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Abstract

The purpose of this thesis is to split the projective plane of order nine PG (2 ,9) into seven
disjoint projective subplanes PG (2,3) and thirteen disjoint complete arcs of degree two
and size seven. The projective line of order twenty-seven PG (1,27) has been partitioned
into seven disjoint projective sublines PG(1,3) and the number of inequivalent 4-sets

which are unordered sets of four points is classified. The group action on projective lines
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PG(1,3™) and projective planes PG(2,3"),n=1,2,3 is explained and we have
introduced theorems and examples and the subspaces of PG(1,3™) and PG(2,3"),n =
1,2,3 are shown. Each of these partitions gives rise to an error-correcting code that
corrects the maximum possible number of errors for its length. GAP-Groups—Algorithms,

Programming a system for computational discrete algebra has been applied.

Key words: Projective line, projective plane, groups’ action, complete arcs.

Introduction e (@*1-1/(q-1) Lines
through a point, this is the
number of 2- dimensional
subspaces  through a  1-
dimensional subspace.

The basic concepts of this study depends
on the subjects of Projective Geometry,
Group Theory and Vector Space over

Galois Field_ Fg,q=3",n = 1,23 . The points of projective plane PG(2, q)
The following three notions are are (x,v,z) # (0,0,0) where
equivalent for k > 1 : (Ax,Ay,Az) = (x,y,z) and the lines
. . of PG (2, are uX +vY+wzZ=
1. An(k;2)-arcinPG(2,q), thatis {[x,y z]l(uxq-i)— vy +wz = 0} A
a set of k points with at most 2 1 MRS .
! Projective plane satisfying the followin
in any hyperplane ; fou# axiomg ying 9
2. A set of k vectors in V(3, q) with '
any 3 linearly independent ; 1. Any two distinct points lie on
3. A maximum distance separable one and only one line.
linear code of length k |, 2. Any two lines meet in at least
dimension 3 , and hence one point.
minimum distance d =k -2, 3. There exist three non-collinear
thatis, [k ,3, k — 2] code. points, such that a set of

— points is said to be collinear
The Projective space PG(k — 1, q) over if there exists a line

a finite field F, contains containing them all.

4. Every line contains at least

e (q¥—1)/(q—1) points, this is three points.

the number of 1- dimensional

subspaces in V(k,q) ; The brief history of this subject is given
e (*-D(@**-1)/(q*—1)(q—1)) as follows: In 1976, Hirshfeld
lines, this is the number of 2- (1), (2) partitions PG (2,4) into three
dimensional subspaces in V(k, q) disjoint PG(2 ,2), also he splits PG(3,2)
; into 15 disjoint PG (2,2) . In 2008,
e ¢+ 1 pointson a line, this is the Almuktar (3) shows that PG (2,5) is
number of 1- dimensional embedded in PG (3,5) . In 2011, Al-
subspaces in a 2- dimensional Seraji (4) partitions PG (2,16) into
subspace; disjoint projective subplanes PG (2,2)

and PG(2,4). The sets in projective line
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and projective plane of orders
2,3,4,5,7,8,9,11,13 have been described
(1). In 2010, Al-Seraji (5) classifys the
sets in projective line and projective
plane of order 17. In 2011, Al-Zangana
(6) shows the sets in projective line and
plane of order 19. In 2014, Al-Seraji (7)
explains the sets in PG (1,16) and In
2015 he classfys the subsets in
PG (1,23) for more details see(8).we
are looking at to partition the projective
plane of order nine and the projective
line of order twenty-seven and studying
the group action of them as the next in
the sequence.

The following definitions are interesting
to our subject.

Definition 1: (9) An(n;r)-arc K or arc
of degree r in PG(K ,q) withn >r + 1
is aset of points with property that every
hyperplane meets K in at most r points
of K and there is some hyperplane
meeting K in exactly r points. An
(n;2)-arc is also called an r-arc.

Definition 2 : (9) An (n; r) -arc is
complete if it is maximal with respect to
inclusion; that is, it is not contained in an
(n+1;r)-arc.

