

Soft i-Open Sets in Soft Bi-Topological Spaces

Authors Names	ABSTRACT
a. Sabih W. Askandar	
b. Beyda S. Abdullah	In our study we introduced soft i-open sets and soft i-star-generalized-w-closed
^{c.} Luma Ahmed Khaleel	sets in soft bi-topological spaces, (X, τ_1, τ_2, E) , using the notion of soft i-open sets in soft-topological-space, (X, τ, E) . We besides that give examples to
	clarify these relationships while presenting some essential characteristics and
Article History	relationships between various groups of sets. Besides that we studied the
Received on: 4 / 12/2022 Revised on: 15 / 12 /2022 Accepted on: 22 /12 /2022	extended of soft i-open sets in soft bi-topological spaces by proofs and examples.
Keywords s: Soft i-open sets, soft bi-topological spaces, i- open sets, soft topological space.	
DOI: https://doi.org/10.29350/ jops. 2022.27. 1.1592	

1. Introduction

g*-closed sets were first introduced to bi-topological spaces in 2004 ([13]) by Sheik and Sundaram. Al- Zoubi in 2005, studied the concept of generalized w-closed sets([1]). Introducing regular star generalized closed sets in bitopological spaces was done by Kannan in 2006 ([5]). Mahdi first discussed semi-open and semi-closed sets in bitopological spaces in 2007 ([8]). R. K., Chandrasekhara and D., Narasemhan, in **2009**, defined semi Star Generalized w-closed sets in Bitopological spaces([4]). w-locally closed sets in bitopological spaces were first introduced by Benchalli, Patil, and Rayanagoudar in 2010 ([3]). In 2010 ([12]), Sheik and Maragathavalli first discussed the idea of strongly αg^* – closed sets in bitopological spaces. The concepts of GRW-closed sets and GRW-

continuity in bitopological spaces were presented by Nagaveni and Rajarubi in 2012 ([11]). Askandar and Mohammed, A subset W of a topological space (X, τ) is referred to as an i-open set ([9]) if there is an open set $O \neq \phi$, X s.t. $W \subseteq Cl(W \cap O)$. They could be combined with many other ideas of generalized open sets. The i-closed set is the complement of an i-open set, also they introduced the iopen sets in bi-topological spaces. Molodtsov established the idea of soft sets and their characteristics in 1999([10]). Askandar Mohammed In 2020 defined a soft i-open set (in short $s\tau$ - open set)([2]) in a single soft topological space as follows: a soft set (W, E) is a soft i-open(SIOS) in (X, τ, E) , whether a soft open set $(O, E) \neq \phi, X$ is existent where $(W, E) \subset Cl((W, E) \cap (O, E))$. In 1963([7]), Kelly, J.C., defined the concept of bi-topological Spaces. In 2014, Ittanagi, B. M., defined the concept of soft bitopological spaces([6]) (in short S.BI.T.S.) as follows: if (X, τ_1, E) and (X, τ_2, E) are two different soft topologies on X, then (X, τ_1, τ_2, E) is called a soft bi-topological space(S.BI.T.S). In this study, the idea of soft i-open sets in soft bi-topological spaces (X, τ_1, τ_2, E) is introduced. This set class might be introduced together with other soft set classes, objects have been listed above for comparison in order to identify common characteristics and qualities. $s\tau^{i}$ is a family of all soft i-open sets of X. There are two components to this work. In the first, soft i-open sets in soft bi-topological spaces are defined, and numerous instances are provided. We create soft i-star generalized w-closed sets and soft i-star generalized w-open sets in the second part and look at their fundamental features in soft bi-topological spaces. (X, τ_1, τ_2, E) denotes a soft bi-topological space, where (X, τ_1, E) and (X, τ_2, E) are softtopological-spaces. For $(W, E) \subseteq X$, $s\tau_i - Int(M, E)$ and $s\tau_i - Cl(M, E)$ denote the soft interior, soft closure of a soft set (M,E) with respect to the soft topology τ_i . A point $x \in X$ is called a condensation point of (M,E) if for each $(U,E) \in \tau$ with $x \in (U,E)$, the set $(U,E) \cap (M,E)$ is uncountable. (M,E) is called soft *w*-*closed* if it contains all its condensation points. soft *w*-*open* set is the complement of soft w-closed set. The soft w-closure and soft w-interior of (M,E)designated by $s\tau_i - Cl_w(M, E)$ and $s\tau_i - int_w(M, E)$, respectively. $(M, E)^c$ Denote the soft complement of (M,E) in X. S.BI.T.S denotes soft bi-topological space, sTs denotes soft topological space.

1. Soft i-Open Sets in Soft Bi-Topological Spaces.

With using numerous related instances, we define soft i-open sets and many other concepts of soft generalized open sets in soft bi-topological spaces in this part. We also examine the sets' characteristics.

Definition1.1. Let (X, τ_1, τ_2, E) be *S.BI.T.S*, a subset (M, E) of X is called " $(s\tau_1\tau_2 - i - open set)$ " assuming there is $s\tau_1 - openset$ $(U, E) \neq \varphi, X$ s.t. $(W, E) \subseteq s\tau_2 - Cl((W, E) \cap (U, E))$. The complement of $(s\tau_1\tau_2 - i - open set)$ is called $s\tau_1\tau_2 - i - closed set$).

Definition1.2. A *S.BI.T.S* (X, τ_1, τ_2, E) is called "soft Bi-Topologically Extended" for *SIOS* in short (*S.Bi.T.E.S.I.*) if $(X, s\tau_1\tau_2 - i - opensets)$ is *sTs*. On the other hand, if $(X, s\tau_1\tau_2 - i - opensets)$ is not *sTs*, then, (X, τ_1, τ_2, E) is called "not soft Bi-Topologically Extended" for *SIOS* (not *S.Bi.T.E.S.I.*). Where, $(X, s\tau_1\tau_2 - i - opensets)$ denote the family of all *SIOS* in the *S.BI.T.S* (X, τ_1, τ_2, E) .

