

2nmx

Tay = oxdy 2
then

0%F E (nn

T) A% 'sin (27”) =0 ,aty = 0,b. If this is true for all x
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'must equal zero on the boundaries y=0, b
Rearranging equation (35) gives the strain energy of middle a surface stresses
finally as

b =S5 ) e () ) | v e -

2= ) [? A%ay2dy .o (36)
Thus, the strain energy of the plate bending can be deduced

2 3
Vg = %Az {fob [Yﬂ - (ZnT”)Z Y] dy +2(1—-v) (nl_n)z [YY’]’;}Where D = %

The total strain energy of the compressed plate is obtained from the sum of
equation (35) and equation (37)
i.eVr =Vut+tVsg
(38)

applying the principle of minimum strain energy and differentiateV/ rwith respect to
A This gives
aVr
—_— = O =
04

nItE

T CO N [Y4+2[¢ w]]dy—

—_— 2 —_
thE(%) Afob ~Y2dy + ZA-fl-(y) ...-(39)

2hrr

rearranging equation (39)

) T v ar-R) A)
= Z
e ) o] Jor
...(40)

itis convenient to use is anon-dimensionalised form of this equation by putting
« T D 1

=ulooes (41)

~Ig

and using the relationship of D to get
2
A\2 3(1iu2)(n_lb)2[”*”2dy‘(%) fi/m
(?) - = [(2nm 2 2
| (Y4+2(w-(7) ¥) ]dy

Thus for any specified deflection function Y the deflection magnitude A
corresponding to any end displacement u* is obtained from (42).it can be shown that
ifux[ Y2dy <( ) L = then A/t , is imagining and this the plate has not buckled.

..(42)

Buckling is initiated when u* [ Y2dy <( ) LY

—( f1
i.e when u* —(n) T Tvidy




. &Tech.Journal, Vol. 33,Part (A), No.2, 2015f=jilaqe izl el 2{0e X [TalsKe]aR s A (11 g N gle)
Stress of Plate

This value of u* is identical with the non—dimensional buckling stress (K).The
load on the plate corresponding to the end displacement u* is obtained by integrating
the stresses across the plate, the stress at any point is given by

°F 2nmx
ay—z—ayz[Fﬁcm 5= ) . (43)
ie. o, =F"+ Fz"cos.znm
Substituting for F; from equation (32) and using

F,= g(?)z Azlpgives

0, =

Oy =—¥ %(g A2 [YZ nTn) A%y cosznTnx] ... (44)

o, =—+7(20) A% [¥2 429" cos. B .. (45)

o,.can benon —dlmensmnalby writingo, = - o, *7°D /b’t hence

oy = -2 (- 20 +§(E)ZA2[Y2 + 2y SO Dt ... (46)

l.eo; =u*— (nTb) 31— 172)( ) [YZ + 2y cos. annx) ...(47)

The total load on the plate is obtained from the integral

P :fob o.tdy

non — dimensionalising by writing P = — P gives

pr= f) 2 % gy ....(48)
Substltutmg for o, fromequation(48) and integrating gives

pr=u*— (nTb)z 3(1—v?) (%)2 {%fob [YZ + 2y "cos. Zix] dy} ... (49)

It can be shown the integral of i issimplyy’ and since this is zero on the
boundaries y=0,b due to the requirement of zero shear stress at the boundaries then
equation (49) can be written

nb

Pr=y*— (T)2 3(1 — v?) (é)2 = f) Y2y ... (50)
Substituting for (?)2 from equation (4) gives
Gfy2ay e fv2-(2) Ly
f Y‘*+2(¢"—(2"T”)2¢)2]dy

The stiffness of the plate against end compression after buckling is given by (%’or

P*=u" —

...(51)

in Mon —dimensional form by % , this gives

ap* 1[[r2dy 2

Po=1-3 T] ..(52)
Where

fy= f[Y4+2 1/;” 2"” ] ... (53)

before buckling P*=u*

The Ratio of Post —-Buckling Compressional Stiffness to Pre-Buckling Stiffness
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From the above analysis, it can be deduced

_1(v?ay)* ,
Post Buckling stiffness _ | b f3 —1— (Jr2dy)

Pre Buckling stifness 1 bfs

... (54)

Since the plate stiffness before buckling is related to Young’smodulus, E, then the
plate stiffness after buckling can be related to same fictitious modulusE* and it can be
deduced

* 2 2
z UG Yoy ... (55)
Y4+2(w”—(¥) w) ]dy

bf3 bf

It will be found that equation (55) is identical to what was given in Rhodes, 2003
[7] with n=1 and with different way.
The load —displacement curve of plate is given by the graph shown in Fig.(2).This
consists of two lines one of slope proportional to E and the other of slope proportional
to E*. Both lines interest at the load.