Theorem 3: (5) ( The fundamental
theorem of projective geometry) If
{Py,...,Ps1} and { Pg,.., P11} are
both subsets of PG(n,q) of cardinality
n + 2 such that no n + 1 points chosen
from the same set lie in a hyperplane ,
then there exists a unique projectivity 3
such that P = P; 3 fori=0,1,...,n+
1.

Definition 4: (7) Let S and S* be two
spaces of PG (n,K) , A projectivity
B:S — S* is a bijection given by a
matrix T, necessarily nonsingular, where
P(X") =P(X)B if tX*=XT, with
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teK — {0}. write B =M(T); then
B = M(AT) for any A in K —{0}. The
group of projectivities of PG(n,K) is
denoted by PGL(n + 1,K).

Definition 5: (1) A group G acts on a
set A if there isa map A X G — A such
that given g, g elements in G and 1 is
identity, then

1. x1=x,
2. (xg)g =x(gg) forany xinA .

Definition 6: (1) The orbit of x in A
under the action of G is the set

xG ={xg | geG}.

Definition 7: (1) The stabilizer of x in A
under the action of G is the group

G, = {geG | xg = x}.

Definition 8: (10) Let the group G act
onthesetA.

1. Ify=xg,forx,yeA,then

e yG =xG;

e Gy= g7'G,g.
G|

2. Gl =

Definition 9: (1) The action of G on A
is transitive if given any two elements x ,
y in A there exists g in G such that

y = xg . In that case, there is only one
orbit. The action is regular if it is
transitive and G, = {1} forall xin A .

Definition 10: (6) (Primitive and
Subprimitive Polynomial)

Let F(X) = X" —a,_ X" 1 —--q,be
a monic polynomial of degree n > 1
over F, . Let F be irreducible over F,and

aeF n be root of F .

o |Itis called primitive if the
smallest power s of « such
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that a®* =1is (q" — 1) ; that
Is, a a primitive root over F n

e Itis called subprimitive if the
smallest power s of a such
that a®eF, is 6(n—1,q) =
@"-1/(@-1).

The main results

In this section, we introduce the
properties of the group action and we
make partitions on projective line
PG (1,3™) and projective plane
PG(2,3")n=1,2,3.Where PG(n,q)
is n-dimensional projective space over
F,.

The group action on projective
line of order three PG(1,3)

The polynomial of degree two F(X) =
X2 —X—1is irreducible over F;=
{0,1,—1 = 2}, since F(t) # 0 for all t
in F; . The points of PG (1,3) are
generated by a nonsingular matrix

T = C(F) = ((1’ 1) , that

P =@1,0T,i=0,1,2,3.

such

The action of (T ) on PG(1,3) is

P(0) > P(1) - P(2) > P(3) > P(0)
Therefore, T cycles of four points and
(T)=A{T,T%T%T* = L1y}

The action of (T2) on PG(1,3) is given
as follows:

T? T?
A, =P(0) - P(2) —» P(0)
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T? T?
A, =P(1) -» P(3) - P(1)

Therefore, T2cycles of two points .This
gives the following conclusion .

Theorem 1: On PG(1,3) , we have

i. The set(T ) together with the
usual multiplication of
matrices is a cyclic group of
order 4;

ii. The set(T?) together with the
usual multiplication of
matrices is a cyclic group of
order 2;

iii. The action of ( T) on PG(1,3)
IS transitive ;

iv. The action of (T?) on4;,i =
1,2 is transitive.

Example 1: The different
between V(2,3) the 2-dimensional
vector space over a finite field of order
three and PG (1,3) the projective line
over a finite field of order three is given
as follows:

(1,0),(2,0)
_)(0,1),(0,2)
(2,1),(1,2)
In general, | V(n,q)| = q™ and
| PG(n @) = 6(n) = T~
Therefore, |V(2,3)]|=9and
0(1) = 4

Thus, the elements of PG(1,3) are a first
column of V(2,3) — {(0,0)}.