Example1.3.Let $X = \{r, z, w\}$, $\tau_1 = \{\varphi, (M_1, E), X\}$, $\tau_2 = \{\varphi, (M_1, E), (M_2, E), X\}$, $E = \{e_1, e_2\}$. Where, $(M_1, E) = \{(e_1, \{r\}), (e_2, \{r\})\}$, $(M_2, E) = \{(e_1, \{r, z\}), (e_2, \{r, z\})\}$.

$$\begin{split} s\tau_1 - open \ sets \ are: \ \varphi, (M_1, E), X . \ s\tau_2 - closed \ sets \ are: \\ \phi, (M_1, E)^C = \{(e_1, \{z, w\}), (e_2, \{z, w\})\}, (M_2, E)^C = \{(e_1, \{w\}), (e_2, \{w\})\}, X . \end{split}$$

$$\begin{split} &(M_1,E) \subset (s\tau_2 - Cl((M_1,E) \cap (M_1,E)) = X), \\ &(M_2,E) \subset (s\tau_2 - Cl((M_2,E) \cap (M_1,E)) = X) \\ &\{(e_1,\{r,w\}), (e_2,\{r,w\})\} \subset (s\tau_2 - Cl(\{(e_1,\{r,w\}), (e_2,\{r,w\})\} \cap (M_1,E)) = X). \end{split}$$

Then, $(M_1, E), (M_2, E) \{(e_1, \{a, c\}), (e_2, \{a, c\})\}$, are $s\tau_1\tau_2 - i - opensets$. But, $\{(e_1, \{z\}), (e_2, \{z\})\}, \{(e_1, \{w\}), (e_2, \{w\})\}, \{(e_1, \{z, w\}), (e_2, \{z, w\})\}$ are not $s\tau_1\tau_2 - i - opensets$, because there is no exist $s\tau_1 - openset U$ s.t., $\{(e_1, \{z\}), (e_2, \{z\})\} \subset (s\tau_2 - Cl(\{(e_1, \{z\}), (e_2, \{z\})\} \cap U))$.

 $\{(e_1, \{z, w\}), (e_2, \{z, w\})\} \subset (s\tau_2 - Cl(\{(e_1, \{z, w\}), (e_2, \{z, w\})\} \cap U)).$

 $\{(e_1,\{w\}),(e_2,\{w\})\} \subset (s\tau_2 - Cl(\{(e_1,\{w\}),(e_2,\{w\})\} \cap U)).$

Therefore, $s\tau_1\tau_2 - i - open sets = \{\phi, (M_1, E), (M_2, E), \{(e_1, \{r, w\}), (e_2, \{r, w\})\}, X\}$.

 $s\tau_1\tau_2 - i - closed \ sets = \phi, (M_1, E)^C, (M_2, E)^C, \{(e_1, \{z\}), (e_2, \{z\})\},\$

Where, $(X, s\tau_1\tau_2 - i - opensets)$ is sTs. Then, (X, τ_1, τ_2, E) is a S.Bi.T.E.S.I.

Example1.4. Let $X = \{r, u, z, w\}$, $\tau_1 = \{\phi, (M_1, E), (M_2, E), X\}$,

 $\begin{aligned} \tau_2 &= \{ \phi, (M_1, E), (M_3, E), (M_4, E), X \}, E = \{ e_1, e_2 \}. \text{Where, } (M_1, E) = \{ (e_1, \{r\}), (e_2, \{r\}) \}, \\ (M_2, E) &= \{ (e_1, \{u, z, w\}), (e_2, \{u, z, w\}) \}. (M_3, E) = \{ (e_1, \{z\}), (e_2, \{z\}) \}, (M_4, E) = \{ (e_1, \{r, z\}), (e_2, \{r, z\}) \}. \end{aligned}$

$$\begin{split} s\tau_1 - open \ sets \ are: \ \phi, (M_1, E), (M_2, E), X \ . \ s\tau_2 - closed \ sets \ are: \\ \phi, (M_1, E)^C = \{(e_1, \{u, z, w\}), (e_2, \{u, z, w\})\}, (M_3, E)^C = \{(e_1, \{r, u, w\}), (e_2, \{r, u, w\})\}, \\ (M_4, E)^C = \{(e_1, \{u, w\}), (e_2, \{u, w\})\}X \end{split}$$

By the same way, in Example 1.3, we have: $,s\tau_1\tau_2 - i - opensets \operatorname{are} \phi, (M_1, E), \{(e_1, \{u\}), (e_2, \{u\})\}, \{(e_1, \{z\}), (e_2, \{z\})\}, \{(e_1, \{w\}), (e_2, \{w\})\}, \{(e_1, \{u, z\}), (e_2, \{u, z\})\}, \{(e_1, \{u, w\}), (e_2, \{u, w\})\}, \{(e_1, \{z, w\}), (e_2, \{z, w\})\}, (M_2, E), \{(e_1, \{r, u\}), (e_2, \{r, u\})\}, \{(e_1, \{r, w\}), (e_2, \{r, w\})\}, \{(e_1, \{r, u, w\}), (e_2, \{r, u, w\})\}, \{(e_1, \{r, u, w\}), (e_2, \{r, u, w\})\}, X$.

$$\begin{split} s\tau_{1}\tau_{2} - i - closed \ sets &= \phi, \{(e_{1}, \{u, z, w\}), (e_{2}, \{u, z, w\})\}, \{(e_{1}, \{r, z, w\}), (e_{2}, \{r, z, w\})\}, \\ \{(e_{1}, \{r, u, w\}), (e_{2}, \{r, u, w\})\}, \{(e_{1}, \{r, u, z\}), (e_{2}, \{r, u, z\})\}, \ \{(e_{1}, \{r, w\}), (e_{2}, \{r, w\})\}, \\ \{(e_{1}, \{r, z\}), (e_{2}, \{r, z\})\}, \ \{(e_{1}, \{r, u\}), (e_{2}, \{r, u\})\}, \ \{(e_{1}, \{r, w\}), (e_{2}, \{r, w\})\}, \ \{(e_{1},$$

Where, $(X, s\tau_1\tau_2 - i \text{ - opensets})$ is not sTs, Then, (X, τ_1, τ_2, E) is not a S.Bi.T.E.S.I.

Definition1.5. Let (X, τ^i, E) be *sTs* and let (W, E) be a soft subset of X. Recall that the term "soft iclosure of (W, E)" is the intersection of all soft i-closed sets (*SICS*) that contain (W, E), designated by $sCl_i(W, E)$: $sCl_i(W, E) = \bigcap_{i \in A} (F_i, E) \cdot (W, E) \subseteq (F_i, E) \forall i$ where, (F_i, E) is *SICS* $\forall i$ in (X, τ^i, E) . $sCl_i(W, E)$ is the smallest *SICS* containing (W, E).

Definition1.6. Let (X, τ^i, E) be *sTs* and let (W, E) be a soft subset of X. Recall that the union of all *SIOS* contained in (W, E) is named soft i-interior of (W, E), denoted by $sInt_i(W, E)$. $sInt_i(W, E) = \bigcup_{i \in A} (I_i, E) \subseteq (W, E)$ $\forall i$. Where, (I_i, E) is *SIOS* $\forall i$ in (X, τ^i, E) . $sInt_i(W, E)$ is the largest *SIOS* contained in (W, E).

Theorem1.7. Each $s\tau_1$ - open set is si - openset in (X, τ_1, τ_2, E) or $(s\tau_1 \subset (s\tau_1\tau_2 - i - open sets))$.

Proof: Assume that *X* is a finite nonempty set.

Let $\tau_1 = \{\phi, (W_1, E), (W_2, E), \dots, (W_n, E), X\}, \tau_2 = \{\phi, (Z_1, E), (Z_2, E), \dots, (Z_n, E), X\}$.

