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Simulation for natural convection of fluid flow numerically 
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Abstract: The nonlinear behavior of fluid flow and effected of varying temperature at 

heated plate in an enclosure rectangular box are emphasized in this work. This problem is 

simulated by using a new version of differential quadrature method that is called "upwind 

differential quadrature(UDQM)" to demonstrated the effects of a heated through natural 

convection motion equation. By using UDQM, this problem is handled and good numerical 

results were obtained that are in agreement with that in literature. 

 

 

1-Introduction 
               This subject has been studied extensively by many investigators, in differs 

situations. The underlying techniques [2,5,7,9] for solve numerically this problem can be 

complex and require a large amount of computational time to obtain accurate and reasonable 

stable solutions. This is certainly due to the difficulties to model such flows: the heat transfer 

equation can be quite complex, as well as its coupling with momentum equations. According 

to these reasons, and the lack information on the solution of natural convection heat transfer 

fluid flow by differential quadrature motivates to the present work. The differential 

quadrature method which is introduced by Bellman et al.[3], is able to overcome these 

difficulties with  few grid points and less computational workloads. This fact is mentioned in 

many articles [1-3,8]. 

            The upwind mechanism is important for the computation of fluid flow, and that 

mechanism is   absence in DQM, so we introduce the DQM with upwind mechanism in this 

article. In addition, the effects of a heated on natural convection of fluid flow in rectangular 

box is examine. The results of a new version of differential quadrature technique are 

comparing with upwind finite difference technique and that in [2] and [9]. Good numerical 

results were obtained that are in agreement with existing results. 

 

Governing equations   

            Natural convection of fluid flow problem can be described by the entire system of 

non-dimensional governing equations in conservation form as[4] 
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     Where GFU ,,  are interpreted as column vectors, given by 
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Where   is the vorticity, vu,  are the horizontal and vertical velocities,  is the stream 

function, T is the temperature, yx, are the non-dimensional coordinates, Pr,Gr  are the 

Grashof and prandtal numbers. 

   We shall made testing for this problem by consider liquid enclosed by rectangular box, 

bounded by top cold ( 0cT ) and side walls and bottom hot ( 0 hT ) plate (see Fgure.1) 

 

 

 

 

 

 

 

 

 

Figure.1 Schematic diagram of the test region with boundary conditions 

 

Because the symmetry of the temperature field   , the boundary condition along the y axis 

is 0




x

T
, 0  on the three solid walls comes from the fact that there is no net flow across 

those boundaries. Also, because the symmetry about the y-axis, it is necessary to seek a 

solution for the left of the flow. 

 

3-Numerical method 

                The DQM expresses a linear operator of   a function with respect to a coordinate 

direction is expressed as a weighted linear sum of all the function values at all grid points along 

that direction. Thus, for a smooth function ),( yxf  on a domain byax  0,0 , with a  and b  

fixed, local DQM discretizes its rth –order x -partial derivative, and sth  –order y -partial 

derivative, at the grid point ),( ji yx  may be written as  
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  Where N , M  are the numbers of grid points in the x and y direction respectively, )(r

ikA  and 
)(s

jlB  are the respective weighting coefficients to be determined as [2]. 

     The upwind mechanism is important for the computation of fluid flow, and that mechanism 

is absence in DQM, so we introduce the locally DQM with upwind mechanism in this article. 

The construction of the upwind mechanism goes through a partition of the grid points system 

in the network of the whole domain [1,8]. For convenience, we introduce the upwind cell 

coordinates with DQM given in more details in the next step. 

         Let us consider a uniform grid (  yx ) inside the region. The spacing between any 

two neighboring internal grid points is equal to . The derivative values of ),( yxf  at an 

internal, grid point ),( ji  can be expressed as a weighted linear sum of the function values at 

the p grid points near the point ),( ji , along x direction or along y direction rather than at all 

grid points, that is, equations (3a) and (3b) can be written as 
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Where n  is an integer belonging the interval  p,1 , 2,1n . The p grid points are internal point 

and for some locations include one or two boundary points. In order to, introduce upwind 

mechanism into (4), the value of   must be determined in terms of horizontal ( iju ) and 

vertical ( ijv ) velocity components subject to the direction of the flow as follow: 
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This idea is illustrate in Figure (2). 
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Figure 2. Upwind local DQ grid point’s model in the derictionx  for 6p . 

