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ABSTRACT

Modern power systems are complex and non-linear and their operating conditions
can vary over a wide range, and since neuro - fuzzy network can be used as intelligent
controllers to control non-linear dynamic systems through learning, which can easily
accommodate the non-linearity, time dependencies, model uncertainty and external
disturbances. A Neuro-Fuzzy model system is proposed as an effective neural networks
controller model to achieve the desired robust Automatic VVoltage Regulator (AVR) for
Synchronous Generator (SG) to maintain constant terminal voltage. The concerned
Neuro-fuzzy controller for AVR is examined on different models of SG and loads. The
results shows that the Neuro-Fuzzy -controllers have excellent responses for all SG
models and loads in view point of transient response and system stability compared
with optimal PID controllers tuned by practical swarm optimization. Also shows that
the margins of robustness for Neuro-Fuzzy -controller are greater than PID controller.

Keywords: Synchronous Generator (SG), Automatic Voltage Regulator (AVR) system,
Neuro-Fuzzy controller, PID controller, Robust AVR.
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INTRODUCTION

ynchronous generators are the primary source of all electrical energy and used

almost exclusively in power systems. SGs are nonlinear, fast acting; Multi-Input

Multi-Output (MIMO) systems which are continuously subjected to load
variations and the AVR design must cope with both normal load and fault condition of
operation. Evidently, these conditions of operation result to considerable changes in the
system dynamics [1]. The goal of robust systems design is to retain assurance of system
performance in spite of model inaccuracies and changes. A system is robust when the
system has acceptable changes in performance due to model changes or inaccuracies
[2].

The automatic voltage regulator (AVR) is the essential part in the excitation system
to control the terminal voltage and the reactive power in addition to enhance the
machine stability. The Block diagram of synchronous generator and AVR is shown in
figure (1) [3].

Many researchers used different control methods for AVR such as pole placement
and pole-zero cancellation [4], PID control [5], optimal control [6], adaptive control
[7], neural control [3,8], and fuzzy control [9]. Neuro-fuzzy controller is resulted from
the fusion of neural networks and fuzzy logic. The advantages of both approaches are
thus merged [10].

PID has been widely used in the AVR because of its simple structure and robust
performance in a wide range of operating conditions. Unfortunately, it has been quite
difficult to tune properly the gains of PID controllers. The Particle Swarm Optimization
(PSO) algorithm has been proposed to generate the optimum Proportional, Integral and
Derivative gains of the controller [11].

The designed AVRs by control methods which are mentioned in previous paragraph,
each one is applied on only one synchronous generator. The AVR designed in [12] is
applied on different types of non-linear SGs models and loads, in order to test the
robustness of the controller. This paper is focused on the robustness of AVR using
neuro-fuzzy controller and applied on different types of non-linear SGs models and
loads and then compared with AVR using optimal PID controller tuned by PSO.
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Figure (1): Block diagram of synchronous generator and AVR.
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Mathematical Model of the Synchronous Generator:

Any kind of modeling of electrical machine such as synchronous generator starts
with measurements on real model because it is necessary to determine all essential
parameters. The other possibility is to obtain generator parameters from manufacturer
or determinate our own parameters if generator prototype is being build [13]. After that
the generator model can be made by using all mathematical equations which describe
the generator. The simulated model of the synchronous generator is represented in
MATLAB/ SIMULINK. The central concept underlying the development of the
mathematical models of ac machines is the representation of the variables for voltages,
currents and fluxes by means of space vectors that are expressed in different reference
frames. These reference frames or coordinate systems: the triplet [V, V,, V] denotes a
three-phase system attached to the stator while the pair [V, V4] corresponds to an
equivalent two-phase system quadrature and direct phase The basic approach to
modeling involves the transformation of the stator and rotor equations to a common
reference frame [3].

MATLAB/SIMULINK toolbox synchronous generator model used in this work takes
into account the dynamics of the stator, field, and damper windings. The equivalent
circuit of the model is represented in the rotor reference frame (dq frame). All rotor
parameters and electrical quantities are viewed from the stator.