//—ilﬁupe aE”
P

! Slope L E

m

]

iy
C
Figure (2) Load - displacement curve of plate
2
To obtain the stress at any point, substituting for (é) from equation (42) in
equation (47) and obtain

[Y2+21,IJ"cosznﬂ] [u* szdy—%
oi=u*- L - Al ... (56)
do* [Y2+21,b”coszn¥]szdy
andau* =1- 7 ..(57)

This indicates that the stress at any point on the plate changes linearly in the post
buckling range. The rate of change depend on the particular point chosen on the plate

. Before bucklingZ—z: =1
Therefore,

ac*

g0 y o 2nmx

(au*)Post—buckling = 1- [Y?+2y"cos 1 1/Y?ay 58
S0 post-buckling _ - ... (58)

(au*)pre—buckling
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Results and Discussion

In this paper, the post-buckling behavior of a uniformly compressed,square,
simply supported plate with the unloaded edges free from normal and shear stresses is
examined as shown in Fig.(3) to show the effect of buckling on the plates stiffness.

ey
> 1
—» | [—
—_— Il i
I f.)
—_— | |—
1 > | o Lt ¥
> L
—_— [ b —
—_— | |[e—
— | fe—
- L g
| ; —>—=

Figure(3)Effect of buckling on the plates stiffness.

tosimply the analysis of the y- direction is taken as the center line of the plate and
assume the buckled form

Y = cos%y
This is exactly the same deflected form of initial buckling analysis by
specifyingY = sin%y and measuring y from the plate edge.

It can be deduced therefore state values for the bulking stress and for f; from this
work or alternatingf; and a.,- can be evaluated using the following equations with the

limits of integration begin ?2

)= Iy = () ¥] + 20 -0 () [rr + () ay ... (59)
b nm\ 2

) =1, {[(T) YZ]}dy ... (60)

anda,., = %}’; ... (61)

Hence

for n=1 and I=b it can be getu;,=o..=P*=K=4 and f; = 2.7;—;
now evaluate the function y(y) using equation.(21)
ey — 22nm/D2Y" + 2na/D*p = (v/) = yy”

rou(y )" —v¥'— = (5) sin Lt ()" cos? . =

the particular integral solution for v is there for easily obtained as

2nm

w\2 4 * . _
Ver=(3) /() =romp  (usingn=1)
The complementary function solution is given by equation (22). Therefore with n
set equal to one the complete solution is

Y=vp;+Ycr

hence

10
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Y=— X +B Smh Y+ B cosh2 y+B sinhzﬂ+B coshzﬂ
16m2b? ' 2COSTT™ T DRYSIMA T T Bayeosh Ty

Since the symmetry |seX|sted about the x-axis i.e. about the line y=0 then anti —

symmetrical terms in the expression fory isdisregard ,that is, B;= B,= 0 since,
. 2my 2wy . .

sinh TandycoshTare anti-symmetrical .

toevaluate B, and Bj the boundary condition of stress free edges, is used

1.6.Txy=0,=0 aty= ig

— aZF — aZ F F 2NTTX
NOWT,,, =owoy — axay[ 1+ Fycos ]
=F, ( )sm—(forn = 1)
Since

P =5() A
Thent,, :g G)Z A2 (ZT") Y’ sin (m) (for n=1)
If 7,., =0 at y—+2forallx, theny' = 0 aty = +2 >

dy 2m 2y 21 2my 2y
Y'=— D =B,— 5 sth+B3 (y 5 coshT+ th) =0
at y=b/2
~B, ( )smhn + B3 (E 27 coshm + smhﬂ) 0
Hence
B,=-0.661 b.B;

2nmx

2
AISOcy—% (Fy+ F3cos )

=3 () 4 () cos = om=1)
Therefore if 5,=0 at y=+b/2 for all x , thenp=0 at y = ig

Hence
4
16121;2 + B cos h— + B3y smh— =0 aty=
12 > — 0.661 bB3coshm + B3 2 sinhm = 0 (forl =b)
hence
2

B; = 162 /(0.661 b cos hr — 0.5 bsinhm)
i 0 p. — 00331b

3=
andB. = 0.02188b2

, = -

2

the equation fory is now

Y=~ 0. 02188—cosh
In order to obtain f3the term

Zny

+0.0331 2 sinh 22
T b

b/2 2 12
[w" =) w] dy
b/2
is required to obtain
2n

y"= —0.02188. —(—)2 cosh 22 + 0.03317[%[(2 ysinh 2 + 2 (3 c shz“y]

11
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and(p” — () 932 = (=24 2.+ 222 osh (222

b2 2T
s - Gt gy
~b/2
b/2 1 0.0662 2 4 2
=f_£/2 [ —— cosh% +— (0.0662)? cosh? %]dy
this integral can easily be evaluated giving
b/2 | 21\ 2 2
j Y — (T) ¥| dy =0.02377b
-b/2
From equation (53) f3=f_b£fz Y#dy + 2 % 0.02377b
andfb/2

44, _ (Pb/2 4Ty 5 3
o2¥ dy—f_b/zcos —dy =:b

the ratio of post — buckling to pre-bucklingcompressional stiffness can be obtained

from equation (54)

2 2
iefl=1- (2)

2 105917
E b(§b+2*0.02377b)

*

B = 0.4083
wg =0

Thus the plate loses about 3/5 the of its initial compressional stiffness after buckling

and the load —end displacement curve is shown in Fig.(4).

