measure O.

مجلة القادسية للعلوم الصرفة المجلد 13 العدد 1 لسنة 2008 المؤتمر العلمي الاول لكلية العلوم المنعقد في 26-27 اذار لسنة 2008

Equivalent Martingale Measures on L⁰-space

Bv

Dr.Boushra Youssif Hussein Dr. Noori.A.AL-Mayahi Dr. A.A.AL-Ta'aii Department of Mathematics Department of Mathematics Department of Mathematics **College of Education College of Science College of Science** Al-Qadisiah University Al-Qadisiah University Al-Mustansiriya University

الخلاصة

نفرض المدانية الى المانية من المتغيرات العُمالية ذات البد لام المرفقة على الفضاء الاختمالي الملائم (عرابة، P) على هذا شجلها سوف نحصل على شروط ضرورية وكافية إلى وجود قباس ماز تبتيلي المكافر إلى P (ريسمى عداء قباس-ج المكافري) بعيث كل مركبة من المتقابمة الها خاصية امار تنجل بالنسبة إلى Q. هذه المشكلة وجدنا حلها في الفضاء −L بالنسبة إلى التبولوجي المتولد من المعياري-L.

Abstract

Suppose that $(X_i)_{i \in I}$ is an adapted sequence of d-dimensional random variable defined on some filtered probability space $(\Omega, F, \{F_i\}_{i \in I}, P)$.

In this paper we obtain conditions which are necessary and sufficient for the existence of a probability measure Q to P (which we call an equivalent \tau-measure) such that each of the d component sequence of (X_i)_{i=1} has a prescribed martingale property with respect to Q.This problem have been solved in L0-space with respect to A-norm topology

Introduction

In recent years the mathematical theory of stochastic integration (stochastic process) has become of interest because of its several areas of mathematical stochastic integrals with respect to martingales which were first discussed by Winer (1923). The extension of this definition is due of square martingale. The relation between the theorem of price asset and arbitrage were introduced from (Arrow-Debreu)(1959) model, formula of Black and Scholes (1973), linear price model of Cox and Ross (1976)

In their fundamental paper, Harrison and Kreps (1979), discussed the fundamental theorem and introduced the concepts of equivalent martingale measure. Absence of arbitrage alone was not sufficient to obtain an equivalent martingale measure for the stochastic process. Different solutions have been introduced to relate the topological conditions of arbitrage [see Back and pliska (1991), Dalank, Morton The triple (Ω,*F*,P) is called probability space, where Ω be a non –empty set ,*F* is a σ-field on Ω, and P is a probability measure. i.e P(Ω)=1 where P be a measure on (Ω,*F*), the process X, Sometimes denoted (X_i)_{ref} is supposed to be ℜ^d-

valued, The function $X:\Omega \rightarrow \mathfrak{R}$ is called **random variable** if X is measurable function. This mean the function

 $\Sigma_{\Omega \to N}$ is characterized to be used tob

1-Basic definitions and concepts: In this section we state some definitions which are related to main result. We start by the following definition:-

Definition (1.1), [6]: Let X be a random variable defined on probability space (Ω, F, P). We define the expectation (or expected value or mean) of X, denoted E(X), as:

Provided the integral exists. Thus E(X) is the of the Borel measurable Let (Ω, F, P) be a probability space, I be any subset of \Re , and (E,β) be a measurable space. We begin with some notation, definitions and theorems from martingales.

Definition (1.2), [4]:

i.e.

A mapping X: $I \times \Omega \rightarrow E$ is called **E-valued stochastic process** if for each $t \in I$, the map $\omega \rightarrow X$ (t, ω) is an E-valued random variable.

 $\{\omega: X(t,\omega) \in A\} \in F$ for every $A \in \beta$. The mapping $\omega \rightarrow X$ (t, ω) from Ω into E is called the random function of the process, this mapping is often denoted by X, (sometimes is called the state at time t), and the process itself by: $X = (X_t)_{t \in I}$ or $X = \{X_t; t \in I\}$.