They are identified by primed variables. The subscripts used are defined as follows:

d,q: d and g axis quantity

R,s: Rotor and stator quantity

I,m: Leakage and magnetizing inductance
f,k: Field and damper winding quantity

The electrical model of the machine is

) d
V, = Ry +E¢d — WOrPy ..(1)
Where
@q =Ly + L@y +14) and @, :Lqiq + Lmqikq
i d
Vq = Rslq +a¢q + Or Py .. (2
. oo d .
Vi = Rl +E¢fd --(3)
Where
P =Ll + Ly (Ig +1ig)
. .o d .
Via = Rl + E?kd . (4)
Where

¢I'<d = L'kdil;d + Ly (i +ilfd)
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Viar = Riaalian + %cp'kql oo
Where

§0i'<q1 = qul kg1 + Lmg

Vk‘q2 - Rl;qul.(qz -+
Where

¢I'<q2 = I—qu qu + I—

a¢ll<q2 ... (6)

Exciter Model:

The basic function of an excitation system is to provide direct current to the
synchronous machine field winding. In addition, the excitation system performs control
and protective functions essential to the satisfactory performance of the power system
by controlling the field voltage and thereby the field current. The transfer function of
the exciter is:

G(s) = (1+sTR) ..(7
Where
Tr is the time constant of the static exciter.
KR is the gain of static exciter.

Since the time constant (Tg) of static exciter is very small, then equivalent transfer
function is became as gain circuit connected between controller and SG, used to gain
low control signal.

G(s) =Ky ...(8)
The value of Ky in this paper is one.

Sensor Model:

The terminal voltage of the SG is being fed back by using a potential transformer
that is connected to the bridge rectifiers. A sensor may be represented by a simple first-
order transfer function, given by

Vs(s) _ Kt
Vt(s) - 1+sTr (9)

Where

K is the gain of the sensor, T+ is the time constant of the sensor. Normal T+ is very
small, ranging from of 0.001 to 0.06 second [6]. So in this paper the value of T+=0.005
is used:

PID Controller

A proportional-Integral-Derivative controller (PID controller) is a generic control
loop feedback mechanism widely used in industrial control systems. A PID controller
calculates an "error" value as the difference between a measured process variable and a
desired set point. The controller attempts to minimize the error by adjusting the process
control inputs. The proportional term causes a larger control action to be taken for a
larger error and decrease the rise time of transient response, the integral term is used to
decrease steady state error and the derivative term supplement the control action if the

4
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error is changing rapidly with time by damped the response or decrease the over shoot.
This equation represent mathematical expression for PID controller [3].

Pe = kpe(®) + k; [ e()dt + kg =2

... (10)
Where
e is error signal, k,, is proportional gain, k; is integral gain, and k, is derivative gain.

Particle swarm optimization

Particle Swarm Optimization was originally designed and introduced by Eberhart
and Kennedy in 1995. The PSO is a population based search algorithm based on the
simulation of the social behavior of birds, bees or a school of fishes. Each individual
within the swarm is represented by a vector in multidimensional search space [14].

In certain circumstances, where a new position of the particle equal to global best
and local best then the particle will not change its position. If that particle is the global
best of the entire swarm then all the other particles will tend to move in the direction of
this particle. The end of result is the swarm converging prematurely to a local optimum.
If the new position of the particle pretty far from global best and local best then the
velocity will changing quickly turned into a great value. This will directly affect the
particle's position in the next step. The rules of PSO are:

V(k+1)ij = w.v(K)ij + cari( gbest — x(k)i;j ) + Cora( pbest; — x(K)i; ) ...(11)
X(k+1)ij = x(K)i; + v(K)i; ... (12)
where

vi,j :velocity of particle i and dimension j.
Xi,j  :position of particle i and dimension j.
€1,C» : known as acceleration constants.

w :inertia weight factor.

ry,r» :random numbers between 0 and 1.
pbest : best position of a specific particle.
gbest : best particle of the group.

In the gbest model, the trajectory for each particle’s search is influenced by the best
point found by any member of the entire population. The best particle acts as an
attractor, pulling all the particles towards it. Eventually all particles will converge to
this position. The Pbest model allows each individual to be influenced by some smaller
number of adjacent members of the population array. The flow chart of figure (2) shows
the PSO algorithm [9].
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Figure (2): Flow chart of PSO algorithm

Neuro-Fuzzy controller

In the field of artificial intelligence, Neuro-Fuzzy refers to combinations of artificial
neural networks and fuzzy logic. Neuro-fuzzy hybridization results in a hybrid
intelligent system that synergizes these two techniques by combining the human-like
reasoning style of fuzzy systems with the learning and connectionist structure of neural
networks. Neuro-fuzzy hybridization is widely termed as Fuzzy Neural Network (FNN)
or Neuro-Fuzzy System (NFS) in the literature. Neuro-fuzzy system (the more popular
term is used henceforth) incorporates the human-like reasoning style of fuzzy systems
through the use of fuzzy sets and a linguistic model consisting of a set of IF-THEN
fuzzy rules. The main strength of neuro-fuzzy systems is that they are universal
approximates with the ability to solicit interpretable IF-THEN rules [15].

