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ABSTRACT 

     In this paper we introduce the definition of standard fuzzy normed space then we 

discuss several properties after we give an example to illustrate  this notion. Then we 

define F-bounded operator as an introduction to define a standard fuzzy norm of an 

operator and if T is a linear operator from standard fuzzy normed space X into a 

standard fuzzy normed space Y we prove that T is continuous if and only if T is F-

bounded. 

 

 الضبابيت القياسيتالمؤثراث الخطيت المستمرة و المقيدة ضبابيا على الفضاءاث القياس 
 

 الخلاصت

في هرا البحث قدهٌا حعريف فضاء القياس الضبابي القياسي ثن ًاقشٌا عدة خىاص بعد اى اعطيٌا هثالا       

 Tلخعريف القياس الضبابي للوؤثراث و اذا كاًج  وقدهتكلخىضيح هرا الوفهىم بعد ذلك عرفٌا الوؤثر الوقيد ضبابيا 

 Tبرهٌا اى  Y الى فضاء القياس الضبابي القياسي اخر X هي هؤثر خطي هي فضاء القياس الضبابي القياسي

 حكىى هسخورة اذا و فقط اذا كاًج هقيدة ضبابيا.

 

Key Words: standard fuzzy normed space, F-bounded linear operator, a fuzzy norm of 

an operator  

 

INTRODUCTION 
he theory of fuzzy sets was introduced by Zadeh in 1965[1]. Many authors have 

introduced the concept of fuzzy norm in different ways [2,3,4,5,6,7,11,12]. 

Cheng and Mordeson in 1994[8] defined fuzzy norm on a linear space whose 

associated fuzzy metric is of Kramosil and Mickalek type[9] as follows: 

 

   The order pair (X,N) is said to be a fuzzy normed space if X is a linear space and N 

is a fuzzy set on         satisfying the following conditions for every x,y   X and 

s,t         
(i) N(x,0) = 0, for all x   X.  

(ii)For all t 0, N(x,t) = 1 if and only if x = 0  

T 
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(iii) N( x,t) = N(x,
 

   
), for all   ≠ 0 and For all t 0 . 

(iv)For all s, t 0, N(x+y,t+s)   N(x,t)   N(y,s) where a b = min{a,b}  

(v)        N(x,t) = 1. 

George and Veeramani in [10] introduced the definition of continuous  t-norm. Bag 

and Samanta in [2] modified the definition of Cheng and Mordeson of fuzzy norm as  

follows:  

 

   The triple (X,N, ) is said to be a fuzzy normed space if X is a linear space,   is a 

continuous t-norm and N is a fuzzy set on   [0, ) satisfying the following conditions 

for every x,y   X and s,t         
(i) N(x,0) = 0, for all x   X.  

(ii)For all t 0, N(x,t) = 1 if and only if x = 0  

(iii) N( x,t) = N(x,
 

   
), for all   ≠ 0 

(iv)For all s, t 0, N(x,t)   N(y,s)  ≤ N(x+y,t+s)  

(v)For x 0, N(x,  ):(0, ) → [0,1] is continuous.  

(vi)       N(x,t) = 1. 

    In this paper we introduce the definition of standard  fuzzy normed space as a 

modification of the notion of fuzzy normed space duo to Bag and Samanta. In section 

one we recall the definition of t-norm then we introduce the definition of standard  

fuzzy normed space after that we give an example then we prove that every ordinary 

norm induced a standard  fuzzy norm define open ball, convergent sequence, open set, 

Cauchy sequence, F-bounded set and a continuous operator between two standard  

fuzzy normed spaces. Also we prove several properties for F-bounded operator. 

 

Standard  fuzzy normed space 

Definition 1.1:[1] 

  Let X be a nonempty set of elements, a fuzzy set A in X is characterized by a 

membership function,  
 

(x): X→ [0,1]. Then we can write A = {(x,  
 

(x)): xX, 0   

 
 

(x)   1}. Then A is a continuous fuzzy set. 

We now give an example of continuous fuzzy set 

Example 1.2:[4] 

Let X =   and let A be a fuzzy set in   with membership function defined by :       

  
 

(x) = 
 

      . 

