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bonding state and strong attraction in antibonding state.
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1. INTRODUCTION

In the last few years, Quantum dots (QDs)
structures have attracted much attention due to
ability to use in theoretical studies and industrial
applications [1,2], in which electrons are
confined in three-dimensional system of the
nanometer scale [3]. One of the most important
features of quantum dots is the possibility of
adjusting their energy gap with complete
accuracy by changing the size of QD where the
size of QD is inversely proportional to its
energy gap [4]. Also, it has sharp density of
state which is a good characteristic of electronic
transitions and  optical  properties in
detectors [5]. In addition, quantum dots have
many future applications like Medical
applications, quantum computing, QD Laser,
QD LED, white light sources, single electron
transistor, QD solar cells..etc. [6-8]. Recently
the transport properties through tunnel-coupled
double QDs system in series or parallel
configuration connected to external leads has
widely been spread in scientific research
because it has similar behavior of molecules and
called in most time “artificial
molecules” [9,10]. It’s considered as an ideal
system to study the fundamental multi-body
interactions in quantum transport between
single electron and spins [11]. Also, it has
richer physical phenomena to study, especially a
parallel-coupled dots has one of most important
effects is the Fano effect [12]. When external
leads made from Ferromagnetic materials, the
transport properties of hole system will be
strongly dependent on the relative orientation of
electrodes magnetizations [13,14], leading us to
tunneling magnetoresistance (TMR) effect, spin
accumulation and exchange field, etc. [15,16].
Regarding the TMR, it can describe the change

in resistance of a system when the magnetic
orientation of two electrodes varies from
parallel (same spin orientation in both
electrodes) to antiparallel (different spin
orientation in both electrodes)
configuration [17]. The TMR effect is very
important to develop magnetic sensors and
magnetic storge devices such as magneto
resistive random-access memory
(MRAM) [18]. In the past years, spin-polarized
tunneling experiments results between a
superconductor and a ferromagnet, lead the way
to present field-dependent tunneling between
Ferromagnetic films. Julliere put his model for
FM—I-FM tunneling [19,20], where Julliere
model assumed that spin is conserved in
tunneling and tunnel current depends on the
density of states of the two electrodes [11].
Experimentally observation Prove that the
electrical resistance of the insulator barrier
depends on the relative alignment of the
magnetic moments of the electrodes [21], we

can Denoting the conductance in parallel
alignment by (Gp) and antiparallel alignment by
(Gap), TMR will define in terms of resistance
as:

TMR = $p=Car
Gap
(1)

In this paper, we shall discuss a
mathematical model to calculate the
transmission coefficient and the conductance for
the system of two parallel quantum dots and we
show how we calculate the (TMR) by using the
equation of motion for retarded Green function.
In this study, we should use ferromagnetic leads
to include spin-polarization effect in our
calculation for TMR.
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2. THE MATHEMATICAL MODEL

In this work, two single Level-dots
connected in parallel shape with two
ferromagnetic leads, as illustrated in Fig. 1.

Figure 1: A Double Quantum dot connected in
parallel shape to the ferromagnetic Leads.

The parallel connection of the Double dots
can provide two Path to electrons transfer from
the left Lead (L) to the right Lead (R). The
Transition rate between the dots and Leads are
(') and (T'R), also the dots are connected to
each other by tunneling rate (t.). Therefore, the
total Hamiltonian is expressed as follows:

H= ﬁLeads + ﬁDots + ﬁtunneling (2)

Where we can write each term of the Eq.
(2) as in below:

ﬁLeads - Zkaa Ekacljaackaa
©)

Where K is the wave vector of electrons
inside the electrodes and « indicates the left and
right Leads (L and R), o describes the direction
of electrons spin (6=1]). (ex,) represents the
energy levels of the electrodes, (C,:fad) and
Crqo are the (creation) annihilation catabolism
and growth influences of conduction electrons
respectively at the « electrode.

7 — T
Hdots - Zigidio'diO'

~te Bo(diydag + djgdio)
(4)
where i represents the first and second
numeral dot, ¢&; is the energy levels within the
quantum dot, (lea) and d,;, are growth and the

catabolism effect of the electrons at the
guantum dot, respectively.