3 »
72661 f:—ff
4 | Slope=0.4p83

PCR «1—Slope =f PC*R: H:ZR: K=4
I &
JE 8 12 >
u
CR

Figure(4) Load- end displacement curve of the plate

To examine the growth of out - of- plane deflections equation (42) is used to obtain
. b [zm\* /pt
(é)z 1 vi-(5) ()

t/  3(1-v?)’ Cb +2.0.02377b)

Takingv=0.3 gives

(A)Z 1 o0.5u*—2

t) T 273 0azzsa 0433w -4

hence

12
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A 2

(?) — 04334 —ut,)
Since

(u* —ug) =1/0.4083 (P* —Pj)

It can be written

(A)Z 04334

t) ~ 0.4083

. (P* — P%) = 1.0615(P* — P3})

This relationship is plotted in Fig.(5).

Wmax_A

0] T T 1 [ 15
0 1 2 3

Figure (5) relation between A/t with load

The membrane stress 64 at any point on the plate can be obtained in its non-
dimensionalform,s,*, from equation (47).i.e.
2mx

* . o% 2 A 2 2 " — —
o =u' —3(1-v?) (%) [Y + 21 cos. T] (forl=b and n=1)
2
substituting for (é) ,Y2andy"gives

Oy =
* , Y 2wy
u* — 2.73 x 1.0615(P* — P;;) {cos®* — + 2(—0.2188) = 4 coshT

b
0.0331 y 2wy 2y 2nx
27 o
— [47‘[ bsmh—b + 4mcosh 5 ]*cos—l }

This can be evaluated for any values of x andy if u* is given
Note that at x = ﬁ, 3:[, cosz%x =0

And since u* = ug, + rt% (P*=P;)

Then the stress distribution across the plate at x=1/4,3l/4,is

. * * f - PC*T * * T[y 2
i.egy = uy + 04083 2.898(P ) (cos 7)

Also the edge stress is obtained by substituting y=b/2 in the general expression for o
giving

. Y e . . 2mx
Oxledge = Uer + 04083 2.898(p* — p*cr) * 0.477COST
* . . 2mx .
oy edgelsmaxlmumwhencosT =—1 i.e.whenx=l/2

13
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i.e0x|eage (max) = Uer +3.8315(p" — p*cr)
Stress distributions for a load of twice the buckling load are plotted as shown in
Fig.(6).

8.27
A X
2.75 9.33
A A
2.25

R B B

C C 1.75 c
a—)
<

Figure(6) Stress distribution of the load

twice the buckling load is about the limited of accuracy of the one term solution
derived, for further loading more terms are required in the solution to take into
account the changes in deflected form that occur after buckling. As can be seen the
maximum membrane stress incurred in the plate edge in line with the crest of the
buckle.This is 6x* eqge(max)-Using o *=U¢* It can be written

Omax*—04 = 3.8315(P*-P%.), therefore, after bucking the maximum stress increases
at almost 4 times the pre-buckling rate with respect to load as in Fig.(7).

P*16
12
8 4
— Slope=1/3.831
P¥er 4 1 Slope=1 -
0 T T T T
0 5 10 15 20 ,
o*c G ma
R X

Figure(7) Critical load vs. max. stress due to buckling

Fig.(8) shows the variation of E*/E with variation in plate length is shown above
for thecases of straight edges and stress — free edges ,showing that for l/b— 0
E*/E—1/3 for both cases and as I/b increases the case of stress-free edges has lower
stiffness after buckling. The curve(l) could easily be draw using equation (9)
whereas the curve(2) required computer analysis.
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Fig.(9) shows the variation in %withvaritioninamaxfor both types of conditions. As
can be seen the stress- free condition gives lower effective widths and hence lower

0.7
0.6
0.5
0.4
0.3

E*/E

. Edges kept
| straight
2
¥— " Stress free edge
0.3 0.5 0.7 0.9 11 1.3
t/b

Figure(8) Variation of E*/E with variation in plate length

ultimate loads.

b/

1.2

1

, 0-8 -
0.6 -
0.4
0.2

0

Edge kept straight

Stress free edge

Omad Tex

. T T L
Figure(9) Variation in fwzthvarttwnmamax

CONCLUSIONS
The following points can be concluded:

1- Inthis paper the stiffness ratio of post buckling to pre- buckling is investigated.
2- The simply support plates loss about (3/5) of its initial compressional stiffness

after b

3- After buckling the maximum stress increases at almost four times the pre-

uckling.

buckling.
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