Definition 1.3:[10] 

A binary operation  : [0,1]   [0,1]→ [0,1] is a continuous triangular norm (or simply 

t-norm ) if for all a, b, c, e[0, 1] the following conditions hold:  

1- a b = b a                            

2- a 1 = a  

3- (a b)  c = a (b c)               

4- If a   c and b   e then a b   c e 

Example 1.4:[10] 

Define a b = a.b, for all a, b[0,1], where a.b is the usual multiplication in [0,1] then   

is a continuous t-norm. 

Example 1.5:[10] 

Define a b = min{a,b} for all a, b[0,1], it follows that   is a continuous t-norm. 

Remark 1.6:[10] 
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For any a   b, we can find c such that a c   b and for any d we can find q such that 

q q   d , where a, b, c, d and q belong to (0,1). 

Now we introduce the basic definition in this paper 

Definition 1.7: 

Let X be a linear space over field   and   is a continuous t-norm and N is a fuzzy set 

on X satisfying: 

(FN1)  N(x)   0 for all x  X. 

(FN2)  N(x) = 1 if and only if x = 0. 

(FN3)  N( x) =  
 

   
 N(x) for all x  X and        . 

(FN4)  N(x+y)   N(x)  N(y) for all x, y  X.   

(FN5) N(x)   is a continuous fuzzy set. 

Then the triple (X,N,  ) is called standard fuzzy normed space. 

Definition 1.8: 

 Let (X,N, ) be a standard fuzzy normed space. N is called continuous fuzzy set if 

whenever    → x in X then N(  ) → N(x), that is       N(  ) = N(x). 

Example 1.9: 

Let X =   , the set of integers,  a b = a.b for all a,b  [0,1] 

 

 
 

   
     if     x ≠ 0 

Define N(x) =   

                                  1    if      x = 0 

 

Then (X,N,    is standard fuzzy normed space. 

Proposition 1.10: 

Let (X,  .  ) be an ordinary normed space with     is an integer for all x 

   X. Define 

                             
 

     
                    if   x ≠ 0     

N||.|| (x) =                           

 1     if    x = 0 

 

and a b= a.b for all a,b  [0,1]. Then (X, N||.||,  ) is standard fuzzy normed space 

induced by   .  . 

Proof: 

(FN1)  Since   x   > 0 for all x  X then  N||.|| (x) > 0 for all x  X. 

(FN2)  N||.|| (x) = 1 if and only if x = 0. 

(FN3)  Let   ≠ 0  K then for all x  X we have  

           N||.|| ( x) = 
 

      
  = 

 

         
 =  

 

   
 N||.|| (x)    

(FN4)  N||.|| (x+y) = 
 

       
 >  

 

     
 

 

     
    N||.|| (x)     N||.|| (y)    

(FN5)  Let (xn) be a sequence in X such that   →x that is        xn = x. 

Now,        N||.|| (xn) =         
 

      
 =  

 

     
 =  N||.|| (x).      

Therefore N||.||  is continuous fuzzy set. Hence (X, N||.||,  ) is standard fuzzy normed 

space.    

Definition 1.11: 

Let (X,N, ) be a standard fuzzy normed space, we define B(x,r) = {yX : N(x)   (1- 

r) } then B(x,r) is called an open ball with center xX and radius  0   r   1. 
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Definition 1.12: 

A sequence (  ) in a standard fuzzy normed space (X,N, ) is said to be converge to a 

point xX if 0     1 is given, there exists a positive number K such that, N(  - x)  

(1-     for all n  K. 

Theorem 1.13: 

A sequence (  ) in a standard fuzzy normed space (X,N, ) is converge to a point xX 

if and only if         N(  - x) = 1. 

Proof: 

Suppose that the sequence (    converges to x then for given any 0  r  1 there is a 

positive number K such that N(  - x)  (1- r) for all n  K and hence 1-N(  - x)  r. 

Therefore N(  - x) converges to 1 as n tends to  .The proof of the converse is similar 

hence is omitted.  

Lemma 1.14: 

Let (X,N,    be a standard fuzzy normed space. Then N(x-y) = N(y-x) for all x,y   X 

Proof: 

 N(x-y) = N[(-1)(y-x)] = 
 

    
  N(y-x) = N(y-x) .   

Definition 1.15: 

A subset A of a standard fuzzy normed space  (X,N, ) is said to be open if it contains 

 a ball about each of its points. A subset B of X is said to be closed if its complement is 

open that is    = X – B is open. 

