Synthesis ,Characterization and Identification of New Oxazepine,Oxazepane and Oxazinane Compounds from reaction of Some (Z)-2-((2-hydroxybenzylideneamino)methyl)-2-(hydroxymethyl)propane-1,3-diol Derivatives with some cycloanhydrides.

Waleed F. Hammadi*

Khalid,F.Abdul-Gaffor** Hameed M. Al-Kubaisi **

*University of Anbar - College of Education for women **University of Anbar - College of Science.

ARTICLE INFO

Received: 1 / 8 /2009 Accepted: 25 / 8 /2009 Available online: 14/6/2012 DOI: 10.37652/juaps.2009.15365

Keywords:

Schiffbases; Oxazepine, Oxazepane,

Oxazinan Synthesis;

Properties;

Identification Studies.

ABSTRACT

Z)-2- ((2-hydroxybenzylideneamino)methyl -2 -(hydroxy)propane -1,3-diol,(E) -4- (3-hydroxy-2,2-bis (hydroxyl methyl) propylimino)pentan-2-one, -2- ((4-(hydrazonopentane -2-ylideneamino methyl)-2 -(hydroxyl methyl)propane-1,3-diol and(Z)-2-((4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-ylideneamino)methyl) -2-(hydroxymethyl)propane-1,3-diol were prepared by condensation of 2-(aminomethyl)-2-(hydroxymethyl)propane-1,3-diol with 2-hydroxy benzaldehyde, pentane-2,4-dione, (E)-4-hydrazonopentan-2-one and 4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one .These Schiff- bases were reacted with Succinic, Maleic and Malonic anhydride in absolute ethanol to give 6,7-membered heterocyclic ring system Oxazepine,Oxazepane,Oxazinan.The Schiff-bases and the final products were identified by their melting points, elemental analysis, FT-IR and UV-Visible spectra.

Introduction

The synthesis of 2-phenyl -1,3-oxazepine by irradiation of 4-phenyl-2-oxa-3-aza bicyclo[3.2.0]-hepta-3,6-diene was studied by Toshio Makai with other workers[1]. The discovery of the central nervous system(CNS) activity of 1,4- benzodiazepine [2] encourage the chemists to look for more effective ways to build up the 7- membered heterocyclic ring systems from already available materials. The Sixmembered heterocyclic ring system: 1,3-oxazine has already been reported and thorouly reviewed in the literature [1-4]. Maleic, arylmaleic and substituted maleic anhydrides react with trimethylsilyl azide to give 4- and 5-substituted ((oxauraciles)) dihydro-1,3-oxazine-2,6-diones [5,6].

Both 2- methoxy pyrroline and 2-methoxy piprdinine react with diketene under neutral conditions at 0c to give the corresponding, 2- methoxy dihydro 1,3-oxazine-4-ones [7,8].

One of these ways which has been discovered recently involves direct addition of maleic anhydride to the (C=N) double bond of Schiff - bases and

* Corresponding author at: University of Anbar - College of Education for women, Iraq.E-mail address:

anumber of 2,3-diaryl-2,3-dihydro-1,3-oxazepine- 4,7-diones were prepared and characterized.[5-8]

Diketene reacts with N,N-diphenyl guanidine to give the tranquilizer ketazolam and N-substituted tetrahydro-1,3-oxazine-4-one respectively [9,10]. The reaction of diketene with isocyanic acid, cyanamides and flouro sulphinyl isocyanate afforded the corresponding 1,3-oxazine-2,4-diones [11-13].

Furthermore, thermal rearrangement of ketovinylazirines gave substituted 1,3-oxazepines. [9-14]

N-acyl immonium ions have been the most commonly used dienes to effect [4+2] cycloaddition as 4π components with substituted 1,3-butadienes. It is found that N-acylimines or immonium ions that are capable of tautomerization undergo intermolecular Diels-alder reaction to give dihydro-1,3-oxazines [17].

The reaction of N-Benzylidene 1,5-dimethyl-2-phenylpyrazolonamines (Schiff bases with

Cyclopentane -1,1-dicarboxylic anhydride to give 2-aryl-3-3(1,5-dimethyl-2-phenylpyrazolo)-1-(5) spirocyclopentyltetra hydro-1,3-oxazine-4,6-diones [18]. Synthesis and characterization of 8-(4-dimethyl amino-phenyl)-9-(6-R- benzothiazol-2-yl)-7-oxa-9-aza-spiro[4.5]decane-6,10-dione[19].

