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 In this paper, a theoretical model for electron transport through 

symmetric system consisting of two baths interferometer with one 

single-level quantum dot in each of its arms was considered. In this 

model, the dots are attached to ferromagnetic leads with parallel and 

antiparallel magnetic configurations. Green's function technique in this 

model was used. Our focus is on the Transport characteristics of 

conductance (G) and tunnel magnetoresistance (TMR). A special 

attention to the influence of an applied magnetics flux on the 

characteristics of conductance and tunneling magnetoresistance was 

paid. Concerning the study of the conductance, it was found that the 

effect of bonding (antibonding) states is most obvious in quantum dots 

at various values of the magnetic field. The change in spin-polarization 

value was seen to affect the increase and decrease in the conductance 

value. We noticed a difference in calculation of TMR in the bonding 

and the antibonding states, where the results show Strong dissonance in 

bonding state and strong attraction in antibonding state. 
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 تشكل متوازي ومتصلتيه تقطثيه فيرومغىاطيسييه توطتيهحساب مقاومة الىفق المغىاطيسية لىقطتيه كميتيه مر

 ليث وسار رمضان طالة عثد الىثي سلمان

 العشاق-الثصشج-جاهعح الثصشج –كليح العلْم  –لسن الفيضياء 

 حـــلاصـــخ  ــــال  الكلواخ الوفراحيح:

 الٌماط الكويح

 حالألطاب الفيشّهغٌاطيسي

 دالح كشيي

 الرْصيليح

 هماّهح الٌفك الوغٌاطيسيح

ذيين ذمييذين ذًوييْر  ًقييشلإ لٌميي  اللكرييشّى اييلام ًقييام هروا يي  هر ييوي  ،الْسلييح ٍفييه ُييز 

هساسيي لومياط ذذاا  يحرْلإ ك  هساس فيَ على ًمطح كوييح راخ هسيرْلإ طاليح ّاحيذ ّالٌقيام 

هرص  تمطثيي فيشّهغٌاطيسييي يرشك  الثيشم فيِيا تشيك  هيْاصلإ ّمييش هيْاصلإ ًسيثح اليى ذحيذ 

اُرواهٌييا ذشكييض علييى  شيي لحيي  هعادلييح الحشكييح للٌقييام.م ذمٌيييح دالييح كييااسييرخذذيين مييذ لالمطثيييي. ّ

 هويضاخ الرْصيليح ّحساب هماّهيح الٌفيك الوغٌاطيسييح ذحيد ذيم يش هغيام هغٌاطيسيه اياسجه.

عذم الاسذثياط  ُيه الاكرييش عييْعا  )حالح الاسذثاط  فه دساسرٌا للرْصيليح، ذْصلٌا الى اى ذم يش
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1. INTRODUCTION 

In the last few years, Quantum dots (QDs) 

structures have attracted much attention due to 

ability to use in theoretical studies and industrial 

applications [1,2], in which electrons are 

confined in three-dimensional system of the 

nanometer scale [3]. One of the most important 

features of quantum dots is the possibility of 

adjusting their energy gap with complete 

accuracy by changing the size of QD where the 

size of QD is inversely proportional to its 

energy gap [4]. Also, it has sharp density of 

state which is a good characteristic of electronic 

transitions and optical properties in 

detectors [5]. In addition, quantum dots have 

many future applications like Medical 

applications, quantum computing, QD Laser, 

QD LED, white light sources, single electron 

transistor, QD solar cells..etc.  [6–8]. Recently 

the transport properties through tunnel-coupled 

double QDs system in series or parallel 

configuration connected to external leads has 

widely been spread in scientific research 

because it has similar behavior of molecules and 

called in most time “artificial 

molecules”  [9,10]. It’s considered as an ideal 

system to study the fundamental multi-body 

interactions in quantum transport between 

single electron and spins  [11]. Also, it has 

richer physical phenomena to study, especially a 

parallel-coupled dots has one of most important 

effects is the Fano effect  [12]. When external 

leads made from Ferromagnetic materials, the 

transport properties of hole system will be 

strongly dependent on the relative orientation of 

electrodes magnetizations  [13,14], leading us to 

tunneling magnetoresistance (TMR) effect, spin 

accumulation and exchange field, etc.  [15,16]. 