The probability space (Ω, F, P) is called **the base of the E-valued stochastic process X**, and the space Ω is often called **sample space** of X, the point $\omega \in \Omega$ is called **sample point**. The measurable space (E, β) is called **the state space of the state space space** E-va

In particular if d=1, (i.e. $E=\Re$, $\beta=\beta(\Re)$), then X is called \Re -valued stochastic process (or more briefly, X is called stochastic process).

i.e. A stochastic process is a collection of random variables $X = \{X_t: t \in I\}, on (\Omega, F).$

Definition (1.3), [4]:

A filtration $\{F_i: t\in I\}$ is an increasing family of sub σ -fields $F_i \subset F_i$, increasing means that if $s \leq t$, then $F_i \subset F_i$. When F is not specified, it is assumed that F equals the σ -fields generated by $\bigcup_{i=1}^{n} F_i$, i.e. F_i t ∈ I t∈I

$$= \bigvee_{F_i = \sigma(\bigcup_{i \in I} F_i)} F_i = \sigma(\bigcup_{i \in I} F_i)$$

When I=R., we say $F_{u=1} \bigvee_{F_i = \sigma(\bigcup_{i \in I} F_i)} F_i = \sigma(\bigcup_{i \in I} F_i)$

t≥0 t≥0 A filtration { $F_t: t \in I$ } is said to satisfy the usual conditions if it is

 F_{t})

(1) Right continuous, i.e. $F_t = \bigcap F_s$

s > t

(2) Complete, i.e. F₀ contains all the null set in F.
 [∀ A∈F with P (A) =0 ⇒ A∈F₀].
 Given stochastic process X= {X; t∈I}; the simplest choice of a filtration is that generated by the process itself:

Х i.e. $F \mathbf{t} = \sigma(X_s: 0 \le s \le t).$

Х

The smallest σ -fields with respect to which X_s is measurable for every $0 \le s \le t$, (F t is called the natural filtration of X).

 $\frac{\text{Definition (1.4), [6]:}}{\text{A stochastic process X= } \{X_t : F_t ; t \in I\} \text{ is said to be adopted (to the filtration } \{F_t\}_{t \in I}) \text{ if for each } t \geq 0; X_t \text{ is } F_t\text{-measurable random variable;}}$

Every stochastic process X is an adopted to $\{F_t\}_{t \in I}$.

Definition (1.5), [7]:

 $\frac{\text{Definition (1.5), [7]:}}{\text{A stochastic process X= {X_i : t \in I} is said to be martingale with respect to the filtration {F_i}_{i=1} if, (1) X is integrable, i.e. E([X_i]) <\infty for all t \in I. (2) E(X_i | F) = X_i$ a.e. for all s,t with s

 Definition (1.6), [7]:
 **A stochastic process X is probability measure Q on (\Omega, F) which has the following properties:

 (1) Y = Q, i.e. P(A) = O < Q(A) = O, Y A \in F. (2) N is a martingale with respect to the filtration {F_i}_{i=1} and the probability</td>**

مجلة القادسية للعلوم الصرفة المجلد 13 العدد 1 لسنة 2008 المؤتمر العلمي الاول لكلية العلوم المنعقد في 26-27 اذار لسنة 2008