The proof of the following theorem is easy, hence it is omitted. 

Theorem 1.16: 

Every open ball in a standard fuzzy normed space (X,N, ) is an open set. 

Definition 1.17: 

Let (X,N, ) be a standard fuzzy normed space and let A  X then the closure of A is 

denoted by  ̅ or cL(A) and is defined to be the smallest closed set contains A. 

Lemma 1.18: 

Let A be a subset of a standard fuzzy normed space (X,N, ). Then a ̅ if and only if 

there is a sequence (  ) in A such that   → a. 

Proof: 

Let a ̅ , if aA then we take sequence of that type (a,a,a,…,a,…) . If aA, then it is 

a limit point of A. Hence we construct the sequence (   A by N(  - a)   1- 
 

  
  for 

each n = 1, 2, 3,…..  

The ball B(a, 
 

  
) contains     and   → a because       N(  - a) = 1. 

Conversely if (    in A and   → a then a , or every neighborhood of a contains 

points   ≠ a, so that a is a point of accumulation of A, hence a ̅ by using the 

definition of the closure.  

Definition 1.19: 

A sequence (  ) in a standard fuzzy normed space (X,N, ) is said to be Cauchy if for 

each 0       1 there is a positive number K such that N(  -   )   (1-    for all n, m 

   . 

The proof of the following theorem is easy, hence it is omitted. 

Theorem 1.20: 
In a standard fuzzy normed space every convergent sequence is Cauchy. 

Definition 1.21: 
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Let (X,N, ) be a standard fuzzy normed space. A subset A of X is said to be F-

bounded if there exists a real number r, 0   r   1 such that, N(x)   (1- r), for all x 

A. 

Definition 1.22: 

Let (X,  , ) and (Y,  , ) be two standard fuzzy normed spaces and A   X. The 

operator f:A→Y is said to be continuous at aA, if for every 0       1, there exists 

some 0       1, such that   (f(x) - f(a))   (1-  ) whenever xA satisfying   (x-a)   

(1 -  ). If f is continuous at every point of A, then it is said to be continuous on A. 

 

Fuzzy Bounded and Continuous Linear Operator 

Definition 2.1: 

Let (X,NX,   and (Y,NY,   be two fuzzy normed spaces and T: D(T)    be a linear 

operator, where D(T)   X. The operator T is said to be F-bounded if there is a real 

number c,  0 < c < 1 such that for all x  D(T), 

NY (Tx) ≥ (1-c) NX (x) ..... 2.1 

Remark 2.2 

1-Formula (2.1) shows that F-bounded linear operator maps F-bounded sets in D(T) 

onto F- bounded sets in Y.  

2-What is the largest possible (1- c) such that equation (2.1) still holds for all x  

D(T)?. By division we have  
      

     
   (1-c) and this shows that (1- c) must be at least 

as big as the infinimum of the  expression on the left taken over D(T) - {0}.Hence the 

answer to our question is that the smallest possible (1- c) in (2.1) is that infinimum. 

This quantity is denoted by N(T). Thus                                                                   

N(T) =           
      

     
  ...  (2.2)         

N(T) is called the fuzzy  norm of the operator T. If T = 0, we define 

         N(T) = 1. 

3- From (2.1) with (1- c) = N(T) we have      

   NY(Tx) ≥ N(T)   NX(x)  ... (2.3)   

Lemma 2.3 

Let T: D(T)   Y be fuzzy bounded linear operator from a standard fuzzy normed 

space (X,NX,   with D(T)   X into a standard fuzzy normed space (Y,NY,   then 

(i) An alternative formula for the norm of T is 

N(T) =                ) ... (2.4)  

 (ii) The norm defined by (2.2) is a standard fuzzy normed space 

Proof : 

(i) We put a = Nx(x) and set y = ax .Then 

       (y) =   (ax) = 
 

   
   (x) = 

 

     
        1 and since T is linear equation (2.2) 

gives 

          
      

     
 =           

      

 
  =           NY (T(ax))  

                                      =          NY(Ty) 

Writing x for y on the right, we have (2.4). 

(ii) (FN1) NY(Tx) > 0 and NX(x) > 0 implies 
       

      
 > 0. Hence N(T) > 0.   