Regarding the TMR, it can describe the change 

in resistance of a system when the magnetic 

orientation of two electrodes varies from 

parallel (same spin orientation in both 

electrodes) to antiparallel (different spin 

orientation in both electrodes) 

configuration  [17]. The TMR effect is very 

important to develop magnetic sensors and 

magnetic storge devices such as magneto 

resistive random-access memory 

(MRAM)  [18]. In the past years, spin-polarized 

tunneling experiments results between a 

superconductor and a ferromagnet, lead the way 

to present field-dependent tunneling between 

Ferromagnetic films. Julliere put his model for 

FM–I–FM tunneling  [19,20], where Julliere 

model assumed that spin is conserved in 

tunneling and tunnel current depends on the 

density of states of the two electrodes  [11]. 

Experimentally observation Prove that the 

electrical resistance of the insulator barrier 

depends on the relative alignment of the 

magnetic moments of the electrodes  [21], we  

can Denoting the conductance in parallel 

alignment by (GP) and antiparallel alignment by 

(GAP), TMR will define in terms of resistance 

as: 

    
      

   
                                                      

(1)                                        

In this paper, we shall discuss a 

mathematical model to calculate the 

transmission coefficient and the conductance for 

the system of two parallel quantum dots and we 

show how we calculate the (TMR) by using the 

equation of motion for retarded Green function. 

In this study, we should use ferromagnetic leads 

to include spin-polarization effect in our 

calculation for TMR.  

 

الوغٌاطيسه. ذى الرغيش فه ليويح الثيشم الوسيرمطة يي  ش فه الٌماط الكويح لمين هخرلفح هي الوغام 

عليييى صييييادج ًّمصييياى هميييذاس الرْصييييليح. ًلاحيييا ّجيييْد اايييرلا  فيييه حسييياب هماّهيييح الٌفيييك 

الوغٌاطيسيييح فييه حالييح الاسذثيياط ّعييذم الاسذثيياط، حيييج ذنِييشخ الٌرييالة ذٌييافش لييْلإ فييه حالييح 

 الاسذثاط ّذغارب لْلإ فه حالح عذم الاسذثاط
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2. THE MATHEMATICAL MODEL 

In this work, two single Level-dots 

connected in parallel shape with two 

ferromagnetic leads, as illustrated in Fig. 1. 

 

Figure 1: A Double Quantum dot connected in 

parallel shape to the ferromagnetic Leads. 

The parallel connection of the Double dots 

can provide two Path to electrons transfer from 

the left Lead (L) to the right Lead (R). The 

Transition rate between the dots and Leads are 

(    and (  ), also the dots are connected to 

each other by tunneling rate (  ). Therefore, the 

total Hamiltonian is expressed as follows: 

     ̂   ̂       ̂      ̂                (2) 

Where we can write each term of the Eq. 

(2) as in below: 

 ̂       ∑        
                                       

(3) 

   Where K is the wave vector of electrons 

inside the electrodes and 𝛼 indicates the left and 

right Leads (L and R), 𝜎 describes the direction 

of electrons spin (𝜎=↑↓). (   ) represents the 

energy levels of the electrodes, (    
 

) 𝑎𝑛𝑑 

     are the (creation) annihilation catabolism 

and growth influences of conduction electrons 

respectively at the 𝛼 electrode. 

 ̂      ∑   𝑑  
 𝑑     

     ∑  𝑑  
 𝑑   𝑑  

 𝑑                          

(4) 

where    represents the first and second 

numeral dot,    is the energy levels within the 

quantum dot, (𝑑  
 

) 𝑎𝑛𝑑 𝑑   are growth and the 

catabolism effect of the electrons at the 

quantum dot, respectively. 

