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Abstract. The author studies the concept of the almost Kahler manifold of class W-parakahler. It is found
the necessary and sufficient condition in which that an almost Kahler manifold of class W-parakahler can
be an Einstein manifold.
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Introduction. The class of almost Kahler manifold was one of the sixteen classes of almost Hermitian
manifold which were found by Gray and Hervella [9]. This class is a generalization of the class Kahler
manifold in which the fundamental form is closed. In 1958 Sasaki [16] proved that the Riemannian metric
which was given on a smooth manifold M generates a Riemannian metric on the tangent space T(M). At tha
beginning this Riemannian metric was called as a Sasaki metric, and then Tachibana and Okumura [17]
defiend an almost complex structure on a tangent fiber Riemannian space with the Sasaki metric. Barros

and Naveira[2] are defined the concept of almost Kahler manifold such that its Riemannian curvature

tensor satisfies the condition of the special Gray’s class Rz. Kasabov [10] found the classification for
conformal flat of almost Kahler manifold of class R2 with dimension grater than 4. Blair[3] proved that

for each case where N > 8, there is no non zero almost Kahler manifold with a constant curvature tensor
and this tensor is equal to zero when this manifold is Kahler. Oguro and Sekigava [13] are proved that an 4-
dimentional almost Kahler manifold was a Kahler manifold.

One of the important subjects of almost Kahler manifold is a constant type. The first one who studied
this concept was Gray [6], [7]. He studied some kinds of nearly Kahler manifolds of a constant type which
they have some properties , for example holomorphic sectional curvature tensor . Kirichenko studied the
property of a constant type on general kinds of almost Hermitian manifold. He found [11] new method for
this study which depends on adjoint G-structure space, with structure group is the unitary group.

The concept of almost Hermitian manifold of class W-parkahler found by Habeeb M. Abood [4] as a
generalization of the concept of almost Hermitian manifold of class Rl (parakahler manifold) . He found

the sufficient and necessary condition in which that an almost Hermitian manifold is W-parakahler

manifold.
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1-Almost Kahler manifold. Let M be an 2n - dimensional smooth manifold, COO (M ) be an algebra of

smooth functions on M, X(M) be a Lie algebra of vector fields on M . Denote by V to the

Riemannian connection of metric g. Let d be the exterior differentiation.

Definition 1.1 [11]. An almost Hermitian structure (AH — structure) on M is a pair of tensors
{ J g =<.,.> } where J is an almost complex structure, § =<.,.> is a Riemannian metric,

such that < JX,JY >=< XY > X,Y € X(M ) A smooth manifold M with AH-structure is called
an almost Hermitian manifold (AH-manifold).
In Ty(M) there exist a basis of the form {6‘1, ...... ‘n» 51, ..... ,En } Its corresponding frame is

{p,gl, ...... ,(S‘n,gl, ..... ,gn}
Suppose that the indices i, j, k, | in the range 7, 2, ....... ,2n and the indices a, b, ¢, d, e, f, g, h in the range

1,2,.. ,n. Denote a=a-+nN, then its corresponding its frame can be written as the form

It is known [12] that the setting an AH-structure on M is equivalent to the setting of a G- structure in the
principle fiber bundle of all complex frames of manifold M which contains G- structure that is the unitary
group U(n), and this U(n) is called an adjoint G- structure. In the space of the adjoint G- structure, the

following forms define matrices which gives components of tensor fields g and J:

0 Iy i \/—_1|n 0
L

Where |n is the unit matrix of order n .
Definition 1.2 [9]. Let M be an AH-manifold with AH-structure { J, g=<.,.> } AH-structure is
called an almost Kahler structure (AK-structure) if the fundamental form Q(X ,Y) =< X,JY >is

closed, i.e. dQQ=0. A smooth manifold M with AK-structure is called an almost Kahler manifold(AK-

manifold)
Remark. By the Banaru’s classification of AH-manifold [1], the AK-manifold satisfies the following

properties:

ab _pc _ [abc] _ _
where Bg‘b and Babc are called Kirichenko’s virtual and structure tensors rspectively.
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Proposition 1.1 [5]. In adjoint G- structure space, the total group of structure equation of AK-manifold is

the following forms:

B abc

1. da)aza)gl\a)b + ap A o

2. da)a:—a)gAa)D+Babc o° Ao
3. da)b =0 /\a)b+8adC oc Aoy +B bed @ C Aot +(A +ZB"leh Bhbd)a) os

4 dBabc Bada) +Babcd Bdbc Badc +Babdwg

where { aé: } are a system of functions in the adjoint G-structure space which are symmetric by the lower

and upper indices.
Proposition 1.2 [15]. The second group of the structure equation of connection in Riemannian manifold is
given by the form:

da)J—a) Aw +1Rk|a)kAa)|,
2

i : . : .
Where {R ikl } is a system of functions which are the components of Riemannian curvature tensor.