L⁰-space: 2- L-space: In this section we proved L⁰-space is metric space. We start by the following definition:-We start by the concentration $\underline{0}$ and $\underline{0}$ and \underline{0} and $\underline{0}$ and $\underline{$ a Δ-norm on X if: $\begin{array}{l}(1) \|x\|\!\!>\!\!0\\(2) \|\lambda x\|\!\!\leq\!\!\|x\|\end{array}$ $\forall x \neq 0, x \in X.$ $\forall x \in X, 0 < |\lambda| \le 1.$ (3) $\lim_{\|\lambda x\|=0} \forall x \in X.$ $\lambda \rightarrow 0$ $(4) \|x+y\| \leq c.max \{ \|x\|, \|y\| \} \quad \forall \ x, y \in X \ \text{where } c > 0 \ \text{is some constant independent of } x, y. \in X \ \text{where } c > 0 \ \text{is some constant independent of } x, y. \in X \ \text{where } c > 0 \ \text{where }$ Lemma (2.2), [3]: Let X be a vector space. If ||.|| is a Δ-norm on X, then it induces on X a vector topology τ which is metrizable. Definition (2.3), [3]: A sequence $\{x_n\}$ in X converges to $x \in X$ if and only if $||x-x_n|| \rightarrow 0$ as $n \rightarrow \infty$. Example (2.4), [3]: Suppose τ is a topology with a countable local basis β of 0 in X, in the form $\beta = \{U_n: n \in \mathbb{N}\}$ such that $\bigcap U_n = \{0\}$, each U_n is balanced and $U_{n+1} + U_{n+1} \subset U_n$ for every n. Then we can define a Δ -norm on X by $\|x\| = \sup \{2^a: x \notin U_n\}$ and the Δ -norm induces the origin topology where c=2. Theorem (2.6): If $\|.\|$ is any F-norm then $d(x,y)\!\!=\!\!\|x\!\!-\!\!y\|\;$ is a (translation) invariant metric on $\;X.$ Proof: $\begin{array}{l} \label{eq:constraint} \text{Define } d:X{\times}X{\rightarrow}\Re \ by \ d(f,g){=}||x{-}y|| \ for \ all \ x,y{\in}X.\\ \text{Let } x,y{\in}X, \ \text{if } \ x{\neq}y \Rightarrow x{-}y{\neq}0 \Rightarrow ||x{-}y||{>}0 \ (by \ (1) \ of \ definition \ (4.1.1))\\ \Rightarrow \ d(x,y){>}0. \end{array}$ (1) $\mathrm{If} \ \mathrm{x-y=0} \Rightarrow \|\mathrm{x-y}\| = \|\mathbf{0}\| = \underset{\lambda \longrightarrow 0}{Lim} \quad \|\lambda.\mathbf{0}\| = \mathbf{0} \ (\mathrm{by} \ (\mathbf{3}) \ \mathrm{of} \ \mathrm{Definition} \ (\mathbf{4}.\mathbf{1}.\mathbf{1}))$ $\Rightarrow d(x,y) \ge 0.$ (2) Let $x,y \in X.$ $\text{If } x=y \Rightarrow x-y=0 \Rightarrow ||x-y||=||0||= \underset{\lambda \longrightarrow 0}{Lim} \quad ||\lambda.0||=0$ $\begin{array}{l} \Rightarrow d(x,y)=0 \Rightarrow ||x-y||=0.\\ \text{If } x\neq y \Rightarrow x-y\neq 0 \Rightarrow ||x-y||>0 \ (by \ (1) \ of \ Definition.(4.1.1))\\ \Rightarrow 0<||x-y||=d(x,y) \Rightarrow d(x,y)>0 \ this \ contradiction. \end{array}$ $\Rightarrow x=y. \label{eq:x-y} (3) \ d(x,y)=||x-y||=||-(y-x)||\leq ||y-x||=d(y,x) \ \dots \ (1)$ $\begin{array}{l} (x) \ d(x,y) = \|x,y\| = \|y,x\| \leq \|y,x\| = \|y,x\| \\ d(x,x) = \|y,y\| = \|x,y\| \leq \|x,y\| = \|x,y\| \le \|x,y\| = \|x,y\| \le \|x,y\| = \|x,y\| \le \|x,y\| \|x,y\| \le \|x,y\| \le \|x,y\| \le \|x,y\| \|x,y\| \le \|x,y\| \|x,y\| \|x,y\| \|x,y\| \|x,$...(2) Corollary (2.7), [3]: Let X be a Hausdorff topological vector space with a countable local basis of 0, then X is metrizable and the topology may be given by on invariant. Definition (2.8), [7]: Let (Ω, F, P) be a probability space. Define $L^0=L^0(\Omega, F, \mu)$ to **the space of all** *F*-**measurable functions** on Ω with the usual convention about identifying functions equal almost every where. Define $\|.\|_0 L^0 \to \Re$ by:

$$\int \frac{|f(x)|}{1+|f(x)|} dP(x) \quad \forall f \in L^{0}$$

Proposition (2.10): $\|.\|_0$ is an F-norm on L^0 .

Proof:

In order to prove $||.||_0$ is an F-norm on L^0 , we proof the following : \Rightarrow (1) Let fe L^0 such at $f \neq 0$ \Rightarrow f(x)=0 $\forall x \in \Omega$. \Rightarrow |f(x)|>0 and 1+|f(x)|>0

$$= 1 + |f(x)|^{1/2}$$
$$= \int \frac{|f(x)|}{1 + |f(x)|} dP(x) \ge 0$$

 $\Rightarrow \|f\|_0 > 0$

(2) Let $f \in L^0$ and $|\lambda| \le 1$. Since $|\lambda| \le 1$ $\Rightarrow |\lambda| |f(x)| \le |f(x)|$

$$\stackrel{\Rightarrow |\lambda f(x)| \leq |f(x)|}{\Rightarrow} \frac{1}{\left|f(x)\right|} \leq \frac{1}{\left|\lambda f(x)\right|}$$
$$\stackrel{\Rightarrow 1+}{\Rightarrow} \frac{1}{\left|f(x)\right|} \leq 1+ \frac{1}{\left|\lambda f(x)\right|}$$