 ̂           ∑     (    
 𝑑   𝑑  

     )      (5)                                                                                                                                                                              

where       is the interaction energy 

between the quantum dot and the Leads. The 

Line width ( ) is related to       as: 

  ∑        
                                          

(6)                            

Here, we consider the wide band 

approximation to energy band in the Leads, so 

( ) doesn’t depend on energy and we take it as a 

constant. we can write            Where: 

   
 

 
[    

 

 

   
 

  
] ،    

 

 
[     

 

 

  
 

  
]    (7)                                                                  

where   is the magnetic phase factor. We 

can define the Line width ( ) in terms of an 

electron spin-polarization parameter    for the 

two leads, with           ,        

   , the quantity              
    

     
    

     

   is set to be the energy unit. We consider the 

parallel         and the antiparallel 

          configurations of the two leads. 

To calculate the conductance, G, of the System 

we must find first the transmission factor,     , 

where the conductance related to      by: 

  
   

 
                                                             

(8)                                           

To calculate     , we must use the 

equation of motion method of the Green 

function of the dots. The retarded Green 

function of the quantum dot is given by  [22]: 

    
               {𝑑      𝑑  

     }       

(9) 

Here, we use   =0 

     is the unit’s steep function, and 𝑑     , 

𝑑  
      are defined in equation (4).  

       𝑎                              (10) 

     is Fourier transformation of      

by the use of the relation for the operator 

        which is given by: 
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(11) 

Where   is defined in equation (2), and 

     doesn’t depend on time, we can get. 

𝑑

𝑑 
                   

     

                                               

(12)   

Differentiate equation (9) and using 

equation (12) we can obtain: 

 
𝑑

𝑑 
   

                    

                   

  {     [      ]      𝑑  
    }   (13) 

We must find [      ] by using equation 

(2), so we obtain two equations, one for 

quantum dots and other for Leads [23]: 

 
𝑑

𝑑 
   

              

             
     ∑     

     
              (14) 

And other one is: 

 
 

  
    

            
     ∑        

        

(15) 

Using Fourier transformation for equation 

(14) and (15) with some simplification, we find: 

    
(      

 
 )

  

      
         

 
         

 
  

 

    
     

 
 

  

      
  (      

 
 ) (      

 
 )

 

    
(      

 
 )

  

      
         

 
         

 
  

 

    
     

 

 
  

 
    

 

 
 (      

 

 
)(      

 

 
)
 (16) 

And       (
                 

                
)    (17)  

 

                                                      

 Using equation (16) and (17), we get: 

      

 

  

 
    

 

 
 (      

 

 
)(      

 

 
)
 (

      
 

 
                

 

 
    

 

 

  
 

 
    

 

 
                

 

 

)            

(18) 

 

Equation (18) represents retarded Green 

function which we find by Solving the equation 

of motion, after we are finding retarded Green 

function (   , now, it’s easier to find 

     which is defined in equation (10). The 

first diagonal term in the result of the 

multiplication      (
      
      

) is: 

          
  

  

 
  

                 
 

 
   

 

 (      
 

 
)    

             
 

 
   

 

 
  

 

 (      
 

 
) 

            
  

 
    

 

 
 (      

 

 
) (  

                   
 

 
)       

 

 
   

 

 
(     

 
 

 
)    

 

      (19) 

And the last element form is: 

          
  

  

 
 

           
  

 
    

 

 
  

 

 
   

 

 
(     

 
 

 
)   

 

  

          (      
 

 
) (      

 

 
)     

                
 

 
  

 

 (      
 

 
) 

            
 

 
    

 

 
   

 

 (      
 

 
)   (20) 

So, the transmission coefficients,  ( ) is: 

              

     
  (     

 

 
    ̅   (

  

 
)
 
     

 

 
)

[    ̅   (
  

 
)
 
 

  

 
     

 

 
]
 

 [     ̅ ] 
    (21) 

where   ̅            ,          
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We can include tunneling Energy,   , 

between the two dots in  ( ) as: 

     

  (     
 

 
    ̅   (

      
 

)
 
     

 

 
)

[    ̅   (
      

 
)
 
 

  

 
     

 

 
]
 

 [     ̅ ] 
    (22) 

Using equation (8) and equation (20) to 

reach the conductance, then we can calculate 

the tunneling magnetoresistance (TMR) by 

following equation (1) form, which is dependent 

on relative orientation of Leads magnetization. 