The stabilizer group of 3-set

The stabilizer of any 3-set is the group of
six projectivities found by shifting the 3-
set to its six permutations. The stabilizer
(it is isomorphic to S;) of the 3-set
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A ={0,0,1} , where ©=(1,0),0=
(0,1),1=(1,1) is generated by two

g ;) and

The action of §; =<

projectivities marked a = (
=(1 o

2 i >on PG(1,3) is {0 ,0,1}, {2}.

x+2

Example 2: To construct of Fy in
exponential and polynomial form take
F(X)=X?—-X-1=0, which s
irreducible over F; with a? —a—1 =
0, the elements of Fyare 0,1,

at=a+1
A =a’+a=2a+1

at=2a’+a=2= -1

a®=—a
ab=—-a’?=-a-1
a’ =—-a*—a=a—1
a® =-2a*—a=1

From definition 10, we have F is
primitive over F; .

Example 3: The polynomial of degree
two F(X) = X?> — X —a’ is irreducible
and primitive over Fy . F(0) =
a3, F(1) = a3,F(a) = ab F(a?) =
a’, F(a®)=a®,F(a*) =a®,

F(@®) =a’, F(e®) =1, F(a”) =1.

So, F(t) # 0forall tin Fy, therefore,
F isirreducible over Fy .

Now, let a is a primitive root over Fg, ,
where Fg; ={0,1,a,a? ..,a’% a8 =
1,3=0} take F(a)=a?—a—a’ =
0, a= a2 —a7, 80 = (az _a7)80
by help the computer and (11), we have
a8 =1 . From definition 10, F is a
primitive over Fj.

The group action on projective
line of order nine PG(1,9)

The points of PG(1,9) are generated by
a nonsingular matrix M = C(F) =
(07 1) , Where F(X) =X?—-X—a’

a1 _
such that, P =0 M, i =

01,..9.

The action of (M) on PG (1,9)
with P(i) =i,i =0,1,...,9 is given as
follows:

M M M M
0-1-2..-9-0
Therefore, M is cycles of ten points and
(M) ={M,M?,..,M° M'° = [,,,}

The action of ( M?) on PG(1,9) is given
as follows:

M? M?
Bi=0—>2..—0

M? M?
B,=1—->3..—1

Therefore, M? cycles of five points. The
action of ( M®) on PG(1,9) is given as
follows :

5 MS

C1=0—)5—)0,

M5 M5
CZ=1_>6—>1,

M5 M5
C3:2_>7_>2|

M5 M3
C,b=3 > 8—>3,

M5 M5
Cs=4 —> 9—4

This gives the following conclusion.

Theorem2: On PG(1,9) , we have
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i. The set (M) together with
the wusual multiplication of
matrices is a cyclic group of
order 10 ;

ii. The set (M?) together with
the wusual multiplication of
matrices is a cyclic group of
order 5;

iii. The set(M?®) together with
the wusual multiplication of
matrices is a cyclic group of
order 2 ;

iv. The action of (M) on
PG (1,9) is transitive ;

v. The action of (M?) on B;
,i = 1,2 is transitive ;

vi. The action of (M®) on (;
,i =1,2,...,5is transitive.

The action of §; =< 2 1>on

. x+2 " x
PG(1,9) is
{0,0,1},{a*},{a,a? a? a%a’a’}.

The group action on projective
line of order twenty- seven
PG(1,27)

The points of PG(1,27) are generated by
a nonsingular matrix Q = C(F) =
(;6 1) ,where F(X)=X?-X-p°,
such that P =(1,00, i =
0,1,2,..27.

The action of ( Q ) on PG(1,27) is

r) 3 r3. 5 rend P

Therefore, Q is cycles of twenty- eight
point and

(Q) = {Q ,QZ’ "'1Q27’ Q28 = IZXZ}

The action of (Q?) on PG (1,27)
with P(i) =i, i=0,1,..,27 is given
as follows:

Q% _Q* @* @
D;=0—-2-4-6..-0
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Q% _Q* _@*_ @
D,=1-3-5-7..-1

The stabilizer group of D;,i=1,2is
given as follows:

1 0
0 1

The action of (Q*) on PG(1,27) is
given as follows:

G(D) = 7, =< ( ) >i=12

E=0%4.%0
g=1%5.%1
E=2%6..%2
£,=3%7.%3

G(E) = D,,i= 1,234
The dihedral
following properties:

e |D;] =14,

group D, satisfies the

e D, contains 7 matrices of order

2,

e D, contains 6 matrices of order

7,

e D,=<ab:a = b?=
(ab)? =1, >;

e D, isanonabelian group .