Where, $(W_i, E) \subset X$, $(Z_i, E) \subset X$ $\forall i . s\tau_1$ - open sets are : ϕ , (W_1, E) , (W_2, E) , (W_n, E) , X.

 $s\tau_2$ - closed sets are: $\phi, (Z_1, E)^C, (Z_2, E)^C, \dots, (Z_n, E)^C, X$.

 $s\tau_2 - Cl((W_i, E) \cap (W_i, E)) = \bigcap_{(W_i, E) \cap (W_i, E) \subset (F, E)} (F, E), \text{ where } (F, E) \text{ is } s\tau_2 - closedset.$

At least, X is a $s\tau_2$ - *closed set* contains $(W_i, E) \cap (W_i, E) \quad \forall i$. Hence, $s\tau_2 - Cl((W_i, E) \cap (W_i, E)) = \bigcap_{(W_i, E) \cap (W_i, E) \subset (F, E)} (W_i, E) \subset (s\tau_2 - Cl((W_i, E) \cap (W_i, E)) = \bigcap_{(W_i, E) \cap (W_i, E) \subset (F, E)} (F_i, E) = X, \forall i$. Then, $(s\tau_1 \subset (s\tau_1\tau_2 - i - \text{open sets}))$.

Theorem 1.7's converse is untrue. In fact, Example 1.4, $\{(e_1, \{u, z\}), (e_2, \{u, z\})\}$ is $s\tau_1\tau_2 - i - openset$, but it is not $s\tau_1$ - open set.

Definition1.8. Recall that extension $s\tau^{i}$ is the family of all *SIOS* subsets of space X.

Remark 1.9. (X, τ^i, E) need not to be *sTs*.

Definition1.10. A *sTs* (X, τ, E) is called soft topologically extended for *SIOS* (shortly *S.T.E.S.I.*) if and only if (X, τ^i, E) is *sTs*. If not, it's referred to as not *S.T.E.S.I*.

Theorem1.11. Let $X \neq \phi$ be a finite set, with $\tau = \{\varphi, (W, E), X\}$ where, (W, E) is a soft single subset of X (containing only one element). Then, (X, τ, E) is S.T.E.S.I. (i.e. (X, τ^i, E) is sTs).

Corollary1.12. Let (X, τ_1, τ_2, E) be a *S.BI.T.S* and let (X, τ_1, E) be a (*S.T.E.S.I.*). Similar to Theorem 1.11, let $s\tau_2 = s\tau_1^i$ where, $s\tau_1^i$ the largest family of all *SIOS* in (X, τ_1, E) , then, $s\tau_1\tau_2 - i - opensets = s\tau_2$.

Proof: Assume that $X = \{j_1, j_2, \dots, j_n\}$ and $\tau_1 = \{\phi, \{(e_1, \{j_1\}), (e_2, \{j_1\})\}, X\}$.

 $s\tau_1$ - open sets are : ϕ , { $(e_1, \{j_1\}), (e_2, \{j_1\})$ }, X. By definition of soft i-open sets, we have:

$$\begin{split} s\tau_{1}^{i} &= \{ \phi, \{(e_{1}, \{j_{1}\}), (e_{2}, \{j_{1}\})\}, \{(e_{1}, \{j_{1}, j_{2}\}), (e_{2}, \{j_{1}, j_{2}\})\}, \{(e_{1}, \{j_{1}, j_{3}\}), (e_{2}, \{j_{1}, j_{3}\})\}, \dots, (e_{1}, \{j_{1}, j_{2}, j_{3}\})\}, \{(e_{1}, \{j_{1}, j_{2}, j_{4}\}), (e_{2}, \{j_{1}, j_{2}, j_{4}\})\}, \dots, (e_{1}, \{j_{1}, j_{2}, j_{3}\})\}, \{(e_{1}, \{j_{1}, j_{2}, j_{4}\}), (e_{2}, \{j_{1}, j_{2}, j_{4}\})\}, \dots, (e_{1}, \{j_{1}, j_{3}, j_{4}, j_{n}\}), (e_{2}, \{j_{1}, j_{2}, j_{4}\})\}, \\ \{(e_{1}, \{j_{1}, j_{2}, j_{3}, \dots, j_{n}\}), (e_{2}, \{j_{1}, j_{2}, j_{3}, \dots, j_{n}\})\} = X\}. \quad \text{Since,} \quad s\tau_{2} = s\tau_{1}^{i}, \quad \text{Then,} \quad s\tau_{2} - closed \ sets \ are: \\ \{(e_{1}, \{j_{1}, j_{3}, j_{4}, j_{n}\}), (e_{2}, \{j_{1}, j_{3}, j_{4}, j_{n}\})\} = X\{(e_{1}, \{j_{3}, j_{4}, \dots, j_{n}\}), (e_{2}, \{j_{3}, j_{4}, \dots, j_{n}\})\}, \\ \{(e_{1}, \{j_{2}, j_{4}, \dots, j_{n}\}), (e_{2}, \{j_{2}, j_{4}, \dots, j_{n}\})\} = X\{(e_{1}, \{j_{2}, \dots, j_{n-1}\}), (e_{2}, \{j_{2}, \dots, j_{n-1}\})\}, \\ \{(e_{1}, \{j_{3}, \dots, j_{n}\}), (e_{2}, \{j_{4}, \dots, j_{n}\})\}, (e_{1}, \{j_{3}, j_{5}, \dots, j_{n}\}), (e_{2}, \{j_{3}, j_{5}, \dots, j_{n}\})\}, \\ \{(e_{1}, \{j_{3}, \dots, j_{n-1}\}), (e_{2}, \{j_{3}, \dots, j_{n-1}\})\}, \dots, \{(e_{1}, \{j_{2}\}), (e_{2}, \{j_{2}\})\}, \phi. \end{split}$$

Since, $\{(e_1, \{j_1\}), (e_2, \{j_1\})\}$ is the alone $s \, s \, \tau_1 - openset \neq \phi, X$ and the intersection between $\{(e_1, \{j_1\}), (e_2, \{j_1\})\}$ and the soft sets $\{(e_1, \{j_2\}), (e_2, \{j_2\})\}, \{(e_1, \{j_3\}), (e_2, \{j_3\})\}, \dots, \{(e_1, \{j_2, j_3\}), (e_2, \{j_2, j_3\})\}, \dots, \{(e_1, \{j_2, j_3\}), (e_2, \{j_2, j_3\})\}, \dots, \{(e_1, \{j_2, j_3, j_4\}), (e_2, \{j_2, j_3, j_4\})\}, \dots, \{(e_1, \{j_2, j_3, j_n\}), (e_2, \{j_2, j_3, j_n\})\}, \dots, \{(e_1, \{j_3, j_4, j_n\}), (e_2, \{j_3, j_4, j_n\}), (e_1, \{j_3, j_4, j_n\}), (e_2, \{j_1, j_3, j_4, j_n\})\}, \dots, \{(e_1, \{j_3, j_4, j_n\}), (e_2, \{j_1, j_3, j_4, j_n\})\}$ which does not contain $\{(e_1, \{j_1, \}), (e_2, \{j_1, \})\}$, equal to ϕ , similarly, in Theorem 1.11, we have:

 $s\tau_1\tau_2 - i - opensets = s\tau_2$ where, $s\tau_2 = s\tau_1^i$.