ﬁlnteraction Zkaio tO_’iO'(C]jaa'diO' + dg-ackaa) (5)

where tp,is, 1S the interaction energy
between the quantum dot and the Leads. The
Line width (T') is related to t,;, as:

['= Yk tao tao (28 (e — &q)
(6)

Here, we consider the wide band
approximation to energy band in the Leads, so
(T) doesn’t depend on energy and we take it as a
constant. we can write  I' = I'* + 'R Where:

L r 1 el% R r 1 e_i%
rr=2 1 =t )
e 2 1 ez 1

where @ is the magnetic phase factor. We
can define the Line width (T) in terms of an
electron spin-polarization parameter P, for the
two leads, with I, =T(1+P), IR=T1Q=+
Pg), the quantity ['= (l“ifT/R + Fifl/R) /2 =
1 is set to be the energy unit. We consider the
parallel P, =Py =Pand the antiparallel
P, = —Py = P configurations of the two leads.
To calculate the conductance, G, of the System
we must find first the transmission factor, T'(w),
where the conductance related to T'(w) by:

2
G =2-T(w)
(8)
To calculate T(w), we must use the
equation of motion method of the Green

function of the dots. The retarded Green
function of the quantum dot is given by [22]:

GR(t,t") = —i8(t) < {d;x (D), d],(t)} >
(9)
Here, we use t'=0
6(t) is the unit’s steep function, and d;;(t),
d},(t") are defined in equation (4).
T(w) = trace(GA(w)I'RGR(w)I'L) (10)
G (w) is Fourier transformation of G (t)

by the use of the relation for the operator
Cras(t) Which is given by:
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Ckaa (t) =e€ thCkaae B
(11)

Where H is defined in equation (2), and
Crao doesn’t depend on time, we can get.

E Ckacr(t) = iHethCkaae_th

+et(C, o (—iH)e Ht

(12)

Differentiate equation (9) and using
equation (12) we can obtain:

liGR(t) = 8(t).6;; +10(t)

< (it [Crao, Hle™HE, dT ()} > (13)

Yo

We must find [Cyqq, H] by using equation
(2), so we obtain two equations, one for
quantum dots and other for Leads [23]:

d
l—GR(t) = 8(t). 6y,

+€iGij(t) + Zkaa t;iaGlljaa (t) (14)
And other one is:
. d
la Gl?aa(t)
(15)

Using Fourier transformation for equation
(14) and (15) with some simplification, we find:

Gy = = (w—sz+ig)

I T
TC052%+(w—£1+17)(w—£2+17)

= &kqa Glfaa )+ 2 taichiI} ()

—icos%
G2=m—y T T
Zcos? 5+ (w —& + 17) (w —& + 17)
(w —& + lg)
G2 = T T
Feos’s+(w—&tiz)(w—&+iz)
G —icos% (16)
21 = coszw+(w—£1+ir)(w £y+iz )
G G
And GR(w) = ( 1 12) (17)
G2y G2

Using equation (16) and (17), we get:

GR(w) =
r

1 w—82+15

r2 %) .T ™" .T @
Tcosz;+(w—sl+LE)(w—sz+LE) —i-cos —

2 2
(18)

Equation (18) represents retarded Green
function which we find by Solving the equation
of motion, after we are finding retarded Green
function (GR®), now, it’s easier to find
T(w) which is defined in equation (10). The
first diagonal term in the result of the

C T Ti5\ .
multiplication T (w) = ( 1 12) is:
T21 TZZ
l—v2
T = (w—g&)*+ o

. -2 .T
—ilcosZe ™" (w — & — l—)
2 2
By i T
+i-cosZe (a) —E, + l—)
27772 2
r2 .
+—cos?Z+ (cu —&— 15) (w —
2 2 2
Ei+ ig)e_i‘9+i§cos§(w—E1+
. —i®
lz)e 2 (19)

And the last element form is:

2

I
Ty = (0 — &1)? +Z

2
—I—% +l cosg((u—el+

T T\
+(w—82—1—)(w—51+15)e“”
T
—LFcos(peLZ( w— & —l—)
2 2

_i®
+i£cos%e 2 (w —& + lg) (20)

So, the transmission coefficients, T'(w) is:
T(w) =Ty, + Ty

- AEN? .
Fz(coszg(w—E)2+(7) sng)

T(w) =

AE r2 (2 1)

[(w E)2— (—) il sin2§]2+[r(w—ﬁ)]2

where E = (g, + &)/2,AE =&, — &
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We can include tunneling Energy, ¢,
between the two dots in T(w) as:
T(w) =

2 20, =2, (AE=2tc)\? . o9
r (cos 2(co E) +( 3 )sm 5

AE—ZtC)Z r2 (22)

[(a)—E)z—(T —Tsin2§]2+[r(w—5)]2

Using equation (8) and equation (20) to
reach the conductance, then we can calculate
the tunneling magnetoresistance (TMR) by
following equation (1) form, which is dependent
on relative orientation of Leads magnetization.