  (FN2) N(T) = 1              NY(Tx) = 1    NY(Tx) = 1   Tx = 0 

                   T = 0.      
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   (FN3) N( T) =           NY( Tx) = 
 

   
           NY(Tx) = 

 

   
 N(T).  

   (FN4) N(T1+ T2) =                   NY [(T1+ T2)(x)]  

                           =                   NY (T1(x) + T2(x)) 

                                       ≥            NY (T1(x)              NY (T2(x))     

                            ≥ N(T1)   N(T2)   

(FN5) Since NY is continuous so N(T) is continuous.  

 

Before we consider general properties of F- bounded linear operators, let us take a 

look at some typical examples, so that we get a better feeling for the concept of a F- 

bounded linear operator. 

Example 2.4: 

Let X be the vector space of all polynomials on J = [0,1] with norm given by   x   = 

max  x(t) , t   J where |x(t)| is an integer  then (X,N  .  , ) is a standard fuzzy normed 

space where N  .  (x) = 
 

     
 if x ≠ 0 and N  .  (0) = 1 also a               J = [0,1]. 

Let T: X  X defined by :  

T(x(t)) = x´(t). 

T is linear but not F-bounded. Indeed xn(t) = t
n
 ,n=1, 2,… so   xn   = 1, then N  .   (xn) = 1 

where n    . Now, Txn(t) = nt
n-1

 so   Txn   = n which implies that N  .  (Txn) = 
 

 
  so 

       

      
 = 

 

 
.  Since n     is arbitrary, this shows that there is no r, 0 < r < 1 such that 

       

      
 ≥ (1-r). From this we conclude that T  is not F-bounded.  

Example 2.5: 

Consider C[0,1] with   x   = max   x(t)  , t   J = [0,1] with |x(t)| is an integer.Then 

(C[0,1],N  .  , ) is a standard fuzzy normed space where 

 N  .   (x) = 
 

     
 , N  .   (0) = 1, and a       for all a,b   [0,1]. Define T: C[0,1]   

C[0,1] by T(x) = y where y(t) = ∫             
 

 
 where k(t,s) is continuous on J J. and 

k(t,s) is bounded say           ≤ ko for all         J J where ko    .This operator is 

linear and F-bounded. Now 

 x(t)  ≤ max        =   x  , t   J. 

Hence ,   y   =   Tx   = max   ∫             
 

 
  

   ≤ max ∫                     
 

 
 

   ≤ k0   x  . 

Therefore 

N  .   (Tx) = 
 

       
 ≥ 

 

  
   

 

     
 = 

 

  
 N  .   (x). Put 

 

  
 = (1-r) for some r, 0 < r < 1, we get N  .   

(Tx) ≥ (1-r) N  .   (x). Hence T is F-bounded.   

Operators are mappings, so that the definition of continuity applies to them as follows: 

Let T: D(T)   Y be any operator, not necessarily linear, where D(T)   X and X and 

Yare standard fuzzy normed spaces. The operator T is called continuous at xo   D(T) 

if for every 0 <   < 1 there is a 0 <   < 1 such that NY(Tx - Txo) > (1 -     for all x   

D(T) satisfying NX(x - xo) > (1 –  

  . T is continuous if T is continuous at every x   D(T) . 

Theorem 2.6: 

Let T: D(T)   Y be a linear operator, where D(T)   X and (X,NX,    
(Y,NY,   are standard fuzzy normed spaces .Then: 
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(i) T is continuous if and only if T is F-bounded.  

(ii) If T is continuous at a single point, it is continuous. 

Proof of (i): 

We assume T is F-bounded and consider any xo   D(T). Let any 0 <   < 1 be given. 

Then, since T is linear, for every x   D(T) such that 

NX(x - xo) > (1 -    , (1 -    = 
     

    
 , we obtain  

NY (Tx - Txo) = NY [T(x - xo)] ≥ N(T)   NX (x - xo)  

              ≥ N(T)   (1 -  ) = (1-   . 

Since xo   D(T) was arbitrary, this shows that T is continuous. 

Conversely, assume that T is continuous at an arbitrary xo   D(T) Then, given any 0 < 

  < 1, there is a 0 <   < 1 such that NY (Tx - Txo) ≥ (1-    for all x   D(T) satisfying NX 

(x - xo) > (1 -      (2.5) 

We now take y ≠ 0 in D(T) and set 

x = xo + 
      

   –   
   y  . Then (x - xo) = 

      

   –   
   y  . 