Example1.13. Let $X = \{r, z, w\}$, $E = \{e_1, e_2\}$ $s\tau_1 = \{\phi, \{(e_1, \{r\}), (e_2, \{r\})\}, X\},\$

$$s\tau_{2} = s\tau_{1}^{i} = \{\phi, \{(e_{1}, \{r\}), (e_{2}, \{r\})\}, \{(e_{1}, \{r, z\}), (e_{2}, \{r, z\})\}, \{(e_{1}, \{r, w\}), (e_{2}, \{r, w\})\}, X\}$$

$$s\tau_{2} - closed sets are \ \phi, \{(e_{1}, \{z, w\}), (e_{2}, \{z, w\})\}, \{(e_{1}, \{w\}), (e_{2}, \{w\})\}, \{(e_{1}, \{z\}), (e_{2}, \{z\})\}, X\}$$

$$s\tau_1\tau_2 - i - opensets = s\tau_2$$

Definition 1.14. A subset (M, E) of S.BI.T.S (X, τ_1, τ_2, E) is called:

1. $s\tau_1\tau_2$ – generalized closed set ($s\tau_1\tau_2 - g$ – closed set) if $s\tau_2 - Cl(M, E) \subseteq (U, E)$ where $(M, E) \subseteq (U, E)$ and $(U, E) \subseteq X$ is $s\tau_1$ – openset.

2. $s\tau_1\tau_2 - g$ - openset if $(M, E)^C$ is $s\tau_1\tau_2 - g$ - closed.

3. $s\tau_1\tau_2 - gi - openset$ if $(F, E) \subseteq s\tau_2 - Int_i(M, E)$ where $(F, E) \subseteq (M, E) \subseteq X$ is $s\tau_1 - closed set$.

4. $s\tau_1\tau_2 - gi - closedset$ if $(M, E)^c$ is $s\tau_1\tau_2 - gi - open$.

5. $s\tau_1\tau_2 - i - star genral zed closed set (s\tau_1\tau_2 - i * g - closed set)$ if $s\tau_2 - Cl(M, E) \subseteq (U, E)$ where, $(M, E) \subseteq (U, E)$ and $(U, E) \subseteq X$ is $s\tau_1 - i - openset$.

6. $s\tau_1\tau_2 - i - stargenralzed openset$ ($s\tau_1\tau_2 - i * g - openset$) if $(M, E)^C$ is $s\tau_1\tau_2 - i * g - closed$.

7. $s\tau_1\tau_2$ - genralzedw-closed set ($s\tau_1\tau_2$ - gw-closed set) if $s\tau_2$ - $Cl_w(A) \subseteq (U, E)$ where $(M, E) \subseteq (U, E)$ and $(U, E) \subseteq X$ is $s\tau_1$ - openset.

8. $s\tau_1\tau_2$ - genralzedw-openset($s\tau_1\tau_2$ - gw-openset) if $(M, E)^C$ is $s\tau_1\tau_2$ - gw-closed.

Example 1.15. Let $X = \{q, r, z\}$ (Finite), $\tau_1 = \{\phi, \{(e_1, \{q\}), (e_2, \{q\})\}, X\}$ $\tau_2 = \{\phi, \{(e_1, \{q\}), (e_2, \{q\})\}, X\}$. $E = \{e_1, e_2\}$

 $s\tau_1 - opensets = \{\phi, \{(e_1, \{q\}), (e_2, \{q\})\}, X\} s\tau_1 - closedsets = \{\phi, \{(e_1, \{r, z\}), (e_2, \{r, z\})\}, X\}$

 $s\tau_{1} - w - closed \ sets = \{\phi, \{(e_{1}, \{q\}), (e_{2}, \{q\})\}, \{(e_{1}, \{r\}), (e_{2}, \{r\})\}, \{(e_{1}, \{z\}), (e_{2}, \{z\})\}, \{(e_{1}, \{q, z\}), (e_{2}, \{q, z\})\}, X\} = s\tau_{1} - w - opensets$ $s\tau_{1} - i - opensets = \{\phi, \{(e_{1}, \{q\}), (e_{2}, \{q\})\}, \{(e_{1}, \{q, r\}), (e_{2}, \{q, r\})\}, \{(e_{1}, \{q, z\}), (e_{2}, \{q, z\})\}, X\}$

 $s\tau_1 - i - closed sets = \{\phi, \{(e_1, \{r, z\}), (e_2, \{r, z\})\}, \{(e_1, \{z\}), (e_2, \{z\})\}, \{(e_1, \{r\}), (e_2, \{r\})\}, X\}$

 $s\tau_2 - opensets = \{\phi, \{(e_1, \{q\}), (e_2, \{q\})\}, X, s\tau_2 - closedsets : \phi, \{(e_1, \{r, z\}), (e_2, \{r, z\})\}, X\}$

$$\begin{split} s\tau_2 - w - closed \ sets = \phi, \ \{(e_1, \{q\}), (e_2, \{q\})\}, \ \{(e_1, \{r\}), (e_2, \{r\})\}, \ \{(e_1, \{z\}), (e_2, \{z\})\}, \ \{(e_1, \{q, r\}), (e_2, \{q, r\})\}, \ \{(e_1, \{q, z\}), (e_2, \{q, z\})\}, \ \{(e_1, \{q, z\}), (e_2, \{q, z\})\}, \ \{(e_1, \{r, z\}), (e_2, \{r, z\})\}, \ X\} \end{split}$$

 $= s\tau_2 - w - opensets$

$$\begin{split} s\tau_2 - i - opensets &= \{\phi, \{(e_1, \{q\}), (e_2, \{q\})\}, \{(e_1, \{q, r\}), (e_2, \{q, r\})\}, \{(e_1, \{q, z\}), (e_2, \{q, z\})\}, X\} \\ s\tau_2 - i - closed sets &= \{\phi, \{(e_1, \{r, z\}), (e_2, \{r, z\})\}, \{(e_1, \{z\}), (e_2, \{z\})\}, \{(e_1, \{r\}), (e_2, \{r\})\}, X\} \\ s\tau_1\tau_2 - g - closed sets &= \{\phi, \{(e_1, \{r\}), (e_2, \{r\})\}, \{(e_1, \{z\}), (e_2, \{z\})\}, \{(e_1, \{q, r\}), (e_2, \{q, r\})\}, \{(e_1, \{q, z\}), (e_2, \{q, z\})\}, \{(e_1, \{r, z\}), (e_2, \{r, z\})\}, X\} \end{split}$$