Neural networks are used to tune membership functions of fuzzy systems that are
employed as decision-making systems for controlling equipment. Although fuzzy logic
can encode expert knowledge directly using rules with linguistic labels, it usually takes
a lot of time to design and tune the membership functions which quantitatively define
these linguistic labels. Neural network learning techniques can automate this process
and substantially reduce development time and cost while improving performance [16].

Simulation and Results:
The first step in analysis and designing the controllers for the SG is to use the
mathematical model of the SG which is more reality to the actual plant rather than

6



AL eIV UV IR NSV VRN OIS Study the Robustness of Automatic Voltage
Regulator for Synchronous GeneratorBased
on Neuro-Fuzzy Network

linear transfer function model in the control design and studies. The simulation of SG
is performed using MATLAB/SIMULINK implementation program (R2010b) version
7.11.0.584. In this work, salient pole synchronous generators of parameters listed in
appendix A are used.

The AVR was implemented by using two types of controllers: First one was the
optimal PID controller tuned by practical swarm optimization (PSO). The synchronous
generator model with PID controller is shown in Figure (3).

b 4
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Figure (3): Power unit with AVR using PID controller

The second one was the Neuro-Fuzzy -controller using anfis of MATLAB is shown
in Figure (4) and which was trained by using the data of PID-PSO controller to the
nominal condition of the synchronous generator model.
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Figure (4): Power unit with AVR using Neural-Fuzzy controller

The tuned parameters of PID controller for four SG models by practical swarm
optimization with saturation of 3 (pu) and full load are illustrated in Table (1). In order
to study the robustness of proposed controller, these designed controllers will be tested
on six different SGs with wide range of power from 8.1KVA to 187TMVA.
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Table (1): PID controllers' gains tuned by PSO

SG model Gains of PID controller

Kp ki ky
SGof 81 KVA 11.837 63.609 | 0.047
SGof 31.3 KVA 15.738 32.615 | 0.0389
SGof 250 KVA 11.978 13.595 | 0.00423
SGof 2 MVA 20.835 3.895 0.00763

Figure (5) shows the designed AVRs with PID controllers (in table (1)) which applied
to the same synchronous generator of 8.1KVA.
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Figure (5): Different PID controllers connected to SG of 8.1KVA

The time responses for six full load SGs (8.1KVA, 31.3KVA, 250KVA, 910KVA,
2MVA and 187MVA) with various designed controllers in table (1) are depicted in
Figure (6, 7, 8,9, 10 and 11) respectively.

The time responses in figure (6) are related to figure (5). It is clear from figure (6)
that the response of PID controller designed for same SG (8.1KVA) is the best one, and
then the responses of SG (8.1KVA) for PID controllers designed for SG 31.3KVA, SG
250KVA, and SG 2MVA respectively. Also figure (6) shows that all responses are
stable, which gives an opinion on the robustness of designed controllers for SG
31.3KV, 250KVA and 2MVA.

Figure (7) shows the time responses for SG of 31.3 KVA, when the designed AVRs
with PID controllers in (table (1)) are applied to the same SG of 31.3KVA. This figure
shows the SG response for the designed PID controller of 31.3KVA is the best one and
all responses are stable, which gives an opinion on the robustness of designed
controllers for SG 8.1KV, 250KVA and 2MVA.
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Figure (6): Time responses for SG of 8.1KVA
with different PID controllers

Figure (7): Time responses for SG of 31.3KVA
with different PID controllers

Figure (8) has same remarks on time responses mentioned in figure (6 and 7) and
gives an opinion on the robustness of designed controllers for SG 8.1KV, 31.3KVA and

2MVA.

Figures (6-11) show every designed controller in table (1) can control six SGs used
in this paper in addition to the remarks on time response mentioned in previous figures

(6-8). That’s mean PID controller is a robust controller for synchronous generator.
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Figure (8): Time responses for SG of 250KVA
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Figure (9): Time responses for SG of 910KVA

with different PID controllers
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Figure (10): Time responses for SG of 2MVA
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Figure (11): Time responses for SG of 187TMVA

with different PID controllers

The Neuro-Fuzzy controllers were trained using the data of PID controllers in table
(1) with saturation of 3 pu and with full load SGs. The four Neuro-fuzzy controllers
which applied to the full load synchronous generator of 8.1KVA are shown in Figure

(12).
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Figure (12): Different Neuro-Fuzzy controllers connected to SG of 8.1KVA