Extensive synthesis and testing of the barbiturates over a long time span has produced well-defined structure – activity relationships. Which have been summarized. [20].

Materials and methods

Melting points were recorded with Gallenkamp Melting point Apparatus and were uncorrected. Elemental analysis were carried out with perkin-Elmer,2400;CHN Elemental Analyzer. FT-IR spectra were recorded on FT-IR spectrophotometer -8400s Shimadza (KBr) in Chemistry department of Education for women college AL-Anbar and UV-Visible spectra were recorded (in ethanol) on Schimadza Reco- 160 Spectrophotometer.

Preparation of (Z)-2-((2-hydroxybenzylideneamino)methyl)-2-(hydroxymethyl)propane-1,3-diol:

A mixture of 0.01 mole(1.35 g) of 2-(amino methyl)-2-(hydroxymethyl)propane-1,3-diol and 0.01 mole (1.22 g) of o-hydroxy benzaldehyde in 20 ml of absolute ethanol, was refluxed in a water bath for 1h, then left to cool in ice-water bath whereby yellow crystalline solid was precipitated. The solid was filtered, recrystallized twice from ethanol.

Preparation of (E)-4-(3-hydroxy-2,2-bis(hydroxymethyl)propan-2-one:

A mixture of 0.01 mole(1.35 g) of 2-(amino methyl)-2-(hydroxymethyl)propane-1,3-diol and 0.01 mole (1.0 g) of acetyl acetone in 20 ml of absolute ethanol,

was refluxed in a water bath for 1h, then left to cool in ice-water bath whereby yellow crystalline solid was precipitated. The solid was filtered, recrystallized twice from ethanol.

Preparation of 2-((4- hydrazonopentan-2-ylideneamino)methyl)-2-(hydroxymethyl)propane-1,3-diol:

A mixture of 0.01 mole(2.17 g) of (E)-4-(3-hydroxy-2,2-bis(hydroxymethyl)propan-2-one and 0.01 mole (0.5 g) of hydrazine hydrate in 20 ml of absolute ethanol, was refluxed in a water bath for 1.5h, then left to cool in ice-water bath whereby yellow crystalline solid was precipitated. The solid was filtered, recrystallized twice from ethanol.

Preparation of (E)-4-((3-hydroxy-2,2-bis(hydroxymethyl)propylimino)methyl)-5-methyl-2phenyl-1H-pyrazol-3(2H)-one:

A mixture of 0.01 mole(1.35)of 2-(amino methyl)-2-(hydroxymethyl)propane-1,3-diol and 0.01 mole (2.03g)of 4-aminoanti pyrine in 20 ml of absolute ethanol, was refluxed in a water bath for 1h, then left to cool in ice-water bath whereby pink crystalline solid was precipitated. The solid was filtered, recrystallized twice from ethanol.

Preparation of 3-(3-hydroxy-2,2-bis(hydroxymethyl)propyl)-2-(2-hydroxyphenyl)-2,3-dihydro-1,3-oxazepine-4,7-dione:

In a 100 ml round bottom flask equipped with a double surface condenser fitted with calcium chloride guard tube, was placed a mixture of 0.01mol (2.39g) of (Z)-2-((2-hydroxybenzylideneamino)methyl)-2-(hydroxymethyl)propane-1,3-diol and 0.01 mol (0.98g)of maleic anhydride in 20ml of absolute ethanol.

The reaction mixture was refluxed in water bath at 78°C for 2hr., the solvent was then removed and the resulting solid was recrystallized from anhydrous THF. Compounds 8,11,14 preparation in same of method.

Preparation of 3-(3-hydroxy-2,2-bis(hydroxymethyl)propyl)-2-(2-hydroxyphenyl)-1,3-oxazepane-4,7-dione:

In a 100 ml round bottom flask equipped with a double surface condenser fitted with calcium chloride guard tube, was placed a mixture of 0.01mol (2.39g) of (Z)-2-((2-hydroxybenzylideneamino)methyl)-2-(hydroxymethyl)propane-1,3-diol and 0.01 mol (1.0g)of succin anhydride in 20ml of absolute ethanol. The reaction mixture was refluxed in water bath at 78°C for 2hr., the solvent was then removed and the resulting solid was recrystallized from anhydrous THF. Compounds 9,12,15 preparation in same of method.