3. RESULT AND DISCUSSION
3.1 Calculation of linear conductance,

(G)

In this subsection, we discussed the linear
conductance as function of Femi level for
different parameters, where we used equation
(4) to calculate the linear conductance for
parallel(antiparallel) magnetization
configuration of leads.

antiparallel configuration due to the effect of
spin-polarization (P), also we will notice the
effect of spin-polarization very clearly in next
figures.

°
3

°
N

Conductances (e2/h)

Figure 3: Linear conductance as a function
of Fermi Level, when t. = —0.5meV, & =
g, =0.5melV, P =0.3. (left) parallel lead-
configuration;  (Right)  antiparallel  lead-
configuration.

Conductances (e2/h)

g(meV) 7 g(meV)

Figure 2: Linear conductance as a function of
Fermi Level, when t. = 0.5meV, &g, =¢, =
0.5meV, P =0.3. (left) parallel lead-
configuration;  (Right)  antiparallel  lead-
configuration.

Figure 2 demonstrates the evolution of
conductance by setting tunneling Energy,
t. = 0.5meV, the linear conductance for
parallel(antiparallel) configuration shows two
relatively broad peaks related to anti-bonding-
like states, with deep minimum in between,
where the conductance turns to zero at ¢ =
0 due to destructive interference of electron
waves transmitted from dot (1) and dot (2),
worth noting that more increasing in lines
broadening for Parallel configuration than

Figure 3 demonstrates the evolution of
conductance by setting tunneling Energy,
t. = —0.5 me, the spectrum shape shows one
broad Peak at ¢ =0 due to strictive
interference of electron waves transmitted from
dot (1) and dot (2) at same time, for ¢ =m/2
we can see two relatively broad peaks, with
sharp deep minimum in between , where the
conductance turns to zero due to destructive
interference of electron waves transmitted from
quantum dots (dot 1, dot 2). For ¢ = m the
conductance equal to zero because of the
change in phase factor of electron waves
transmitted from dot (1) and dot (2). Now to
understand the effect of spin-polarization on
conductance, we will use same scenario and
parameters in previous figures (Fig.2-Fig.3), but
with change spin-polarization (P) value at that
time, see (Fig.4-Fig.7).

0.35

Conductances (e2/h)
°
&
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Figure 4: Linear conductance as a function
of Fermi Level, when t. = 0.5meV, &, = €, =
0.5meV, P =0.7. (left) parallel lead-
configuration;  (Right) antiparallel  lead-
configuration.

From Fig.4 and by compare with Fig. 2, we
can see for (parallel configuration), the
increment of polarization gave more broadening
of the spectrum lines and change dips positions
for  =n/2 and ¢ =m, for ¢ =0 the dip
became more Sharpe if we compare with
previous value of spin-polarization in Fig.2, for
(antiparallel configuration) the polarization not
effect in the conductance behavior. Same
behavior observed by increasing Spin-
polarization to 0.9, see Fig.6.

Conductances (e2/h)

g(meV)

Figure 6: Linear conductance as a function of
Fermi Level, when t.=0.5meV, &, =¢, =
0.5meV, P =09. (left) parallel lead-
configuration;  (Right)  antiparallel  lead-
configuration.
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Figure 5: Linear conductance as a function
of Fermi Level, when t. = —-0.5meV, & =
g, =0.5meV, P=0.7. (left) parallel lead-
configuration;  (Right) antiparallel lead-
configuration.

Conductances (e2/h)
°
S
S

g(meV) 7 g(meV)

Figure 7: Linear conductance as a function
of Fermi Level, when t. = —0.5meV, & =
g, =05meV, P=0.9. (left) parallel lead-
configuration;  (Right) antiparallel  lead-
configuration.

From Fig.5 and by comparing with Fig.3,
we can see for (parallel configuration), the spin
polarization effect on the broadening of
Spectrum with no change in peaks positions, for
(antiparallel configuration), the increasement of
Polarization  never change conductance
behavior. We obtained the same characteristics
of conductance by increasing spin-polarization
t0 0.9, see Fig.7.