3. RESULT AND DISCUSSION  

3.1 Calculation of linear conductance, 

(G) 

In this subsection, we discussed the linear 

conductance as function of Femi level for 

different parameters, where we used equation 

(4) to calculate the linear conductance for 

parallel(antiparallel) magnetization 

configuration of leads. 

Figure 2: Linear conductance as a function of 

Fermi Level, when           ,       

       ,      . (left) parallel lead-

configuration; (Right) antiparallel lead-

configuration. 

Figure 2 demonstrates the evolution of 

conductance by setting tunneling Energy, 

          , the linear conductance for 

parallel(antiparallel) configuration shows two 

relatively broad peaks related to anti-bonding-

like states, with deep minimum in between, 

where the conductance turns to zero at   

  due to destructive interference of electron 

waves transmitted from dot (1) and dot (2), 

worth noting that more increasing in lines 

broadening for Parallel configuration than 

antiparallel configuration due to the effect of 

spin-polarization ( ), also we will notice  the 

effect of spin-polarization very clearly in next 

figures. 

 

Figure 3: Linear conductance as a function 

of Fermi Level, when            ,    

          ,      . (left) parallel lead-

configuration; (Right) antiparallel lead-

configuration. 

Figure 3 demonstrates the evolution of 

conductance by setting tunneling Energy, 

          , the spectrum shape shows one 

broad Peak at     due to strictive 

interference of electron waves transmitted from 

dot (1) and dot (2) at same time, for        

we can see two relatively broad peaks, with 

sharp deep minimum in between , where the 

conductance turns to zero due to destructive 

interference of electron waves transmitted from 

quantum dots (dot 1, dot 2). For     the 

conductance equal to zero because of the 

change in phase factor of electron waves 

transmitted from dot (1) and dot (2). Now to 

understand the effect of spin-polarization on 

conductance, we will use same scenario and 

parameters in previous figures (Fig.2-Fig.3), but 

with change spin-polarization ( ) value at that 

time, see (Fig.4-Fig.7). 
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Figure 4: Linear conductance as a function 

of Fermi Level, when           ,       

       ,      . (left) parallel lead-

configuration; (Right) antiparallel lead-

configuration. 

From Fig.4 and by compare with Fig. 2, we 

can see for (parallel configuration), the 

increment of polarization gave more broadening 

of the spectrum lines and change dips positions 

for        and    , for     the dip 

became more Sharpe if we compare with 

previous value of spin-polarization in Fig.2, for 

(antiparallel configuration) the polarization not 

effect in the conductance behavior. Same 

behavior observed by increasing Spin-

polarization to 0.9, see Fig.6. 

 

Figure 5: Linear conductance as a function 

of Fermi Level, when            ,    

          ,      . (left) parallel lead-

configuration; (Right) antiparallel lead-

configuration. 

From Fig.5 and by comparing with Fig.3, 

we can see for (parallel configuration), the spin 

polarization effect on the broadening of 

Spectrum with no change in peaks positions, for 

(antiparallel configuration), the increasement of 

Polarization never change conductance 

behavior. We obtained the same characteristics 

of conductance by increasing spin-polarization 

to 0.9, see Fig.7. 

 
Figure 6: Linear conductance as a function of 

Fermi Level, when           ,       

       ,      . (left) parallel lead-

configuration; (Right) antiparallel lead-

configuration. 

 

 

Figure 7: Linear conductance as a function 

of Fermi Level, when            ,    

          ,      . (left) parallel lead-

configuration; (Right) antiparallel lead-

configuration. 