مجلة القادسية للعلوم الصرفة المجلد 13 العدد 1 لسنة 2008 المؤتمر العلمي الاول لكلية العلوم المنعقد في 26-27 اذار لسنة 2008
$\frac{ f(x) +1}{ f(x) } = \frac{1+ \lambda f(x) }{ f(x) }$
$ f(x) = \lambda f(x) $
$= \frac{ \lambda f(x) }{ x ^{2}} = \frac{ f(x) }{ x ^{2}}$
$1 + \left \lambda f(x)\right \left f(x)\right + 1$
$= \int \frac{\left \lambda f(x)\right }{1+\left \lambda f(x)\right } d^{\mathrm{P}(x) \leq} \int \frac{\left f(x)\right }{\left f(x)\right +1} d^{\mathrm{P}(x)}$
$\Rightarrow \ \lambda f\ \ll \ f\ _{6}.$ (3) Let $f \in L^{9}.$
$\lim_{\lambda \to 0} \lim_{\ \lambda f\ _{b^{-}}} \lim_{\lambda \to 0} \int \frac{\left \lambda f(x)\right }{1 + \left \lambda f(x)\right } \int_{d^{P(x)}} \int_{d^{P(x)}} \lim_{d^{P(x)}} \frac{\left \lambda f(x)\right }{1 + \left \lambda f(x)\right } d^{P(x)=0}$
(4) Let $f_{g \in L^0}$. $ f(x)+g(x) \leq f(x) + g(x) $ 1 1 1
$\frac{1}{ \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x}) } = \frac{1}{ \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x}) }$
$\begin{array}{cccc} 1 & 1 \\ \end{array}$
$\int_{1+}^{1+} \overline{ f(x) + g(x) } \ge \int_{1+}^{1+} \overline{ f(x) + g(x) }$
1 + f(x) + g(x) + f(x) + g(x)
$\frac{\left f(x)+g(x)\right }{\left f(x)\right +\left g(x)\right }$
$ \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x}) $ $ \mathbf{f}(\mathbf{x}) + \mathbf{g}(\mathbf{x}) $ $ \mathbf{f}(\mathbf{x}) $ $ \mathbf{g}(\mathbf{x}) $
$\overline{1 + f(x) + g(x) } = \overline{1 + f(x) + g(x) } = \overline{1 + f(x) + g(x) } + \overline{1 + f(x) + g(x) }$
f(x) + g(x) $f(x)$ $g(x)$
$1 + f(x) + g(x) ^{-1} + f(x) + g(x) ^{-1} + f(x) + g(x) ^{-1}$
$\int \frac{ f(x) + g(x) }{ f(x) } dP(x) \int \frac{ f(x) }{ f(x) } dP(x) \int \frac{ g(x) }{ g(x) } dP(x)$
$\frac{1 + f(x) + g(x) ^{\alpha_{(N)}}}{(5) \operatorname{Let} f_g \in L^{0}} \frac{1 + f(x) + g(x) ^{\alpha_{(N)}}}{1 + f(x) + g(x) ^{\alpha_{(N)}}} \frac{1 + f(x) + g(x) ^{\alpha_{(N)}}}{1 + f(x) + g(x) ^{\alpha_{(N)}}}$
$\begin{array}{cccc} \ f\ _{0} & \text{if} & \ f\ _{0} \geq \ g\ _{0} \\ \max\{\ f\ _{0}, \ g\ _{0}\} = & \\ \ g\ _{0} & \text{if} & \ f\ _{0} \leq \ g\ _{0} \\ \end{array}$
$\begin{array}{l} 1 & 1 _{0} _$
Proposition (2.11): L ⁰ is metric space. Proof:
By Theorem (4.3.6). Proposition (2.12), [5]:
3- Main result.
$\bigcup_{\text{Let }(\Omega,F,P) \text{ be a probability space, and let } L + (\Omega,F,P) \text{ be the positive part of } L^b(\Omega,F,P).$
$ \bigcup_{i,e, L \to \{0, C, F, P\} = \{f \in L^{q}(\Omega, F, P) : f \geq 0\}. $
$\frac{\mathbf{Definition (3.1), [6]:}}{\text{Let } B \subset L^0, \text{ we say that } B is bounded in probability in L^0 if there exists k>0 such that f(x) $
Theorem (3.2): Let K be a convex subset of $L^0(\Omega, F, P)$ such that $0 \in K$ then the following statements are equivalent:

 $\begin{array}{c} 0 \\ (1) \forall \ \mathsf{f} \in \mathsf{L}_+ (\Omega, \mathit{F} . \mathsf{P}), \exists \ \mathsf{\lambda} > 0 \ \text{ such that } \ \mathsf{\lambda} \mathit{f} \not\in \overline{K - B} \\ K \cdot B = \{ \mathsf{f} \in \mathsf{L}^0 \colon \exists \ \mathsf{g} \in \mathsf{K} \ \text{such that } \ \mathsf{f} \leq g \} \end{array} \text{ where } :$

مجلة القادسية للعلوم الصرفة المجلد 13 العدد 1 لسنة 2008 المؤتمر العلمي الاول لكلية العلوم المنعقد في 26-27 اذار لسنة 2008

(2) $\forall A \in F$ such that $P(A) > 0, \exists \lambda > 0$ such that $\lambda I_A \notin \overline{K - B}$ ${}_{\scriptscriptstyle (3)\,\exists\,z\in B}\,\,{}_{\scriptscriptstyle such\,that}\,\,Sup\,{}_{\scriptscriptstyle E(yz)<\infty.}$ $y \in K$ (4) There exists probability measure Q equivalent to P such that K is bounded 0 in L + (Ω, F, P) . **<u>Proof:</u>** (1) \rightarrow (2): Let $A \in F$ be such that P(A) > 00 $\Rightarrow I_A \neq 0$ Since $I_A \in L$ + :. by condition (1) there exists $\lambda > 0$ such that $\lambda I_{A} \notin K - B$ (2) \rightarrow (3): Suppose $\forall A \in F$, such that P(A)>0, $\exists \lambda > 0$ such that $\lambda I_A \notin \overline{K - B}$ Let $H = K - B_{G = \{I_A\}}$ 0 Since K is convex and B is convex in L + (Ω, F, P) \Rightarrow K-B is convex. \Rightarrow K-B is convex. i.e. H is convex, and is closed with respect to topology convergence in probability. Since G has one element. 0 \Rightarrow G is convex and compact subset of L $_+\,$, also, since I_{A} is bounded function. \Rightarrow by (2) choose $\lambda=1$ $\exists \mathrm{A}_{A \notin} K - B \exists \mathrm{A}_{K \#} K - B$ $\Rightarrow G \cap H = \phi$. 0 0 $\Rightarrow \text{ by a version separation theorem, there exists a linear functional g=0 on } (L +)^{i} = L + \text{ such that } g^{|i|} \overline{K - B} \leq \alpha \text{ and } gI_{A} > \beta \text{ when } \alpha < \beta.$ If $\alpha \ge 0 \Rightarrow g$ is zero or negative function $\begin{array}{l} \Rightarrow \beta > 0. \\ \Rightarrow E[gI_A] > 0. \end{array}$ 0 Let $T = \{g \in L + : E[gI_A] < \infty\}$. ∞ ∞ Let £ be the family of subset of Ω formed by the support of the element g \in T. Note that £ is closed under countable union, as for a sequence (g_a) $n = 1 \in$ T, we can fined strictly positive scalar (α_a) n = 1 such that $\sum_{n=1}^{\infty} \alpha_n g_n$ etc. \Rightarrow there exists $g_0 \in T$ such that $A_0 = \{ \omega \in \Omega : g_0(\omega) \neq 0 \}$ $\begin{array}{l} \Rightarrow \mbox{ there exists } g_0 \in I \ \mbox{ such } I \\ \Rightarrow A_0 \in F \\ \Rightarrow P(A_0) = Sup\{P(A): A \in \pounds\} \\ \mbox{ to prove } g_0 \ \mbox{ is bounded.} \\ \mbox{ i.e. } P(A_0) = I \\ Suppose P(A_0) < I \\ \end{array}$ $E[gI_{A}] = \int g(\omega) J_{A}(\omega) dP(\omega)$ $=\int g(\omega)dP(\omega) >0.$ Α $_{^{Take}A_{00}=\Omega }|A_{0}$ $\Rightarrow A_{00} = \{ \omega \in \Omega : g_0(\omega) = 0 \}$ 0 $^{I}A_{00} = + \stackrel{\text{\Rightarrow E[gI A_{00}] = \int g(\omega) dP(\omega)$}{\Omega |_{A_0}} \\ \underset{\text{$Since I \Omega|_{A_0}}{\text{$$since I \Omega|_{A_0} = K - B$}}}{\int g(\omega) dP(\omega)}$ $\Rightarrow \operatorname{E[gI} A_{00} > 0.$