Proposition 1.3 [5] . By using the propositions 1.1 and 1.2, the components of Riemannian curvature

tensor of AK-manifold in the adjoint G- structure space are:

LR, =2B&, 2R3, =4B®" By, ~A% 283N B,

w

RE. = A% +2B*" B, —4B"" By, 4 R%;=2B;

5. R =—2B2, & R& =A% +2B"™ B, —4B,, B

bed bed
n Ri;=4B™MB,, —AY-2B""B,, & RY;=—B™
. Rt?cd =4B"® Bhed 10. Rséd = —2Bgab
11. Rg‘cdz ZBdag " Rt?éd _ _gplclabld]

a a
13. Ry = _4B[c\ab\d] 14. Ryeq =2 Bdat():
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a _ d 4 _gpRho
15 R _5=—2Bg 16. R*.: =4B"™" B,

and the others are conjugate of them.
Proposition 1.4 [11] . An AH-manifold is a manifold of a constant type ¢ if and only if

in adjoint G-structure space satisfies:
had ad ad asd acd
Definition 1.3 [15]. A Ricci tensor r is a tensor of type (2,0) which is defined by:
k Kl
fij = Rijk =9 Rijt -
Definition 1.4 [15]. A scalar curvature tensor denoted by k, which is defined by:
k= g . rij .
Proposition 1.5 . An AH-manifold has an J-invariant Ricci tensor if and only if in adjoint G-
structure space satisfies I’k? =0.

Proof. An AH-manifold has an J-invariant Ricci tensor ifan only if Jor=ro J.
Then directly by computing this relation in adjoint G-structure space, we get:

Jo r)ij =(ro J)ij which means that Jli(rjk = I‘iiJlj(

Therefore by (1.1) we get that I‘ba =0.

2- Almost Kahler manifold of class W-parakahler. As for as the Riemannian space is concerned,

the conformal curvature tensor or Wely’s tensor is defined by the form [15]:

Wijki = Rijki . (i 91 + 151 9ik ~ il ik —fjk9i|)+—K (919 jk ~ ik 9j1)
m-2 (m=2)(m-1)

where Rijkl are the components of the Riemannian tensor, rij are the components of Ricci tensor,

gij are components of the Riemannian metric {J and K is the scalar curvature tensor. According to our

case, the AH-manifold which we have, M = 21N, then the Wey!’s tensor is defined by the following:
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K(9i19 jk ~ ik 9ji)

Wijki = Rijk1 + 2 )(kgl il 9ik ~ it 9ik ~ ik 9ir) 2120 -1

This tensor has similar properties to those of the Riemannian curvature tensor.
Definition 2.1 [4] . The AK-manifold is called a conformal parakahler manifold (or of class W-parakahler),

if the conformal curvature tensor satisfies the following equality:
W (X,Y)Z,TY=WIX,IY)Z,T) X,Y,ZeXM)

Note that, this equality is similar to the equality of Rl — manifold(parakahler manifold)[8], so we study

this manifold by the name of W- parakahler manifold.
Proposition 2.1 [4] . The AH-manifold is W- parakahler manifold if and only if, in the ajoint G-structure

space, the following condition satisfies:

Wabed =Wabed =Wypeq =0-

The main result of this paper is the following theorem.

Theorem 2.1 . Suppose that M is an AK-manifold of class W-parakahler with J-invariant Ricci tensor, then
M is an Einstein manifold if and only if M is a manifold of a constant type.

Proof. Suppose that M is an AK-manifold of class W-parakahler with J-invariant Ricci tensor.
By the proposition(2.1) we get:
Wabed =Wabed =Wy50q =0-
The condition WéBCd = 0 means that the Weyl s tensor is given by the form:
-1 k(95.9ad — 954 9ac)
Raped = m(récgﬁd +T5q 9ac —Tad 95 — Ty 9ad) - 22n-D(n-1) (2.1)
Acording to the components of the metric g in (1.1), the equation (2.1) can be as the form:
bea cbca
-1 a ash  bsay K0cdy —9¢dc)
Raip :—r5+r5 —I{0c —107)— (2.2)
abed 2(n—1)( ¢0g *fq% T4 % ~Tcog) 2(2n-1)(n-1)

Suppose that M is Einstein manifold

Since Ricci tensor is J-invariant

Then we get I‘ba = 658 and (2.2) can be written as the form
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k(5652 ~5058)

Ry =— (5250 + 5062 — 5350 — 5062

abed ~ 5(n 1)( ¢ 04 940 ~0q0¢ ~0c0q)- 2(2n-1)(n-1)
e k ab

R, 52

abed (2(1 n) 2(2n-1)(n- 1))

Since M is AK-manifold.
Then by proposition 1.3 we obtain:

hab 1 e k ab

B™ Bheg =—( + )

4°2(1-n) 2(2n-1)(n-1)

Therefore, by the proposition 1.4, M is a manifold of the constant type with

k

:8(2(1 n) " 2(2n-1)(n- 1))

Conversely, suppose that M is an AK-manifold of class W-parakahler such that M of a constant type.

Then by the proposition 2.1 we have Wgpeg =Wapcd :Wéf)cd =0.

And by the proposition 1.4 we have Bhab Bhed = 205&?

Therefore we obtain :

bca bca
1 . adb .bea .ach .beay K0cdy—940c)

hab -
480, . -
hd =5 47" 2en-1(n-1)

Th t that: (8C — =
enve getthat: (8¢ = T on 1) % = 2n1)

(2.3)
By folding the equation (2.3) by the indices b and d (d=b), then we obtain:

16c(n—-1)(2n-1) -k 58
2n -1
Then 12 = 16¢c(n—-1)(2n-1) -k 52
(2n-1)(2—n)

Since Ricci tensor is J-invariant.

=—(r —1d —rd) =2 -n)rd

Then by the proposition 1.5 we have I'bé =0.
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Then i = 16C(M=D)@n-1) -k
J (2n-1)(2-n) j

16¢c(n—-1)(2n-1) -k
2n-)(2-n)

Therefore M is the Einstein manifold with Einstein constant € =
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