 $\{(e_1, \{a\}), (e_2, \{a\})\}, \text{ is not } s\tau_1\tau_2 - g - closed set \ because \\ s\tau_2 - Cl(\{(e_1, \{q\}), (e_2, \{q\})\}) = X \subseteq X \\ but \ s\tau_2 - Cl(\{(e_1, \{q\}), (e_2, \{q\})\}) = X \not\subset \{(e_1, \{q\}), (e_2, \{q\})\} (definition(1.14)(1)). \\ s\tau_1\tau_2 - g - opensets = \{\phi, \{(e_1, \{q, z\}), (e_2, \{q, z\})\}, \{(e_1, \{q, r\}), (e_2, \{q, r\})\}, \{(e_1, \{z\}), (e_2, \{z\})\}, \\ \{(e_1, \{r\}), (e_2, \{r\})\}, \{(e_1, \{q\}), (e_2, \{q\})\}, X\} \quad \text{But, } \{(e_1, \{r, z\}), (e_2, \{r, z\})\}, \text{ is not } s\tau_1\tau_2 - g - openset \\ \text{because, } \{(e_1, \{q\}), (e_2, \{q\})\}^C = \{(e_1, \{r, z\}), (e_2, \{r, z\})\}, \text{ and } \{(e_1, \{q\}), (e_2, \{q\})\}, \\ \text{ is not } s\tau_1\tau_2 - g - closed set(difinition(1.14(2))) \\ s\tau_1\tau_2 - gi - opensets = \{\phi, X\}, \ s\tau_1\tau_2 - gi - closed sets = \{\phi, X\} \\ \end{cases}$

 $s\tau_1\tau_2 - i * g - closed sets = \{\phi, \{(e_1, \{r, z\}), (e_2, \{r, z\})\}, X\}$

 $s\tau_1\tau_2 - i * g - opensets = \{\phi, \{(e_1, \{q\}), (e_2, \{q\})\}, X\}$

 $s\tau_{1}\tau_{2} - gw - closed \ sets = \{\phi, \{(e_{1}, \{q\}), (e_{2}, \{q\})\}, \{(e_{1}, \{r\}), (e_{2}, \{r\})\}, \{(e_{1}, \{z\}), (e_{2}, \{z\})\}, \{(e_{1}, \{q, r\}), (e_{2}, \{q, r\})\}, \{(e_{1}, \{q, z\}), (e_{2}, \{q, z\})\}, \{(e_{1}, \{r, z\}), (e_{2}, \{r, z\})\}, X\} = s\tau_{1}\tau_{2} - gw - open \ sets$

Example 1.16. Let X = R (" infinite"), $s\tau_1 = \{\phi, R - Q, R\}$ $s\tau_2 = \{\phi, Q, R\}$. Where, *R* is the set of real numbers, *Q* is the set of rational numbers and R - Q is the set of irrational numbers.

From definitions mentioned above, we have:

 $s\tau_1 - opensets: \phi, R - Q, R \cdot s\tau_1 - w - closed sets = \{\phi, R - Q, Q, R\} = s\tau_1 - w - opensets, s\tau_1 - i - opensets: \phi, R - Q, R, s\tau_2 - opensets: \phi, Q, R, s\tau_2 - w - closed sets \{\phi, R - Q, Q, R\}$

 $s\tau_2 - i - opensets: \phi, Q, R, \quad s\tau_1\tau_2 - g - closedsets = \{\phi, R - Q, Q, R\} \quad s\tau_1\tau_2 - gi - opensets: \phi, Q, R, \\ s\tau_1\tau_2 - i*g - closedsets = \{\phi, R - Q, Q, R\}, \quad s\tau_1\tau_2 - gw - closedsets = \{\phi, R - Q, Q, R\}$

2. Soft i-Star Generalized w-Closed and Soft i-Star Generalized w-Open Sets in Soft Bi-Topological Spaces.

Definition 2.1. A set (M, E) of S.BI.T.S (X, τ_1, τ_2, E) is said to be $soft \tau_1 \tau_2 - i - star genralizedw - closed set (s \tau_1 \tau_2 - i * g w - closed set), if$ $s \tau_2 - Cl_w(M, E) \subseteq (U, E), (M, E) \subseteq (U, E) \text{ and } (U, E) \subseteq X \text{ is a } s \tau_1 - i - openset.$

Example 1.15 shows us: $s\tau_1\tau_2 - i * gw - closed sets = \phi, \{(e_1, \{q\}), (e_2, \{q\})\}, \{(e_1, \{r\}), (e_2, \{r\})\}, \{(e_1, \{q, r\}), (e_2, \{q, r\})\}, \{(e_1, \{q,$

Example 1.16, shows us: $s\tau_1\tau_2 - i*gw$ -closed sets: $\phi, R - Q, Q, R$,

Remark 2.2. [2] Each soft open set in (X, τ, E) is SIOS.

Theorem 2.3. Let (X, τ_1, τ_2, E) be *S.BI.T.S* and $(M, E) \subseteq X$. The following statements are correct:

1. If (M,E) is $s\tau_2 - w - closed$ then, (M,E) is $s\tau_1\tau_2 - i*gw - closed$.

2. If (M, E) is $s\tau_1 - i - open$ and $s\tau_1\tau_2 - i^*gw - closed$ then, (M, E) is $s\tau_2 - w - closed$.

3. If (M, E) is $s\tau_1\tau_2 - i^*gw$ -closed then, (M, E) is $s\tau_1\tau_2 - gw$ -closed.

Proof:

1. Let (M, E) be $s\tau_2 - w - closed$, $(M, E) \subseteq (U, E)$ and $(U, E) \subseteq X$ are $s\tau_1 - i - open$ then $s\tau_2 - Cl_w(M, E) = (M, E) \subseteq (U, E)$. Therefore, (M, E) is $s\tau_1\tau_2 - i^*gw - closed$.

2. Assume that (M, E) is $s\tau_1 - i - open$ and $s\tau_1\tau_2 - i * gw - closed$. Let $(M, E) \subseteq (M, E)$ and (M, E) is $s\tau_1 - i - open$. Then, $s\tau_2 - Cl_w(M, E) \subseteq (M, E)$. Therefore, $s\tau_2 - Cl_w(M, E) = (M, E)$. Then, (M, E) is $s\tau_2 - w - closed$.

3. Suppose that (M, E) is $s\tau_1\tau_2 - i^*gw - closed$. Let $(M, E) \subseteq (U, E)$ and $(U, E) \subseteq X$ is $s\tau_1 - open$. Since, (U, E) is $s\tau_1 - i - open$ in X "Remark 2.2", we get, $s\tau_2 - Cl_w(M, E) \subseteq (U, E)$. Then, (M, E) is $s\tau_1\tau_2 - gw - closed$.

Theorem 2.4. Let (X, τ_1, τ_2, E) be *S.BI.T.S*, then every $s\tau_1\tau_2 - i^*g - closedset$ in X is $s\tau_1\tau_2 - i^*gw - closed$.