مجلة القادسية للعلوم الصرفة المجلد 13 العدد 1 لسنة 2008 المؤتمر العلمي الأول لكلية العلوم المنعقد في 26-27 إذار لسنة 2008

 $\Rightarrow \mathsf{E}[(\mathsf{g}+\mathsf{g}_0)^{\mathrm{I}} A_{00}] = \mathsf{E}[\mathsf{g}^{\mathrm{I}} A_{00}] + \mathsf{E}[\mathsf{g}_0^{\mathrm{I}} A_{00}].$ $\Rightarrow P\{\omega \in \Omega: (g+g_0)(\omega) \neq 0\} > 0 \text{ this contradiction.}$ $\Rightarrow g \in B \text{ and } Sup E[gI_A] < \infty.$

0 $(3) \rightarrow (4)$: Let $g \in L$ +

$$= \sup_{\|g\|=} \int \frac{|g(x)|}{1+|g(x)|} dP(x).$$
Let $\sigma(\sigma)=\max\{\|g\| L^{0}_{+}, 1\}.$

Let Q be the measure on g with Randon-Nikodym derivative $dQ/dP=c.g(m)/\sigma(\omega)$ where the normalize factor $c\in\Re$, is chosen such that $Q(\Omega)=1$. Then Q is a probability measure equivalent to P and for each $g\in L_+(\Omega,F,P)$, the function $f{=}E_Q(g(S_t(\omega){-}S_s(\omega)I_A)$ where $s{<}t.$

0

 $\Rightarrow f \ge 0.$ $\begin{array}{l} \Rightarrow f \geq 0,\\ Suppose kent f \neq 0, since g \in T,\\ \Rightarrow E_0(g(I_A)<\infty,\\ \Rightarrow (f_C, f_A)<\infty,\\ \Rightarrow f \in T,\\ \Rightarrow f \in T,\\ \Rightarrow E[f(I_A)<\infty,\\ Also, 0< f \in E_0((S_1(\omega)-S_n(\omega)I_A))<\infty,\\ \Rightarrow -f \in T\\ Since -f \geq 0\\ \Rightarrow f \geq 0 \text{ and } f \leq 0 \Rightarrow f = 0.\\ \Rightarrow here exists equivalent matineale\\ \Rightarrow here f = 0. \end{array}$ \Rightarrow there exists equivalent martingale measure Q~P.

0

(4) \rightarrow (1): Suppose $f \in L + (\Omega, F, P)$ and $f \neq 0$.

$$\begin{array}{l} \Rightarrow \forall \; \lambda \!\!>\!\! 0, \; \lambda f \! \in \! \overline{K - B} \\ \Rightarrow \exists \; x_a \! \in \! K, \; y_a \! \in \! B \; \text{ such that } \; \lambda f \! = \! x_a \! \cdot \! y_a \! \cdot \! \delta_a \\ \text{where } 0 \! \le \! \| \delta_n \| = \! 0 \quad \! <\! 1. \end{array}$$

Ľ,

0

Since by (4), there exists equivalent martingale measure Q~P. Suppose the density function of Q is g=dQ/dP ∈L +

$$\begin{split} \lambda gf = &gx_n \text{-} gy_n \text{-} g\delta_n. \\ \Rightarrow &E(gx_n) = \lambda E(fg) + E(gy_n) + E(g\delta_n). \\ \text{Since } &E[fg] < \infty. \\ \Rightarrow &E(gx_n) \geq \lambda E(fg) + 1 \end{split}$$

 $\Rightarrow Sup_{E(gy)=\infty, \text{ this contradiction.}}$ $y \in K$

BIBLIOGRAPHY:

E. Jouini and H.Kallal, "Martingale and arbitrage in security markets with transaction costs", Internet Papers, <u>www Yahoo.com(1999)</u>.
 J.Harrison and D.Kreps, "Martingales and stochastic infernal in the theory of continuous trading", stochastic process and Applications, vol.11,pp215-260(1981).
 M. Fisher and C. Gilles, "An analysis of the doubling strategy the countable case", Internet papers, www. Yahoo.com(2002).
 M.R. Fisher and C. Gilles, "An E-space sampler", New York, 1994.
 N. Colton and N. Peck, "An E-space sampler", New York, 1994.
 R. Ash, "Real analysis and probability", Academic process, New York, 1992.
 W. Rudin, "functional analysis", published by company ,New Delhi, 1974.