Preparation of (R)-3-(3-hydroxy-2,2-bis(hydroxymethyl)propyl)-2-methyl-2-(2-oxopropyl)-1,3-oxazinane-4,6-dione:

In a 100 ml round bottom flask equipped with a double surface condenser fitted with calcium chloride guard tube, was placed a mixture of 0.01mol (1.35g) (E)-4-(3-hydroxy-2,2-

bis(hydroxymethyl)propylimino)pentan-2-one0.01 mol(0.86g) of malonic anhydride in 20ml of absolute ethanol. The reaction mixture was refluxed in water bath at 78°C for 3hr., the solvent was then removed and the resulting solid was recrystallized from anhydrous 1,4-Dioxan. Compounds 10,13,16 preparation in same of method.

Results and Discussion

Schiff bases (1-4) are prepared by condensation of 2-(amino methyl)-2-(hydroxymethyl)propane-1,3-diol with salicyldehyde, acetyl acetone and 4-amino antipyrine.

It is known that Schiff bases react smoothly with acid chlorides and anhydrides to give the corresponding addition products[21-24].

This is indicated by the appearance of the characteristic C=O (lacton-lactam) absorption band at (1665-1680)cm-1 in the FT-IR spectra of addition products (3).

It is impressive to note that the two absorption band at (1800-1950)cm-1 in the FT-IR spectra of pure Maleic ,Succinic and Malonic anhydride have diappeared when the anhydride became of the 6,7membered ring system of the 3-(3-hydroxy-2,2-bis (hydroxymethyl) propyl)-2-phenyl-1,3-oxazepane-4,7dione,3-(3-hydroxy-2,2-bis(hydroxymethyl)propyl)-2phenyl-1,3-oxazepine-4,7-dion and 2-(4-(dimethylamino) phenyl)-3-(3-hydroxy-2,2bis (hydroxymethyl) propyl)-1,3- oxazinane -4,6-dione. The new absorption bands of the (C=O) group in the FT-IR spectra of the addition products (3) appear at (1665-1685)cm-1, this attributed to the fact that the structures of the addition products are combination of the lacton-lactam structure [25]

Furthermore, the UV-Visible spectra of Oxazepine, Oxazinane derivatives show absorption maxima at(240-350)nm due to charge transfer of the cyclic 6,7- membered lactone-lactam combined structure [3]. and positive Br2/CCl4 and KMNO4 tests.

In this paper, the reaction of the Maleic, Succinic and Malonic anhydride with (1-4) Schiff bases gives the dipolar intermediate [2] which collapses to 6,7-membered heterocyclic ring system. [3] is presented.

The reaction of maleic , succinic and malonic anhydride with various Schiff bases is a sort of cycloaddition reaction.

Cycloaddition is a ring formation that results from the addition of bonds to either δ or π with formation of new δ bonds. This class of reactions and its reverse encompasses a large number of individual types.Huisgen (20) has formulated a useful classification of diverse cycloaddition in terms the number of the new δ bond. The ring size of the product, and the number of atoms in the components taking part in the cycloaddition. This cycloaddition reaction is classified as a 2+5-7, and it is the first cycloaddition of this type , although in principle, one would predict that the butadiene cation might add to an olefin through a (4n+2) transition state to yield the cyclohexenyl cation.

Table (1) Melting points, yield, Molecular formula[M.F], elemental analysis of New Schiff bases(1-4)

Table (2) The major FT-IR absorptions (cm-1) of New Schiff bases (1-4)

Compound	O-H str.	N-H str.	C-H str. Aromatic	C=O . str.	C=N str.	C=C str. Aromatic	C-O str.	C-H bend. Aromatic
1	3540	-	3050	-	1610	1580	1310	1010,770
2	3460	-	3070	1690	1605	1585	1320	1020,870
3	3510	3450,3310	3090	-	1620	1580	1310	1010,900
4	3470	3430,3280	3065	1680	1610	1590	1330	1020,870