Proof: Let (M, E) be $s\tau_1\tau_2 - i*g - closedset$, we have, $"s\tau_2 - Cl(M, E) \subseteq (U, E)"$, where " $(M, E) \subseteq (U, E)$ " and $(U, E) \subseteq X$ are $s\tau_1 - i - openset$.

Since, $s\tau_2 - Cl_w(M, E) \subseteq s\tau_2 - Cl(M, E)$, we get $s\tau_2 - Cl_w(M, E) \subseteq s\tau_2 - Cl(M, E) \subseteq (U, E)$. Therefore, (M, E) is $s\tau_1\tau_2 - i^*gw$ -closed.

Remark 2.5. The inverse of Theorem 2.4 is untrue. In fact, "Example 1.15", $(M,E) = \{(e_1, \{q,r\}), (e_2, \{q,r\})\}$ is $s\tau_1\tau_2 - i^*gw$ -closed set, but is not $s\tau_1\tau_2 - i^*g$ -closed.

Theorem 2.6. If (M, E) is $s\tau_1\tau_2 - i^*gw - closedset$ in X and $(M, E) \subseteq (B, E) \subseteq s\tau_2 - Cl_w(M, E)$, then (B, E) is $s\tau_1\tau_2 - i^*gw - closedset$.

Proof: Suppose that (M, E) is $s\tau_1\tau_2 - i^*gw - closed set$ in X and $(M, E) \subseteq (B, E) \subseteq s\tau_2 - Cl_w(M, E)$. Let $(B, E) \subseteq (U, E)$ and (U, E) is $s\tau_1 - i - openset$. Then, $(M, E) \subseteq (U, E)$.Since, (M, E) is $s\tau_1\tau_2 - i^*gw - closed set$, we have $s\tau_2 - Cl_w(M, E) \subseteq (U, E)$. Since, $(B, E) \subseteq s\tau_2 - Cl_w(M, E)$, $s\tau_2 - Cl_w(B, E) \subseteq s\tau_2 - Cl_w(M, E) \subseteq (U, E)$. Hence, (B, E) is $s\tau_1\tau_2 - i^*gw - closed$. **Theorem 2.7.** If (M, E) and (B, E) are $s\tau_1\tau_2 - i*gw-closed sets$ then, so is $(M, E) \cup (B, E)$.

Proof: Suppose that (M, E) and (B, E) are $s\tau_1\tau_2 - i^*gw - closed sets$. Let $(U, E) \subseteq X$ be $s\tau_1 - i - openset$ and $(M, E) \subseteq (U, E)$. Then, $(M, E) \cup (B, E) \subseteq (U, E)$ and $(B, E) \subseteq (U, E)$. Since, (M, E) and (B, E) are $s\tau_1\tau_2 - i^*gw - closed sets$, we have, $s\tau_2 - Cl_w(M, E) \subseteq (U, E)$ and $s\tau_2 - Cl_w(B, E) \subseteq (U, E)$. Then, $s\tau_2 - Cl_w((M, E) \cup (B, E)) \subseteq (U, E)$. Therefore, $(M, E) \cup (B, E)$ is $s\tau_1\tau_2 - i^*gw - closed set$.

Theorem 2.8. Let $(M, E) \subseteq X$, then:

1. If (M, E) is $s\tau_2$ -closed then, (M, E) is $s\tau_2$ -w-closed.

- 2. If (M, E) is " $s\tau_1\tau_2 i * g closed$ " then, (M, E) is $s\tau_1\tau_2 g closed$.
- 3. If (M, E) is " $s\tau_1\tau_2 g$ closed "then, (M, E) is $s\tau_1\tau_2 gw$ -closed.

Proof:

1.Let (M, E) be $s\tau_2 - closed$. Then $s\tau_2 - Cl (M, E) = (M, E)$.

Since, $s\tau_2 - Cl_w(M, E) \subseteq s\tau_2 - Cl(M, E) = (M, E)$, we have $s\tau_2 - Cl_w(M, E) = (M, E)$. Therefore, (M, E) is $s\tau_2 - w - closed$.

2. Let (M, E) be $s\tau_1\tau_2 - i*g - closed$. Let $"(M, E) \subseteq (U, E)"$ and $(U, E) \subseteq X$ is $s\tau_1 - open$. Therefore, $s\tau_2 - Cl(M, E) \subseteq (U, E)$. Then, (M, E) is $s\tau_1\tau_2 - g - closed$.

3. Let (M, E) be $s\tau_1\tau_2 - g - closed$. Let $"(M, E) \subseteq (U, E)"$ and $(U, E) \subseteq X$ are $s\tau_1 - open$. Therefore, $s\tau_2 - Cl \ (M, E) \subseteq (U, E)$.

Since $s\tau_2 - Cl_w(M, E) \subseteq s\tau_2 - Cl(M, E) \subseteq (U, E)$, we have, $s\tau_2 - Cl_w(M, E) \subseteq (U, E)$. Then, (M, E) is $s\tau_1\tau_2 - gw - closed$.

Remark 2.9. Theorem 2.8's converse is untrue. In fact, Example 1.15, $(M,E) = \{(e_1,\{q,z\}), (e_2,\{q,z\})\}$ is $s\tau_2 - w - closed set$, but it is not $s\tau_2 - closed$, (M,E) is $s\tau_1\tau_2 - g - closed set$, but it is not $s\tau_1\tau_2 - i * g - closed set$. Also $(M_2,E) = \{(e_1,\{q\}), (e_2,\{q\})\}$ is $s\tau_1\tau_2 - gw - closed$ set but, it is not $s\tau_1\tau_2 - g - closed$.

Definition 2.10. A soft set (M, E) of *S.BI.T.S* (X, τ_1, τ_2, E) is said to be $s\tau_1\tau_2 - i - stargenralzedw-openset (shortly(<math>s\tau_1\tau_2 - i^*gw-openset$)), if $(M, E)^C$ is $s\tau_1\tau_2 - i^*gw-closedset$.

Example 1.15, shows us: $s\tau_1\tau_2 - i^*gw$ -open $sets = \phi$, $\{(e_1, \{q\}), (e_2, \{q\})\}$, $\{(e_1, \{r\}), (e_2, \{r\})\}$, $\{(e_1, \{q, r\}), (e_2, \{q, r\})\}$, $\{(e_1, \{q, r\}), (e_2, \{r, r\})\}$, $\{(e_1, \{r, r\}), (e_2, \{r,$

Example 1.16, shows us: $s\tau_1\tau_2 - i^*gw$ -opensets: $\phi, R - Q, Q, R$,

Theorem 2.11. (M, E) is $s\tau_1\tau_2 - i^*gw$ -openset if and only if $(F, E) \subseteq s\tau_2 - Int_w(A)$, where $(F, E) \subseteq (M, E)$ and $(F, E) \subseteq X$ is $s\tau_1 - i$ -closed set.