According to UDQM described above with the time derivatives approximate by forward 

difference scheme, the governing equation (1), take the following discrete forms 
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Where ),( ji ,s should be all internal grid points )).1(2),1(2(  MjNi  

All the boundary conditions and the implicit quantities vuT ,,,,  that include derivative 

(equ.(2))  can approximate by DQM depend upon the p grid point, using equation (4).  

 

4-Error Analysis 

0iju 0iju
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          Analyzing the errors resulting from approximation of a function and derivatives is useful 

work. Depending on the DQ is identical to Lagrange polynomial interpolation of order 1N , 

author [8] have given a thorough error analysis for the first-order derivative ( 1E ) and the 

second-order derivative ( 2E ). These errors written as; 
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These residual estimates show that very high accuracy can be obtained if the number of grid 

points N  is large. Accuracy is proportional to N  or its powers. By "its powers", we mean 

here that accuracy may also be proportional to squared or cubic N , or even higher order term 

of N .  

     However, too large N may lead to instability this shown in [6].for dynamical problems small 

error may accumulate with each time step. A simple estimate for the first-order derivative is 

then that the accumulated error at each time is proportional to tN , where t is time step. 

Similar arguments lead us to the conclusions that the accumulated error at each time step for 

the second order derivative is proportional to 2)( tN . If large N is used, time step must be small 

to keep the errors within controllable range. High order DQ discretization becomes unstable 

faster than low-order DQ discretization. This simple analysis and the numerical results lead us 

to the conclusion that DQ is of high accuracy, but of poor stability. The more grid points are 

used, the high accuracy we obtained, but the poorer the stability is. Stability of the function 

values and its derivative Lagrange polynomial interpolation is a complicated problem. From 

this rude estimate, however, we conclude that accuracy and stability are conflicting. Accuracy 

requires large number of grid points, but stability requires the opposite.  

 

5-Numerical Results and Discussion 
           The computationally efficiency of UDQM with Chebyshev-Gauss-Lobatto points [2] on 

the numerical accurate results have been well demonstrated here. In this study, the two-

dimensional incompressible Navier-Stocks equation, continuity equation, an energy equation 

are which to describe convection motions of fluid flow, in rectangular channel flow region 

includes cold top and sidewalls and a hot bottom plate, Figure(1). In the present computations, 

we adopted Gauss siedel method to solve vorticity and energy equations (equ.(2)), and SOR 

with damping factor 10  , to solve stream function(equ.(2)). And the sufficient condition 

Max enn  )()( ,(where 510e , Trvu ),,,,(   , transortTr  ) for convergence of 

numerical solution of UDQM ,if  it is not satisfied go to repeat the calculation steps again, 

otherwise stop the iterative procedure and the steady state solutions of the incompressible flow 

can be obtained. 
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      The streamlines in three dimensions are shown in Figure(3), at prime time the secondary 

flow-vortex presented at a corner where the cold and hot walls intersect. In the remaining 

region flow, the fluid is practically motionless. In this moment, the stream function value is 

positive ( ve ) everywhere, that is; the fluid motion is in the counterclockwise direction. 

Conversely, the motion is clockwise along closed streamlines of negative ( ve ) values for the 

stream function. Thus, the fluid descends along the cold vertical wall and then rises after 

flowing over the hot surface. At this time, the convective motion appears weakly. This motion 

becomes stronger gradually with the increase in time, 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
                           

      

 

 

 

 

Figuer.3 Surface with contour of streamlines for 310Gr , 0025.0,75.6Pr  t  
 

  Also, the isotherm profiles have a slow variation with respect to time. Although a steady state 

has not been reached yet, the flow does not seem to have any further significant changes. 

Thus, additional computations with maximum step greater than 2000 have not been attempted. 

From Figure(4), we see that the thermo-gravitational convection is weak  due to the low 

Grashof number.  As a result, the values of   at 2000 Gr are positive ( ve ) and 

at 200Gr are ( ve ) . The isotherms gather densely near the horizontal walls and the fluid 

flows mainly in the clockwise direction like a rotating flow around the core region. The 

regions of the isotherms gathering densely are in a long region of the horizontal walls. It is 

observed that the fluid motion at 6500Gr is not steady but oscillating in nature, this is the 

same phenomena with [2]. 
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          Figure.4 Stremlines and isotherm for different values of Grashof number with              . 