Table (3) The UV-Visible absorption maxima λ nm of New Schiff bases(1-4)

Compound	UV-Visible absorption maxima λ/nm
1	380,300,266.225.220
2	275,226,220
3	280,244,222
4	375,320,260,251,226

Table (4) Melting point ,percentage yield, molecular formula and elemental analysis of compounds (5-16)

Comp	m.p/c	Yield%	M.F	Calc.		Found			
				C	H	N	С	H	N
5	177-175	72	$C_{16}H_{19}NO_{7}$	56.97	5.68	4.15	56.68	5.55	4.01
6	190-188	66	$C_{16}H_{21}NO_7$	56.63	6.24	4.13	56.45	6.18	3.98
7	211-209	68	$C_{15}H_{19}NO_7$	55.38	5.89	4.31	55.12	5.80	4.21
8	240-238	65	$C_{14}H_{21}NO_7$	53.33	6.71	4.44	53.19	6.65	4.20
9	166-164	80	$C_{14}H_{23}NO_7$	52.99	7.31	4.41	53.04	7.16	4.23
10	170-168	71	$C_{13}H_{21}NO_7$	51.48	6.98	4.62	51.29	6.80	4.54
11	246-244	67	$C_{18}H_{25}N_3O_9$	50.58	5.90	9.83	50.41	5.74	9.70
12	188-186	70	$C_{18}H_{29}N_3O_9$	50.11	6.78	9.74	50.02	6.51	9.48
13	165-163	66	$C_{16}H_{25}N_3O_9$	47.64	6.25	10.42	47.46	6.23	10.28
14	154-152	67	$C_{20}H_{26}N_4O_6$	57.41	6.26	13.39	57.31	5.99	13.10
15	206-104	59	$C_{20}H_{28}N_4O_6$	57.13	6.71	13.33	57.03	6.52	13.08
16	258-256	57	$C_{19}H_{26}N_4O_6$	56.15	6.45	13.79	56.01	6.28	13.62

Table(5)The major IR absorption (cm-1)of compounds (5-16)

Comp.	O-H str.	NH ₂ str.	C=O str.	C=O str. Lacton, lactam	C=N str.	C=C str. Olefin	C=C str. Aromatic	C-O- C str.
5	3510,3470	-	•	1680	1430	1600	1580,1560	1190
6	3520,3480	-	•	1680	1435	•	1580,1540	1180
7	3540,3470	-	•	1670	1450	-	1580,1560	1170
8	3570	-	1710	1685	1440	1610	-	1200
9	3560	-	1700	1670	1430	-	-	1210
10	3555	-	1705	1675	1450	-	-	1200
11	3530	3410,3360	•	1670	1480	1610	-	1190
12	3560	3430,3320	•	1665	1460	-	-	1210
13	3540	3430,3290	•	1680	1450		-	1200
14	3550	3420,3280	•	1670	1430	1600	1580,1555	1190
15	3560	3415,3275	•	1670	1460	•	1580,1565	1180
16	3540	3450,3300	•	1675	1450	-	1580,1565	119

Table (6) Uv-spectra of compounds (5-16)

Tuest (b) C + spectru of compounts (b 10)				
Comp.	UV-Visible absorption maxima λ/nm			
5	320,300,266,230.221			
6	315,255,243,229			
7	333,265,251,243,223			
8	285,265,239,224			
9	289,269,241,236,222			
10	285,240,225,220			
11	1 275,250,235,226			
12	295,250,235,222			
13	290,269,240,235,220			
14	310,300,276,220.			
15	325,235,223			
16	330,285,261,243,223			

References:-

- [1]-Toshio Makai, Tsutomu Kumagai, and Osamu Sashimoto1977, (photochemical and thermal reactions of some heterocycles containing C=N-O and N=C-O group) Pure and Appl. Chem. Vol. 49, pp. 287-308
- [2]- Cheesman, G.W.H. and Greenberg , S.G. 1979, (Synthesis of 5,6-dihydro-4H- pyrrolo[1,2- α] [1,4] benzodiazepines), J. Heterocyclic Chem. 16,241
- [3]- Schiff, H.. 1864, Ann, 131, 118
- [4]- Clifford J. Crewell, Olaf, A. Rungvist, and Malcolm M. Campbell 1972, (Spectral analysis of organic compounds),2nd ed., Longman.
- [5] J. Macmillan, S.Washburen, J. HeterocyclicChem., Vol. 1, No. 6, (1975) pp. 1215.
- [6] J. H. Macmillan., Organic Preparation proceed. Int., Vol.9, No.2, (1977), pp.87.