We will examine the effect of increasement
for tunneling energy and dot Levels at this time,
so we will repeat our calculation for the
conductance with various value of polarization.
In Fig.8, we can notice the increment of
tunneling energy and dot Levels, make the
peaks almost matching for all values of &, also
change dips position and give more increasing
in spectrum broadening for both P(AP)
configurations. In Fig.9, it can be seen that the
increment of tunneling energy and dots did not
have an effect on conductance behavior related
to E and Ac.
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Conductances (e2/h)

0.05

g(meV) 7 g(meV)

Figure 8: Linear conductance as a function of
Fermi Level, when t. = 1.0meV, & =¢, =
1.0meV, P =0.3. (left) parallel lead-

configuration;  (Right)
configuration.

antiparallel  lead-

Conductances (e2/h)

0.05

10

g(meV) ) g(meV)
Figure 9: Linear conductance as a function of
Fermi Level, when t. = —1.0 meV, &g, = &, =
1.0meV, P =0.3. (left) parallel lead-

configuration;  (Right)
configuration.

antiparallel  lead-

interference of electron waves transmitted from
dot (1) and dot (2).
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N E(méev) T+ s s
Figure 10: TMR as a function of Fermi Level,
when t.=0.5melV, & =¢&,=0.5meV,

P =0.3.
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TMR
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0.4fF

T Emillw T« s s
Figure 11: TMR as a function of Fermi Level,
when t.=—-05melV, & =¢&,=05meV,

P =0.3.

3.2 Calculation of
magnetoresistance, (TMR)

tunneling

In this subsection, we discussed the
tunneling magnetoresistance (TMR) as function
of Fermi level for different Parameters. The
TMR now follows equation (1) form. In our
study for TMR, we show the characteristics of
magnetic flux phase factor (¢) with different
Values of tunneling Energy (t.), then we will
Repeat our calculation for TMR but with
increase spin-polarization at that time, to see the
effect of (P) on TMR. In Fig.10, we can see two
Symmetrical dips with one peak at center when
(e =0) for all Values of ¢ and spectrum
interference has been observed. In Fig.11 by
change tunneling Energy to -0.5 meV, we can
see negative peaks in TMR appears for & =
n/2 and ® = m, for & = 0 the TMR drop to
zero when (e=0) due to destructive

Now, we will repeat our calculation for
TMR with increase polarization Value, to see
the effect of (P) on TMR behavior. From Fig.12
and with comparison with Fig.10, we can see
that spin-polarization gives high increase in
Spectrum broadening for all values of &, also
change peaks positions.

-0.5

g(meV)

Figure 12: TMR as a function of Fermi
Level, when t.=0.5meV,
0.5meV,P =0.7.

&1 =& =
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4. CONCLUSIONS

In this work, we have analyzed the
influence of external magnetic flux on the
conductance, G, and tunneling
magnetoresistance, TMR. For (antibonding)
State, the conductance shows two relatively
broad peaks, with deep minimum in between for
both magnetic configuration and for all values
of @, also by increase spin-polarization value
we observed for (parallel configuration), more
broadening of the spectrum lines and change in
positions of dips for & = /2 and ¢ = m, for
¢ = 0 where the dip became more Sharpe, for
(antiparallel configuration), the polarization did
not affect in the conductance behavior. For
(bonding) state, the conductance shows one
broad peak at ¢ = 0 and two relatively broad
peaks, with sharp deep minimum in between at
¢ =m/2, for & = m the conductance equal to
zero, also by change spin-polarization we found
in (parallel configuration), the spin polarization
effect on the broadening of Spectrum with no
change in peaks positions, for (antiparallel
configuration), the increasement of Polarization
never change conductance behavior. The effect
of the magnetic field is produced by deflecting
the spinning of the electron passing through the
system. As a result of this deviation, the shape
of the spectrum changes according to the
change in the phase angle resulting from the
effect of the field. For TMR, we noticed that
negative Value of TMR appear for bonding
State when (¢ = 0) due to Strong dissonance,
while TMR show positive value for antibonding
state because of strong attraction, also we
consider the effect of spin-polarization on this
case, Wwhere spin-polarization give more
increasing in Spectrum broadening for all
values of @ and changed peaks positions.
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