Hence NX (x - xo) = 
   –    

     
       =  (1 -   . Now 

NY (Tx - Txo) = NY (T(x - xo)) = NY [T(
     

   –    
   y )] =  

   –    

     
     y) and (2.5) implies 

 
   –    

     
      y) ≥ (1-  ) implies     y) ≥  

   –   

      
        This can be written      y) ≥ 

(1- c)      , where (1- c) = 
   –   

      
 and this shows that T is F-bounded. 

Proof of (ii):  
Continuity of T at a point implies F-boundedness of T by the second part of the proof 

of (i), which in turn implies continuity of T by (i).  

Corollary 2.7 

Let (X,NX,   (Y,NY,   be standard fuzzy normed spaces and let T: D(T)   Y be a F-

bounded linear operator. Then: 

(i) xn   x [where xn , x   D(T) ] implies Txn   Tx. 

(ii) The null space K(T) is closed, where K(T) = {x  D(T) : T(x) = 0}.  

Proof of (i): 

Since T is F-bounded, N(T) ≥ (1-r) for some 0 < r < 1 ,and since xn   x given 0 < s < 1 

there is a positive number K such that  NX (xn - x) > (1-s). Now , by Remark (1.6) there 

is (1-      (0,1) such that (1-r)   (1-s) > (1-   . Now 

NY (Txn - Tx) = NY (T(xn - x)) ≥ N(T)   NX (xn - x) > (1-r)   (1-s) > (1-    for all n ≥ k. 

Hence Txn   Tx. 

Proof of (ii):  

 For every x        ̅̅ ̅̅ ̅̅  there is a sequence (xn) in K(T) such that xn   x by Lemma 

(1.18) . Hence Txn   Tx by part (i) of this corollary. Also Tx = 0 since Txn = 0. So 

that x    K(T). Since x        ̅̅ ̅̅ ̅̅  was arbitrary K(T) is closed.  

Theorem 2.8 

Let (X,NX,   be a standard fuzzy normed space and let (Y,NY,  be a Banach space. 

Let T: D(T)   Y be a F-bounded linear operator, where D(T)   X . Then T has an 

extension   ̃:     ̅̅ ̅̅ ̅̅    Y where  ̃ is a F-bounded linear operator of norm N( ̃) = N(T).  

Proof: 

We consider any x      ̅̅ ̅̅ ̅̅  . By Lemma (1.18) there is a sequence (xn) in 
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D(T) such that xn   x. Since T is linear and F-bounded, we have N(T) ≥ (1-r) for some 

0 <   < 1 and since xn   x for any given 0 <   < 1 there is a number K such that NX(xn 

- x) > (1-s) for all n ≥ K. Hence by Remark (1.6), there is (1-      (0,1) such that (1-r) 

  (1-s) > (1-     Hence 

 NY(Txn - Txm) = NY[T(xn - xm)] ≥ N(T)   NX(xn -xm) ≥ (1-     (1-s) > (1-  , for all n,m 

≥ k. This shows that (Txn) is Cauchy. By assumption Y is Banach so that (Txn) 

converges, say, Txn    y, We define  ̃      ̅̅ ̅̅ ̅̅    Y :  ̃x = y. We show that this 

definition is independent of the particular choice of a sequence in D(T) converging to 

x. Suppose xn   x and zn   x. Then vm  x where (vm ) = (x1 , z1 , x2 , z2 , …). Hence 

(Tvm ) converges by Corollary(2.7(i)), and the two subsequences (Txn) and (Tzn) of 

(Tvm ) must have the same limit. This proves that  ̃  is uniquely defined at every 

x      ̅̅ ̅̅ ̅̅ . 

Clearly,  ̃  is linear and  ̃x = Tx for every x   D(T), so that  ̃ is an 

extension of T. We now use  NY (Txn) ≥ N(T)   NX (xn) and let n    . 
Then Txn    y =  ̃x. Since x   NX (x) defines a continuous operator , we thus obtain 

NY ( ̃x) ≥ N(T)   NX (x). Hence  ̃ is F-bounded and N( ̃) ≥ N(T). Of course, N( ̃) ≤ 

N(T) because the fuzzy norm being defined by a infinimum, cannot decrease in an 

extension. Together we have N( ̃) = N(T).  
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