- [7] H.Uchida, H Iwasawa, and M.Ohta, Synthesis and cycloaddition reaction of 1,3- oxazepine, Chem.Soc.Jpn., Vol.46, No.1, (1973), pp. 3277.
- [8] T,Kato and M. Kando, Synthesis and di cycloaddition reaction of and trisubstituted-1,3-oxazepine,
 - Hetrocycles, Vol.1, No.3, (1975), pp. 927
- [9] R. N.Lacey, Thermal Rearrangement of Tetraphenyl-(Z)- ketovinylazirine J.Chem. Soc, Vol.1, No.3, (1954), pp.839.
- [10] A. Maujean, and J.Chuche, Condensation of Iminines with acetyl chloride and Trimethyl amine, Tet.Lett., Vol.1, No.1, (1976), pp. 2905-8.
- [11]-Gunav, V.I; Mikhailopulo, I- A; Ovechkina , L.F and Zavyalov, S. I; Chem. Abst., 1967,67,5497.
- [12]- Ficini, J. and Genet, J.P; Soc. Chim. Fr., 1974, 2086.

- [13]-Fietch,H.;Glauss,K.;Schmidt, E and Jensen, H.; Chem.Abst.,1976,84,13568f.
- [14]- Kato,T,;Ymamota,Y., Chem.Pharm.Bull.,1967,15,1334.[15]- Kato,T .and Sakamoto, T.,Chem.Abst.,1968,68,11452.
- [16]-Matsuda,I.,;Yamato,S.,and Ishii,Y.; J.Chem.Soc perkin Trans. (1) ,1976,1933.
- [17]-Eckhardt, H.H and Perst,H.; Tet.Lett .,1979,23 2125.
- [18]- Obaid, H., A; National J., Chem. Vol. (7),446-460,(2002).
- [19]- W.F. Alhity;), Journal of Um-Salama for Science Vol. 3,No. 1, (2005), pp. 93-102.
- [20]- Hou, J. P., and Poole, J. W.: J. Pharm . Sci. 58:1150, 1969

- [21]- Waleed,F.Al-hiti and Mohammad,A.Al-Hadithi (Synthesis and characterization of Oxazepine, Oxazepane from reaction of (Schiff-bases) with maleic and Succinic anhydride., J.Of Al-Nahrain university, 2005,8(2),27.
- [22]- T.Tyoji, I. Kuniyoshi, and T. Takashi, Chem., Pharm. Bull., 1987, 35(8), 74.
- [23]- F.A.Hussein, O.H.Abid (Synthesis of some Barbiturates via (Schiff bases). Iraqi Journal of Chemistry ,2000,26,(1),216.
- [24]- R.Huisgen, Chem. Internt., 1968, Edit. 7, 321.
- [25]- M.M.Robert, and W.J.Charless, (Organic Chemistry AProblms; An Approach,) W.A. Bengamine, Inc,p526 (1975).

No.	Name of compounds	Structure
1	(Z)-2-((2-hydroxybenzylideneamino) methyl)-2-(hydroxymethyl) propane-1,3-diol	НО НО НО НО
2	(E)-4-(3-hydroxy-2,2-bis (hydroxymethyl)propylimino)pentan-2-one	H ₃ C CH ₃ OH OH
3	2-((4-hydrazonopentan-2-ylideneamino) methyl)-2-(hydroxymethyl)propane- 1,3-diol	H_2N N CH_3 CH_3 CH_3
4	(Z)-2-((4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-ylideneamino)methyl)-2-(hydroxymethyl)propane-1,3-diol	HO NH ₂ CH ₃ CH ₃