 

We shall discuss the effect of temperature on the behaviors of fluid motion in aspect of secondary 

flow-vortex (which is representing by sequential plots of the streamlines). Here, an important 

matter is to specify the critical values, which are indicated to the changing of the streamlines or the 

total number of the convection cells that appear in the channel. Figures (5), shows the temperature 

effect on the behaviors of motion of the fluid for 75.0Pr,50 Gr , 0.1t in the channel.  From these 

figures, we notice that, There is one cell at 210 T , the stream function value is positive (+ve) 

everywhere, that is; the fluid motion is in the counterclockwise direction. The numbers of cells are 

changing into two cells on 2120 T . Moreover, when 21T the two cells are different in size and 

motion direction (the left cell is counterclockwise direction and the right cells is clockwise 

direction). The size of the right cell is changing on 6321 T , and the size of the left cell become 

small slowly on 6362 T .  This case go on for 85T . In the remaining region flow, the fluid is 

practically motionless. Conversely, the motion is clockwise along closed streamlines of negative 

( ve ) values for the stream function. Thus, the fluid descends along the cold vertical wall and 

then rises after flowing over the hot surface. In this case, the convective motion appears weakly. 

This motion becomes stronger gradually with the increase in temperature; also, the isotherm 

profiles have a slow variation (identical with those in Figure (4)). The change in the number of 

cells of the secondary flow is continue with increases of temperature values, Another change is 

occurs in the number of cells at 118117 T ,where the total number of cells become three in the 

channel. These cells are different in size and direction (the left +ve , the middle is –ve , the right is 

+
51.0

90.0

100

max

max







v

u

Gr

75.0Pr 

++ -
5.18

9

800

max

max







v

u

Gr

-+ -+ 5.48

5.24

6000

max

max







v

u

Gr



 2008لسنة  1العدد  13مجلة القادسية للعلوم الصرفة المجلد 

 2008اذار لسنة  27-26المؤتمر العلمي الاول لكلية العلوم المنعقد في 

 

 
 

276 

 

+ve). The size of the right cell starting to change until becomes identically with other cells 

approximately. 

From the results are shown in Figure(6), we see that the results are obtained by five-point 

UDQM(5pt.UDQM) agreement with existing results, three-point UFDM with coarse grid mesh. 

It pointed out the secondary –flow vortex appears starting the wall of channel toward the whole 

domain consequently.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

 

Figuer.5  Effect of the temperature of the shape on the streamlines. 
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  Figure.6  in 3D with contour lines for UFDM & UDQM with  

 Table-1 shows that comparison of the solver method and numerical results of the present work 

with these are presented by [2] and [9]. It is most noteworthy that the present computation is 

very close to that in [2] and [9]. The present results are in agreement with those given by [5] in 

the qualitative analysis for the distribution of streamlines and isotherms (see pages 2152-2157). 
     

          Table 1.Comparison of the present study with [2,9], for 4103Gr , 015.0Pr   

  Authors Method Grids max maxu maxv 

Ref. [8] 

Ref. [2] 

QUICK 

DQM 

81x21 

921 

0.4579 

0.4552 

0.6882 

0.5917 

0 .7951 

0.6904 

Present 5pt.UDQM 21x9 0.4566 0.6760 0.7893 

 

      

6-Conclusions 
       We conclude that the total number of the cells (secondary flow vortex) is changing with 

respect to temperature. That is, total number of cells is increases with temperature increase. The 

same phenomena are happens for the streamlines of cells. We see that the thermo-gravitational 

convection is weak due to the low Grashof number and low temperature, and become stronger 

gradually with increases in temperature. A simple study of estimation errors lead us to conclude 

that DQM is of high accuracy requires large number of grid points, but stability requires the 

opposite. This motivates us to introduce analyzing for this problem in the next future work. 
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 محاكاة الانتقال الطبيعي لتدفق مائع عدديا

 

 
 عبدالستار جابر علي السيف/كلية التربية/قسم الرياضبات/جامعة البصرة

 

 

 :تخلصالمس

 

البحث. تم  فد حدد في هذا السلوك اللاخطي لتدفق المائع وتأثير التغير في درجة الحرارة على حركة المائع في قناة مستطيلة                  

 لسابقة.اللمحاكاة،وكانت متماثلة والنتائج  (UDQM)الحصول على نتائج عددية جيدة باستعمال طريقة التفاضل التربيعي الجديدة 
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