The action of ( Q7) on PG(1,27) is given
as follows:

Q7 _q7 Q7 Q7
FF=0-7-14-21-0 ,

Q7 @7 Q7 __¢q7
F, =1-58->15-22->1 ,
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Q7 Q7 Q7 __q7
F;=2-59-16—-23-2,

Q7 Q7 _Q’_ Q7
F,=3->10>17->24-3,

Q7 Q7 Q" _q
Fs=4-511-18-25-4,

Q7 Q7 Q7 _q
Fg=5—-12-19-26-5,

Q7 Q" _ Q" __q
F,=6—-513-20-27-6

Let A; be the cross-ratio of F;,i=

1,2,..,7 , then L1 =, ==, =

As=2e =121, =p1,
G(F)=S,i=12,..7.

The action of (Q*) on PG (1,27) is

given as follows:

Ql4- 14
G, =0—>14>0,
14 14

G,=1—15—>1,

Q14- Q14
Gz;=2—16—2,

Q14 14
G, =3—17—3,
14 14

Gs =4—18—14

Q14 Q14-
Gg=5—19—5,

Q14- Q14
G, =6—>20—6,

Q14 Q14-
Gg=7—>21—>7,

14 14

G, =822%8

14 14

Gip=9—23—9,

14 14

Gy = 10 > 2410,

Q14 014—
GIZ =11 _)25—) 11 y

G(G;) = Dye,i =

14 14

G =12526512

Q14 Q14-
G =13527513

1,2, ...,14. see (12)

The dihedral group D, satisfies the

following properties:

|Dyel = 52

D,¢ contains 12 matrices of order
26 ;

D, contains 12 matrices of order
13;

D,¢ contains 27 matrices of order
2;

D, =<a,b: a®® = p? =
(ab)? =1, >;

D, is a nonabelian group .

This gives the following conclusion.

Theorem 3: On PG(1,27) , we have

The set ( Q ) together with the
usual multiplication of
matrices is a cyclic group of
order 28;

The set ( Q?) together with
the wusual multiplication of
matrices is a cyclic group of
order 14 ;

The set ( Q*) together with
the usual multiplication of
matrices is a cyclic group of
order 7;

The set (Q7) together with
the wusual multiplication of
matrices is a cyclic group of
order 4;
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v. The set (Q*) together with
the wusual multiplication of
matrices is a cyclic group of
order 2 ;

vi. The action of (Q) on
PG (1,27) is transitive ;

vii. The action of (Q?) on
D; = 1,2 is transitive ;

viii. The action of (Q*) on
E; =1,2,3,4 istransitive ;
ix. The action of (Q7) on

F;=1,2,3,4,5,6,7 IS
transitive ;

X. The action of (Q'*) on

G;=1,2,3,..,14 is transitive;

Xi. The orbit

F;,i=1,2,3,4,5,6,7 represents
asubline PG(1,3) in PG(1,27);

Xii. There are precisely one
projectively subline PG(1,3) in
G(1,27).

The action of §;=< 2 1> on
x+2 " x
PG(1,27) — Ais given as follows:

I =1{B,B% B, B, p**, p?°}
L, ={p% B* B° B*°, p**, B*°}
Iy ={B° 87,8, B*, B*° B*'}
r,={p% B’ B** B B, p*%}
I; ={p*}

The partitions of PG(1,27)

The line of order twenty-seven consists
of seven disjoint line of order three.
According to the action of S; on
PG (1,27) and the cross-ratio A=
(P, — Ps) (P, — Py)/(Py — P) (P, — P3)
, Where P, ,P,,P;,P, in PG(1,27) , we
have five types of 4-set (unordered set of
four distinct points) are given as follows

1. The 4-sets of type one, when A € I .

The 4-sets and their cross-ratio are given
in Table 1 as follows:

Table (1) : The 4-sets of type one

Number The 4-set The cross-ratio
1 {o00,0,1,5} A=p
2 {B% 8% 8" B} A=p
3 {8,887, %} A=p
4 {ﬁs,ﬁlo,ﬁll,ﬁ23} 1= B24
5 {ﬁ13;ﬁ14:ﬁ20;321} 1= ,3
6 {ﬁ15;316;ﬁ22;ﬁ25} 1= ﬁ24
7 {ﬁ17;318;ﬁ19;ﬁ24} A — ,3

The transformations between the 4-sets
in above Table are given in Table 2 as
following:
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Table ( 2): The transformations between 4-sets of type one

Number The transformation Projective equation
1 1 -2 Lﬁls
17 11
Bx+p
2 153 X+ BT
14 8
B*x+p
3 1 54 _xtp
15 25
Bx+pB
4 1 -5 _XrP B
6 12
B°x + B
5 156 X+
Bx+1
6 157 _x+p
2 22
B*x + B

Therefore, on PG (1,27) , there are
precisely one projectively 4-set of type
one.

2. The 4-sets of type two, when A€ I .

The 4-sets and their cross-ratio are given
in Table 3 as follows:

Table (3): The 4-sets of type two

Number The 4-set The cross-ratio
1 {,0,1,5°} A=p°
2 {B,8%8° 87} A=p°
3 {B%B° B% B} A= p°
4 {ﬁ9lﬁ12’ﬁ13“820} 1= ﬁ23
5 {ﬁ14;ﬁ15,ﬁ19:ﬁ22} 1= '36
6 {ﬁZB’BIB'ﬁZI’BZS} 1= ﬁZO
7 {ﬁ16,ﬁ17;ﬁ11,ﬁ24} A= '34

The 4-sets in above Table are equivalent,
therefore, on PG (1,27) , there are
precisely one projectively 4-set of type
two.

3. The 4-sets of type three,
when 1el;.
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The 4-sets and their cross-ratio are given in Table 4 as follows:
Table (4): The 4-sets of type three

Number The 4-set The cross-ratio
1 {,0,1,5°} A=p°
2 (%5°8",8°) 1=p"
3 {ﬁ7;ﬁ8;ﬁ11:ﬁ12} 1= ,811
4 {Bg)ﬁlorﬁ17'ﬁ23} 1= ,811
5 {ﬁlS,B14—'315’ﬁl9} 1= ﬁ19
6 {B16;ﬁ17:ﬁ20'ﬁ21} A= ,811
7 {B18“822’BZ4“325} 1= ﬁ25

Therefore, on PG (1,27), there are
precisely one projectively 4-set of type
three.

4. The 4-sets of type four, when A€ I}, The 4-sets and their cross-ratio are
given in Table 5 as follows:

Table (5): The 4-sets of type four

Number The 4-set The cross-ratio
1 {,0,1,5°} A=p°
2 {ﬁz”33’ﬁ6’ﬁ10} 1= '317
3 {B’BS’BIZ'ﬁ13} 1= ﬁ18
4 {ﬁ4;ﬁ7;ﬁ22,ﬁ20} 1= '38
5 {314“315’319’325} 1= '318
6 {39,,317,ﬁ18;,824} 1= '38
7 {ﬁ11;316,321;323} 1= '314-

Therefore, on PG (1,27) , there are
precisely one projectively 4-set of type
four.

5. The 4-sets of type five, when A € I. The 4-sets and their cross-ratio are given
in Table 6 as follows:
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Table (6): The 4-sets of type five

Number The 4-set The cross-ratio
1 {00’0’1“313} /1=,813
2 {31’32133’ﬁ15} 1= ,813
3 (B8, p18, p21 23} A=p13
4 {,312,,817,,320,,324} 1= ,813
5 {ﬁ4;ﬁ5:ﬁ7:ﬁ14} 1= ,813
6 {ﬁ6;ﬁ8,ﬁ9,ﬁ25} 1= ,813
7 {Blo,ﬁ11’ﬁ19'ﬁ22} 1= ,813

Therefore, on PG (1,27) , there are
precisely one projectively 4-set of type
five.

Theorem 4: On PG (1,27) , there are
precisely five distinct projectively 4-sets.

Table 7: The inequi

From Tables 1,2,3 ,4,5 ,6, we have the

following Theorem .