Proof: Assume that (M, E) is $s\tau_1\tau_2 - i^*gw - openset$, $(F, E) \subseteq X$ is $s\tau_1 - i - closed set$ and $(F, E) \subseteq (M, E)$. Then $(F, E)^C$ is $s\tau_1 - i - open$ and $(M, E)^C \subseteq (F, E)^C$. Since, $(M, E)^C$ is $s\tau_1\tau_2 - i^*gw - closed set$, we have $s\tau_2 - Cl_w((M, E)^C) \subseteq (M, F)^C$. Since, $s\tau_2 - Cl_w((M, E)^C) = [s\tau_2 - Int_w(M, E)]^C$, we have, $(F, E) \subseteq s\tau_2 - Int_w(M, E)$.

Conversely, suppose that $(F, E) \subseteq s\tau_2 - Int_w(M, E)$ where $(F, E) \subseteq (M, E)$ and $(F, E) \subseteq X$ is $s\tau_1 - i$ -closed set. Then, $(M, E)^C \subseteq (F, E)^C$ and $(F, E)^C$ is $s\tau_1 - i$ -open. Since, $(F, E) \subseteq s\tau_2 - Int_w(M, E)$ and $s\tau_2 - Cl_w((M, E)^C) = [s\tau_2 - Int_w(M, E)]^C$, we have, $s\tau_2 - Cl_w((M, E)^C) \subseteq (F, E)^C$. Then, $(M, E)^C$ is $s\tau_1\tau_2 - i^*gw$ -closed set. Therefore, (M, E) is $s\tau_1\tau_2 - i^*gw$ -openset.

Theorem 2.12. If (S_1, E) and (S_2, E) are separated $s\tau_1\tau_2 - i*gw$ -opensets, then so is $(S_1, E) \cup (S_2, E)$.

Proof: Suppose that (S_1, E) and (S_2, E) are $s\tau_1\tau_2 - i*gw$ -opensets. Let $(F, E) \subseteq X$ be $s\tau_1 - i$ -closed set and $(F, E) \subseteq (S_1, E) \cup (S_2, E)$. Since (S_1, E) and (S_2, E) are separated soft sets, we have, $s\tau_1 - Cl(S_1, E) \cap (S_2, E) = (S_1, E) \cap s\tau_1 - Cl(S_2, E) = \phi$.

Also, $s\tau_2 - Cl(S_1, E) \cap (S_2, E) = (S_1, E) \cap s\tau_2 - Cl(S_2, E) = \phi$.

Then, $(F, E) \cap s\tau_2 - Cl(S_1, E) \subseteq ((S_1, E) \cup (S_2, E)) \cap s\tau_2 - Cl(S_1, E) = (S_1, E)$. By the same way, we have, $(F, E) \cap s\tau_2 - Cl(S_2, E) \subseteq (S_2, E)$. Since, $(F, E) \subseteq X$ is $s\tau_1 - i - closedset$, we have, $(F, E) \cap s\tau_1 - Cl(S_1, E)$ and $(F, E) \cap s\tau_1 - Cl(S_2, E)$ are $s\tau_1 - i - closedsets$. Since, (S_1, E) and (S_2, E) are $s\tau_1\tau_2 - i^*gw$ -opensets, we have, $(F, E) \cap s\tau_2 - Cl(S_1, E) \subseteq s\tau_2 - Int_w(S_1, E)$ and $(F, E) \cap s\tau_2 - Cl(S_2, E) \subseteq s\tau_2 - Int_w(S_2, E)$.

Now $(F, E) = (F, E) \cap ((S_1, E) \cup (S_2, E)) \subseteq ((F, E) \cap s\tau_2 - Cl(S_1, E)) \cup ((F, E) \cap s\tau_2 - Cl(S_2, E))$ $\subseteq s\tau_2 - Int_w((S_1, E) \cup (S_2, E)) \text{ Therefore, } (S_1, E) \cup (S_2, E) \text{ is } s\tau_1\tau_2 - i^*gw - openset.$ **Theorem 2.13.** If (S_1, E) and (S_2, E) are $s\tau_1\tau_2 - i*gw-opensets$ then so is $(S_1, E) \cap (S_2, E)$

Proof: Suppose that (S_1, E) and (S_2, E) are $s\tau_1\tau_2 - i^*gw$ -opensets. Let $(F, E) \subseteq X$ be $s\tau_1 - i$ -closed set and $(F, E) \subseteq (S_1, E) \cap (S_2, E)$, we have $(F, E) \subseteq (S_1, E)$ and $(F, E) \subseteq (S_2, E)$. Since, (S_1, E) and (S_2, E) are $s\tau_1\tau_2 - i^*gw$ -opensets, we have $(F, E) \subseteq s\tau_2 - Int_w(S_1, E)$ and $(F, E) \subseteq s\tau_2 - Int_w(S_2, E)$. Then $(F, E) \subseteq s\tau_2 - Int_w((S_1, E) \cap (S_2, E))$. Therefore, $(S_1, E) \cap (S_2, E)$ is $s\tau_1\tau_2 - i^*gw$ -openset.

Theorem 2.14. If (M_1, E) is $s\tau_1\tau_2 - i^*gw$ -openset in X and $s\tau_2 - Int_w(M_1, E) \subseteq (M_2, E) \subseteq (M_1, E)$, then (M_2, E) is $s\tau_1\tau_2 - i^*gw$ -openset.

 (M_1, E) is $s\tau_1\tau_2 - i^*gw$ -openset X **Proof:** Suppose that in and $s\tau_2 - Int_w(M_1, E) \subseteq (M_2, E) \subseteq (M_1, E)$. Let $(F, E) \subseteq X$ be $s\tau_1 - i - closed set$ and $(F, E) \subseteq (M_2, E)$. Since, $(F,E) \subseteq (M_2,E)$ and $(M_2,E) \subseteq (M_1,E)$, we have $(F,E) \subseteq (M_1,E)$. Since, (M_1,E) is $s\tau_1\tau_2 - i^*gw - openset$, we have, $(F,E) \subseteq s\tau_2 - Int_w(M_1,E)$ and Since. $s\tau_2 - Int_w(M_1, E) \subseteq (M_2, E)$, we have, $s\tau_2 - Int_w(M_1, E) \subseteq s\tau_2 - Int_w(M_2, E).$ Then, $(F, E) \subseteq s\tau_2 - Int_w(M_2, E)$. Therefore, (M_2, E) is $s\tau_1\tau_2 - i^*gw$ -openset.

Theorem 2.15. Let (X, τ_1, τ_2, E) be *S.BI.T.S* and $(M, E) \subseteq X$ then the followings are true:

- 1. If (M, E) is $s\tau_2 w$ -open, then it is $s\tau_1\tau_2 i^*gw$ -open.
- 2. If (M, E) is $s\tau_1 i closed$ and $s\tau_1\tau_2 i^*gw open$, then it is $s\tau_2 w open$.
- 3. If (M, E) is $s\tau_1\tau_2 i^*gw open$, then it is $s\tau_1\tau_2 gw open$.
- 4. If (M, E) is $s\tau_1\tau_2 i^*g open$ then it is $s\tau_1\tau_2 i^*gw open$.
- 5. If (M, E) is $s\tau_1\tau_2 i^*g open$ then it is $s\tau_1\tau_2 g open$.
- 6. If (M, E) is $s\tau_1\tau_2 g$ -open then it is $s\tau_1\tau_2 gw$ -open.