Time responses for the six synchronous generators of 8.1KVA, 31.3KVA, 250KVA,
910KVA, 2MVA, and 187MVA for various Neural-Fuzzy controllers are depicted in
Figures (13-18) respectively and it's obviously clear that these controllers are robust.
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Figure (13): Time responses for SG of 8.1KVA
for different Neuro-Fuzzy controllers

Figure (14): Time responses for SG of 31.3KVA
with different Neuro-Fuzzy controllers
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Figure (15): Time responses for SG of 250 KVA
with different Neuro-Fuzzy controllers
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Figure (16): Time responses for SG of 910KVA
with different Neuro-Fuzzy controllers
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Figure (17): Time responses for SG of 2MVA
with different Neuro-Fuzzy controllers

Figure (18): Time responses for SG of 187TMVA
with different Neuro-Fuzzy controllers

The comparison in numerical values for transient response between designed PID
controller and Neuro-Fuzzy controller for each synchronous generator which applied to
all SGs used in this paper are shown in tables (2, 3, 4 and 5), where the settling time (i
) at error 0.03 (pu) and rise time (t, ) from initial to 97% of the input signal. These
tables show that the over shoot and settling time for Neuro-Fuzzy controller are less
than PID controller for all cases. So these results pointed that Neuro-Fuzzy controller is
more robust than PID controller.

Table (2): Transient responses parameters for different SG model with controller
for SG 8.1KVA

SG PID controller for SG 8.1KVA Neuro-Fuzzy controller for SG
model 8.1KVA
Rise time | Maximum | Settling time | Rise time | Maximum | Settling time
(sec) Over shoot | (sec) at error | (sec) Over shoot | (sec) at error
0.03 0.03
SG of ] 0.05 0.04 0.08 0.076 0.039 0.079
8.1KVA
SG of]0.08 0.11 0.33 0.515 0.033 0.125
31.3KVA
SG of]0.35 0.14 1.71 0.516 0.003 0.516
250KVA
SG of | 0.74 0.12 3.75 1.045 0.002 1.045
910KVA
SG of ] 0.86 0.25 3.47 1.168 0.004 1.168
2MVA
SG of] 222 0.39 9.55 3.685 0.002 3.685
187MVA
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Table (3): Transient responses parameters for different SG model with controller for SG

31.3KVA
SG model | PID controller for SG 31.3KVA Neuro-Fuzzy controller for SG
31.3KVA
Rise Maximum | Settling time | Rise Maximum Settling time
time Over (sec) at error | time Over shoot | (sec) at error
(sec) shoot 0.03 (sec) 0.03
SG of | 0.05 0.04 0.195 0.075 0.039 0.085
8.1KVA
SG of | 0.08 0.03 0.082 0.115 0.033 0.125
31.3KVA
SG of | 0.36 0.13 1521 0.515 0.003 0.515
250KVA
SG of | 0.74 0.12 3.759 1.045 0.001 1.045
910KVA
SG of | 0.87 0.25 3.511 1.165 0.004 1.165
2MVA
SG of | 2.22 0.39 7.475 3.686 0.002 3.686
187TMVA

Table (4): Transient responses parameters for different SG model with controller for SG

250KVA

SG PID controller for SG 250KVA Neuro-Fuzzy controller for SG 250KVA
model Rise time | Maximum Settling time | Rise time | Maximum Settling time

(sec) Over shoot | (sec) at error | (sec) Over shoot | (sec) at

0.03 error 0.03

SG of | 0.06 0.06 1.12 0.076 0.039 0.087
8.1KVA
SG of ] 0.09 0.05 0.81 0.115 0.033 0.125
31.3KVA
SG of ] 0.36 0.12 0.52 0.516 0.002 0.516
250KVA
SG of ] 0.74 0.11 2.65 1.045 0.001 1.045
910KVA
SG of ] 0.87 0.22 3.71 1.168 0.004 1.168
2MVA
SG of | 2.23 0.38 6.86 3.685 0.001 3.685
187MVA
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Table (5): Transient responses parameters for different SG model with controller for SG

2MVA
SG model PID controller for SG 2MVA Neuro -Fuzzy controller for SG
2MVA
Rise time | Maximum | Settling Rise Maximum | Settling
(sec) Over shoot | time(sec) time Over time(sec)
at error | (sec) shoot at
0.03 error 0.03
SG of | 0.05 0.06 441 0.075 0.039 0.085
8.1KVA
SG of | 0.083 0.04 3.62 0.115 0.033 0.125
31.3KVA
SG of | 0.38 0.03 5.82 0.115 0.003 0.115
250KVA
SG of | 0.81 0.008 3.63 1.045 0.002 1.045
910KVA
SG of | 0.87 0.01 0.87 1.168 0.004 1.168
2MVA
SG of | 2.23 0.12 10.95 3.682 0.002 3.682
187MVA