The 4-sets and their stabilizer group are

given in Table 7 as follows:
valent 4-sets on PG(1,27)

Number The 4-set The stabilizer group
x + pt* x + p13
1 {00,0,1,,8} szzzz<rﬁ13>x<w>
2 {0,0,1,33} x + Bt x + pe
Zy X Zy =<W>X<rﬁl3>
. _ x+p*® x + p13
3 {O0,0,l,ﬁ} ZZXZ2—<rﬁ13 W>
8 o x+pH x+ p13
4 {0,0,1,5%} 2y X 2y =< g XS piay 4 i3
1 1
5 ©,0,1,8% S, = <-— >
{ ﬁ } 4 x ;x + 1
The group action on projective a nonsingular matrix E = C(F) =
lane of order three PG(2,3 0 10
P (2.3) 0 0 1],whereF(X)=X3-X+1,
The projective plane PG(2,3) contains 210 _ .
thirteen points, thirteen lines, four points such  that P(i) = (1,0,0) E¥,
on line and four lines through a point. 0,1,....12..

The points of PG(2,3) are generated by
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The action of ( E ) on PG(2,3) is
P)S PS5 .. 5 pa2) S P

Therefore, E is cycles of thirteen point
and (E ) = {E,EZ, ...,E13 = I3><3}

This gives the following conclusion.
Theorem5: On PG(2,3), we have

i. The set (E) together with
the usual multiplication of
matrices is a cyclic group of
order 13 ;

ii. The action of (E)
PG (2, 3) is transitive.

on

The group action on projective
plane of order nine PG(2,9)

The projective plane PG(2,9) contains
91 points, 91 lines, ten points on line
and ten lines through a point.The points
of PG (2,9) are generated by a

nonsingular  matrix W =C(F) =
0 1 0

(O 0 1>,WhereF(X)=X3—X—
a’ 1 0 ,

a’ , such that P(i) = (1,0,0) W',

i =01,..90.

The action of ( W ) on PG(2,9) is
w w w w
P(0)—> P(1) > .. » P(90) - P(0)

Therefore, W cycles of 91 points and
<W> = {W, WZ, ...,W91 = I3>(3}

This gives the following conclusion.
Theorem 6: on PG(2,9) , we have

i. The set (W) together with the
usual multiplication of
matrices is a cyclic group of
order 91 ;

ii. The action of (W) on
PG (2,9) is transitive.
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The group action on projective
plane of order twenty-seven
PG(2,27)

The plane PG (2,27) contains 757
points, 757 lines, 28 points on line
and 28 lines through a point. The points
of PG (2,27) are generated by a

nonsingular matrix U=C(F) =
0 1 0

( 0 O 1), where F(X) = X3 —
BZS 1 0

X — B?5, such that

P(i)=(1,0,00U, i =0,1,..,756.
The action of (U ) on PG(2,27) is
P(0) > P(1) > .. 5 P(756) > P(0)

Therefore, U cycles of 757 points and
<U> = {U,UZ,...,U757 = I3X3}

This gives the following conclusion.
Theorem 7: On PG(2,27) , we have

i. the set(U) together with the

usual multiplication of
matrices is a cyclic group of
order 757 ;
ii. The action of (U) on
PG (2,27) is transitive.
The partition of PG (2,9)
The action of
a’ a® ad
(W?7) =<<a2 0 a5>) on
a* 1 0
PG (2,9) with P(i) =i,i = 0,1,...,90

is given as follows:

7 W7 W7
m=0—>7—>14.. —0,

7 W7 W7
m,=1—58—>15.. —1,

7 W7 7
;=2 —>9 —>16.. > 2,
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7

W7 7
ms=4 —11 —18..

7

w w
Mg =5—>12 —19..

W7

m,=3 —>10 —17 ..

7

W7 7
m;, =6 —13 — 20 ..

W7
_)3

Each one of above orbit represents a
subplane PG(2,3) in PG(2,9) .