Proof:

1. Suppose that (M, E) is $s\tau_2 - w$ -open. We have $(M, E)^c$ is $s\tau_2 - w$ -closed. Then, $(M, E)^c$ is $s\tau_1\tau_2 - i^*gw$ -closed (Theorem 2.3(1)). Therefore, (M, E) is $s\tau_1\tau_2 - i^*gw$ -open.

2. Suppose that (M, E) is $s\tau_1 - i - closed$ and $s\tau_1\tau_2 - i^*gw - open$. Then, $(M, E)^c$ is $s\tau_1 - i - open$ and $s\tau_1\tau_2 - i^*gw - closed$.

Then, $(M, E)^c$ is $s\tau_2 - w$ closed (Theorem 2.3(2)). Therefore, (M, E) is $s\tau_2 - w - open$.

3. Suppose that (M, E) is $s\tau_1\tau_2 - i^*gw$ -open. Then, $(M, E)^C$ is $s\tau_1\tau_2 - i^*gw$ -closed, hence $(M, E)^C$ is $s\tau_1\tau_2 - gw$ -closed (Theorem 2.3(3)). Therefore, (M, E) is $s\tau_1\tau_2 - gw$ -open.

4. Suppose that (M, E) is $s\tau_1\tau_2 - i^*g - open$. Then, $(M, E)^C$ is $s\tau_1\tau_2 - i^*g - closed$, hence $(M, E)^C$ is $s\tau_1\tau_2 - i^*gw - closed$ (Theorem 2.4). Therefore, (M, E) is $s\tau_1\tau_2 - i^*gw - open$.

5. Suppose that (M, E) is $s\tau_1\tau_2 - i^*g - open$. Then, $(M, E)^C$ is $s\tau_1\tau_2 - i^*g - closed$, hence $(M, E)^C$ is $s\tau_1\tau_2 - g - closed$ (Theorem 2.8(2))Therefore, (M, E) is $s\tau_1\tau_2 - g - open$.

6. Suppose that (M, E) is $s\tau_1\tau_2 - g$ - open. Then, $(M, E)^C$ is $s\tau_1\tau_2 - g$ - closed, hence $(M, E)^C$ is $s\tau_1\tau_2 - gw$ -closed (Theorem 2.8(3)). Therefore, (M, E) is $s\tau_1\tau_2 - gw$ -open.

Remark 2.16. The converses of Theorem 2.15(4)(5)(6) are not true. Indeed, In Example 1.15, $(M, E) = \{(e_1, \{b\}), (e_2, \{b\})\}$ is $s\tau_1\tau_2 - i^*gw - open$, but it is not $s\tau_1\tau_2 - i^*g - open$ and $(M, E) = \{(e_1, \{b\}), (e_2, \{b\})\}$ is $s\tau_2 - w - openset$, but it is not $s\tau_2 - open$. Also, $(M, E) = \{(e_1, \{b\}), (e_2, \{b\})\}$ is $s\tau_1\tau_2 - g - openset$, but it is not $s\tau_1\tau_2 - i^*g - openset$.

 $(M, E) = \{(e_1, \{b, c\}), (e_2, \{b, c\})\}$ is $s\tau_1\tau_2 - gw - open$ set but it is not $s\tau_1\tau_2 - g - open$.

Conclusions: From above we concluded that (X, τ^i, E) is not necessary to be sTs and (X, τ, E) is S.T.E.S.I. (i.e. (X, τ^i, E) is sTs if $\tau = \{\varphi, (W, E), X\}$ where, (W, E) is a soft single subset of X (containing only one element). Each $s\tau_1\tau_2 - i^*g - openset$ is $s\tau_1\tau_2 - i^*gw - open$, each $s\tau_2 - openset$ is $s\tau_1\tau_2 - g - open$ and each $s\tau_1\tau_2 - g - openset$ is $s\tau_1\tau_2 - g - open$ and each $s\tau_1\tau_2 - g - openset$ is $s\tau_1\tau_2 - gw - open$ set, but the converses are not true.

Acknowledgment : "The Authors are very grateful to the University of Mosul/ College of Education for Pure Sciences for their provided facilities, which helped to improve the quality of this work"

Author Contributions: All authors contributed equally in writing this article. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

135

[1] K. Y., Al-Zoubi. On generalized w-closed sets, Int. J. of Mathematics and Math. Sciences, 13(2005), pp. 2011-2021.

[2] S.W., Askandar and A.A. Mohammed. Soft ii-open sets in soft topological spaces, *Open Access Library Journal*,7(5)(2020), pp. 1-18.

[3] S.S., Benchalli, P.G., Patil and T.D., Rayanagoudar. On w-Locally Closed Sets in Bitopological Spaces, *Int. Journal of Math. Analysis*, 4(39)(2010), pp. 1937-1944.

[4] R. K., Chandrasekhara and D., Narasemhan. Semi Star Generalized w-closed sets in Bitopological spaces, *Int. J. Contemp. Math. Sciences*, 4(12)(2009), pp. 587-595.

[5] R. K., Chandrasekhara and K., Kannan. Regular Star Generalized Closed Sets in Bitopological Spaces, *Thai J. of Math.*, 4(2)(2006), pp. 341-349.

[6] B. M., Ittanagi. Soft Bitopological Spaces. *International Journal of Computer Applications*, 107(7)(2014), pp. 1-4.

[7] J.C., Kelly. Bitopological Spaces. Proc. London Math. Soc., 13(1963), pp. 71-81.

[8] Y.K., Mahdi. Semi-open and Semi-closed sets in Bitopological spaces, accepted in the first science Conference of education college, Babylon Univ., (2007), February 18-19.

[9] A.A., Mohammed, and S.W., Askandar. i-open sets in bi-topological spaces, *Al-Rafidain Journal of Computer Sciences and Mathematics*, 12(1)(2018), p. 13-23.

[10] D.A., Molodtsov. Soft set theory-first results, Comp. Math. App., 37(4)(1999), pp. 19-31.

[11] N., Nagaveni, and P., Rajarubi. GRW-Closed Sets and GRW-Continuity in Bitopological spaces, *European Journal of Scientific Research*, 78(1)(2012), pp. 5-14.

[12] M., Sheik John and S., Maragathavalli. Strongly αg^* -closed sets in Bitopological spaces, *Int. J. Contemp. Math. Sciences*, 5(17)(2010), pp. 805-813.

[13] M., Sheik John and P., Sundaram. g*-Closed Sets in Bitopological Spaces, *Indian J. Pure appl. Math.*, 35(1)(2004), pp. 71-80.

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an

open access article distributed under the terms and conditions of attribution

-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0).