3-(3-hydroxy-2,2-bis(hydroxymethyl) propyl)-2-(2-hydroxyphenyl)-2,3-dihydro- 1,3-oxazepine-4,7-dione	HO O N O OH
3-(3-hydroxy-2,2-bis(hydroxymethyl)propyl)- 2-(2-hydroxyphenyl)-1,3-oxazepane-4,7-dione	HO O O O O O O O O O O O O O O O O O O
3-(3-hydroxy-2,2-bis(hydroxymethyl) propyl)-2-(2-hydroxyphenyl)-1,3- oxazinane-4,6-dione	но он он он
(R)-3-(3-hydroxy-2,2-bis(hydroxymethyl) propyl)-2-methyl-2-(2-oxopropyl)-2,3- dihydro-1,3-oxazepine-4,7-dione	HO O NO O O O O O O O O O O O O O O O O
(R)-3-(3-hydroxy-2,2-bis(hydroxymethyl) propyl)-2-methyl-2-(2-oxopropyl)-1,3-oxazepane-4,7-dione	HO O N O O O O O O O O O O O O O O O O O
(R)-3-(3-hydroxy-2,2-bis(hydroxymethyl) propyl)-2-methyl-2-(2-oxopropyl)-1,3-oxazinane-4,6-dione	O OH OH OH OH

	(R)-3-amino-2-(((S)-3-(3-hydroxy-2,2-bis(hydroxymethyl)propyl)-2-methyl-4,7-dioxo-2,3,4,7-tetrahydro-1,3-oxazepin-2-yl) methyl)-2-methyl-2,3-dihydro-1,3-oxazepine-4,7-dione	HO O O O O O O O O O O O O O O O O O O
12	(R)-3-amino-2-(((S)-3-(3-hydroxy-2,2-bis (hydroxymethyl)propyl)-2-methyl-4,7-dioxo-1,3-oxazepan-2-yl)methyl)-2-methyl-1,3-oxazepane-4,7-dione	HO OH OH
13	(R)-3-amino-2-(((S)-3-(3-hydroxy-2,2-bis(hydroxymethyl)propyl)-2-methyl-4,6-dioxo-1,3-oxazinan-2-yl)methyl)-2-methyl-1,3-oxazinane-4,6-dione	HO HO HO
14	2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1 <i>H</i> -pyrazol-4-yl)-3-(3-hydroxy-2,2-bis(hydroxymethyl)propyl)-2,3-dihydro-1,3-oxazepine-4,7-dione	OH N N NH ₂ OH OH OH
15	2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1 <i>H</i> -pyrazol-4-yl)-3-(3-hydroxy-2,2-bis(hydroxymethyl)propyl)-1,3-oxazepane-4,7-dione	H ₃ C OH OH OH
16	2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1 <i>H</i> -pyrazol-4-yl)-3-(3-hydroxy-2,2-bis(hydroxymethyl)propyl)-1,3-oxazepane-4,7-dione	HO O N O N O CH ₃

تحضير وتشخيص ودراسة الصفات الفيزياوية لمركبات الآوكسازبين ،ألآوكسازبان وألآوكسينان من (Z)-2, ويدروكسي) بروبان-2-هيدروكسي بنزيلدين أمينو) مثيل) (Z)-2 الفاعل قواعد شيف (Z)-3. الباهيدريدات الحلقية

وليد فرج حمادي خالد فاروق عبد الغفور حميد مدلول الكبيسي

الخلاصة:-

تعطي تفاعلات قواعد شيف جديدة (Z) -2 - ((2-هيدروكسي بنزيلدين أمينو) مثيل) -2 - (هيدروكسي) بروبان, -1, 3 - دايول، (2) -2 - ((4- ثنائي مثيل امينو) مثيل) -2 - (هيدروكسي بنزيلدين أمينو) مثيل) بروبان, -1, 3 - دايول و (Z) -2 - ((4- ثنائي مثيل امينو) بنزيلدين أمينو) مثيل) -2 (هيدروكسي مثيل) بروبان -3,1 - دايول مع انهيدريدات السكسنيك ، الماليك والمالونيك الحلقية مركبات سداسية و سباعية الحلقة ، الاوكسازيينات ، الاوكسازيانات ، الاوكسازينات. تم التثبت من صحة التراكيب المحضرة من خلال تعيين درجات الانصهار و طيف الأشعة فوق البنفسجية - المرئية وطيف الأشعة تحت الحمراء FT-IR والتحليل العنصري الدقيق (C.H.N.) .