The lines of subplanes

1,2,...,7
follows:

Table (8): The lines of subplanes in PG(2,9)

are given in

T[i , i =
Table 8 as

The subplane

The lines of subplane

T

0
49
56
77

56
63
84

14
63
70

21
70
77

14
28
77
84

0
21
35
84

0
7
28
42

7
14
35
49

14
21
42
56

21
28
49
63

28
35
56
70

35|42
42 | 49
63 |70
77 | 84

%)

1
50
57
78

57
64
85

15
64
71

22
71
78

15
29
78
85

1
22
36
85

1
8
29
43

8
15
36
50

15
22
43
57

22
29
50
64

29
36
57
71

36 | 43
43 | 50
64 | 71
78 | 85

2
51
58
79

58
65
86

16
65
72

23
72
79

16
30
79
86

2
23
37
86

2
9
30
44

9
16
37
51

16
23
44
58

23
30
51
65

30
37
58
72

37 | 44
44 | 51
65 | 72
79 | 86

3
52
59
80

10
59
66
87

17
66
73

10
24
73
80

17
31
80
87

3
24
38
87

3
10
31
45

10
17
38
52

17
24
45
59

24
31
52
66

31
38
59
73

38 | 45
45 | 52
66 | 73
80 | 87

Tis

4
53
60
81

11
60
67
88

18
67
74

11
25
74
81

18
32
81
88

4
25
39
88

4
11
32
46

11
18
39
53

18
25
46
60

25
32
53
67

32
39
60
74

39 | 46
46 | 53
67 | 74
81 | 88

5
54
61
82

12
61
68
89

19
68
75

12
26
75
82

19
33
82
89

5
26
40
89

5
12
33
47

12
19
40
54

19
26
47
61

26
33
54
638

33
40
61
75

40 | 47
47 | 54
68 | 75
82 | 89

6
55
62
83

13
62
69
90

20
69
76

13
27
76
83

20
34
83
90

6
27
41
90

6
13
34
48

13
20
41
55

20
27
48
62

27
34
55
69

34
41
62
76

41 | 48
48 | 55
69 | 76
83190

w

w

Moreover, m; = 1, ... > T,

This gives the following conclusion.
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Theorem 8: On PG(2,9) , we have

The set (W 7) together with

the usual

multiplication of
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matrices is a cyclic group of

order 13 ;
ii. The action of (W?7) on
w; , 1= 1,2,..,7 is transitive ;
iii. There are precisely one
projectively subplane

PG(2,3) in PG(2,9) .

The action of (W 13) =

a’ a® a?
( ( a a a6> ) on PG(2,9) is given
5 4 5

a’> at o«
as follows:
W13 W13
Ki=0-—13 ..—0
W13 W13
K,=1—014 ..—1
W13 W13
K;y=2 — 15 ..—2
W13 W13
K,=3 — 16 ...—3
W13 W13 W13
Ks=4 — 17 — ...—4
W13 W13 W13
Kg=5— 18 — ...—5
W13 W13 W13
K;=6 — 19 —...—6
W13 W13 W13
Kg=7 — 20 —..—7
W13 W13 W13
Kg=8 — 21 —..—8
W13 W13 W13

Kigo=9 — 22 —..—9

13 w13
Kll == 10 A 4 10
W13 W13

Ki,=11 — ..— 11

13 W13
K13 = 12 —_— ... 12

Each one of above orbits represents
a complete (7; 2) -arc. Moreover,

163

w w w
Ki—->K,>K;..->K;
This gives the following conclusion.
Theorem 9: On PG(2,9) , we have

i. The set (W 3) together
with the usual
multiplication of matrices
is a cyclic group of order 7

ii. The action of (W 3) on

K, , i=12..,13 is
transitive ;
iii. There are precisely one
projectively complete
(7;2) -arc.
Conclusions

1. Partition PG (1,27) into five
types of seven disjoint 4-sets.

2. Partition PG (2,9) into seven
disjoint subplanes of order three
PG(2,3) .

3. Partition PG (2,9) into thirteen
disjoint complete (7; 2)-arc .

4. Classify the group action on
PG (1,3™) and PG (2,3"),n =
1,2,3.

5. Classify the subspaces of
PG(1,27) and PG(2,27) .

6. To give rise to an err-correcting
code that corrects the maximum
possible number of errors.
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