We will examine the effect of increasement 

for tunneling energy and dot Levels at this time, 

so we will repeat our calculation for the 

conductance with various value of polarization. 

In Fig.8, we can notice the increment of 

tunneling energy and dot Levels, make the 

peaks almost matching for all values of  , also 

change dips position and give more increasing 

in spectrum broadening for both P(AP) 

configurations. In Fig.9, it can be seen that the 

increment of tunneling energy and dots did not 

have an effect on conductance behavior related 

to  ̅ and   . 
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Figure 8: Linear conductance as a function of 

Fermi Level, when           ,       

       ,      . (left) parallel lead-

configuration; (Right) antiparallel lead-

configuration. 

 
Figure 9: Linear conductance as a function of 

Fermi Level, when            ,       

       ,      . (left) parallel lead-

configuration; (Right) antiparallel lead-

configuration. 

3.2 Calculation of tunneling 

magnetoresistance, (TMR) 

In this subsection, we discussed the 

tunneling magnetoresistance (TMR) as function 

of Fermi level for different Parameters. The 

TMR now follows equation (1) form. In our 

study for TMR, we show the characteristics of 

magnetic flux phase factor (   with different 

Values of tunneling Energy (  ), then we will 

Repeat our calculation for TMR but with 

increase spin-polarization at that time, to see the 

effect of ( ) on TMR. In Fig.10, we can see two 

Symmetrical dips with one peak at center when 

(   ) for all Values of   and spectrum 

interference has been observed. In Fig.11 by 

change tunneling Energy to -       , we can 

see negative peaks in TMR appears for   

    and     , for     the TMR drop to 

zero when (     due to destructive 

interference of electron waves transmitted from 

dot (1) and dot (2). 

Figure 10: TMR as a function of Fermi Level, 

when           ,              , 

     .  

 

 
Figure 11: TMR as a function of Fermi Level, 

when            ,              , 

     . 

Now, we will repeat our calculation for 

TMR with increase polarization Value, to see 

the effect of ( ) on TMR behavior. From Fig.12 

and with comparison with Fig.10, we can see 

that spin-polarization gives high increase in 

Spectrum broadening for all values of  , also 

change peaks positions. 

 

Figure 12: TMR as a function of Fermi 

Level, when           ,       

       ,      .  



JOURNAL OF KUFA–PHYSICS  |  Vol. 15, No. 1 (2023) Laith. N. R, T. A. Salman 

   75 

4. CONCLUSIONS 

In this work, we have analyzed the 

influence of external magnetic flux on the 

conductance, G, and tunneling 

magnetoresistance, TMR. For (antibonding) 

State, the conductance shows two relatively 

broad peaks, with deep minimum in between for 

both magnetic configuration and for all values 

of  , also by increase spin-polarization value 

we observed for (parallel configuration), more 

broadening of the spectrum lines and change in 

positions of dips for        and    , for 

    where the dip became more Sharpe, for 

(antiparallel configuration), the polarization did 

not affect in the conductance behavior. For 

(bonding) state, the conductance shows one 

broad peak at     and two relatively broad 

peaks, with sharp deep minimum in between at 

     , for     the conductance equal to 

zero, also by change spin-polarization we found 

in (parallel configuration), the spin polarization 

effect on the broadening of Spectrum with no 

change in peaks positions, for (antiparallel 

configuration), the increasement of Polarization 

never change conductance behavior. The effect 

of the magnetic field is produced by deflecting 

the spinning of the electron passing through the 

system. As a result of this deviation, the shape 

of the spectrum changes according to the 

change in the phase angle resulting from the 

effect of the field. For TMR, we noticed that 

negative Value of TMR appear for bonding 

State when (     due to Strong dissonance, 

while TMR show positive value for antibonding 

state because of strong attraction, also we 

consider the effect of spin-polarization on this 

case, where spin-polarization give more 

increasing in Spectrum broadening for all 

values of   and changed peaks positions. 
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