Figures (19 and 20) shows the time response for SG 187MVA for different loads in
MVA with AVR using PID and Neuro-Fuzzy controller designed for SG 8.1KVA
respectively. Which illustrate that big maximum over shoot (91.9%) and large settling
time (21.45 second) for PID controller with load 1IMVA compared with Neuro-Fuzzy
controller which has maximum over shoot (0.4%) and settling time (2.845 second). The
time responses for both controllers are still stable responses. Also these results pointed
that Neuro-Fuzzy controller is more robust than PID controller.

2
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Figure (19): Time responses for SG of 187MVA using PID controller designed for SG
8.1KVA and different load in MVA
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Figure (20): Time responses for SG of 187MVA using Neuro-controller designed for SG
8.1KVA and different load in MVA

Table (6) shows the numerical values of transient response for Figures (19and 20) and
these values show that Neuro-Fuzzy controller has better response and more robust than
PID controller.
Table (6): Transient responses parameters for SG 187MVA with different
controllersand loads

Controller type
Loads PID controller for SG 8.1KVA Neuro- Fuzzy controller for SG
8.1KVA
Rise Maximum | Settling Rise Maximu Settling
time Over shoot | time (sec) at | time(sec) | m  Over | time(sec) at
(sec) error 0.03 shoot error 0.03
1 MVA 1.916 | 0.919 21.45 2.845 0.004 2.845
45 MVA | 1.952 | 0.832 18.11 2.918 0.003 2.918
90 MVA ]2.005 |0.716 14.66 3.058 0.003 3.058
135MVA ] 2.951 | 0.568 11.64 3.292 0.002 3.292
180MVA | 2.225 | 0.387 9.61 3.685 0.002 3.685
Conclusions

In this paper two type of AVR are designed for synchronous generator, one of them
is based on optimal PID controller (tuned by PSO) and the other is based on Neuro-
Fuzzy controller. The terminal voltage responses of PID and Neuro-Fuzzy controller
are stable for wide range of synchronous generators (from 8.1KVA to 187MVA), and
both controllers are robust. The settling time and maximum over shoot for different
Neuro-Fuzzy controllers are less than PID controllers which are designed for same
synchronous generators. The responses for same SG model and different Neuro_ Fuzzy
controllers have approximately same maximum over shoot, while PID controllers are
not same. The response of SG model with different load for Neuro-Fuzzy controller is
better than PID controller. The margins of robustness for Neuro-Fuzzy controller are
greater than PID controller. Neuro-Fuzzy controller can be used as a robust controller
for the applications of accurate transient and steady state response, while PID controller
is used as a robust controller only for accurate steady state response.
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APPENDIX (A)
The table below shows the parameters for different SG model taken from
MATLAB/SIMULINK  toolbox version 7.11.0.584 (R2010b) which used in our

simulation models.

Synchronous generator model

SG of | SG of | SG of | SG of | SG of | SG of
8.1KVA | 31.1KVA | 250KVA | 910KVA | 2MVA 187MVA

Rated Power ( KVA) | 8.1 31.3 250 910 2000 178000
Rated voltage | 400 400 400 400 400 13800
V(L-L)

Rated frequency | 50 50 50 50 50 60
(HZ)

stator resistance | .08201 | .04186 .02594 .01706 | 0.0095 | 0.00285
(pu)

stator leakage | .0721 .0631 .09 .08 0.05 114
inductance (pu)

mutual  inductance | 1.728 1.497 2.75 2.62 2.06 1.19
(pu)

quadrature ~ mutual | .823 707 2.35 1.52 151 .36

inductance (pu)

field resistance  (pu) | .06117 | .02306 .00778 | .004686 | .001971 | .000579

field leakage | .1801 1381 0.3197 4517 0.3418 114
inductance (pu)

damper resistance | .1591 1118 2922 2377 0.2013 0117
(pu)

damper leakage | .1166 .1858 1.982 2.192 2.139 .182
inductance (pu)

damper  resistance | .2416 | .09745 .06563 | .02186 | 0.02682 | .0197
(pu)

damper leakage | .1615 1258 305 .09566 0.2044 | 0.384
inductance (pu)

Inertia coefficient | 0.1406 | .08671 1753 2717 0.3072 3.7

(sec)
Friction factor (pu) .02742 | .02365 .01579 | .01356 |.00987 |0
Pole pair 2 2 2 2 2 20
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