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Abstract. The author studies the concept of the almost Kahler manifold of class W-parakahler. It is found 

the necessary and sufficient condition in which that an almost Kahler manifold of class W-parakahler can 

be an Einstein manifold.  

 

 Key words. Almost Hermitian manifold, almost Kahler manifold, adjoint G-structure space, constant type, 

Einstein manifold. 

 

Introduction. The class of almost Kahler manifold was one of the sixteen classes of almost Hermitian 

manifold which were found by Gray and Hervella [9]. This class is a generalization of the class Kahler 

manifold in which the fundamental form is closed. In 1958 Sasaki [16] proved that the Riemannian metric 

which was given on a smooth manifold M generates a Riemannian metric on the tangent space T(M). At tha 

beginning this Riemannian metric was called as a Sasaki metric, and then Tachibana and Okumura [17] 

defiend an almost complex structure on a tangent fiber Riemannian space with the Sasaki metric. Barros 

and Naveira[2] are defined the concept of almost Kahler manifold such that its Riemannian curvature 

tensor satisfies the condition of the special Gray’s class 2R . Kasabov [10] found the classification for 

conformal flat of almost Kahler manifold of class 2R  with dimension grater than 4. Blair[3] proved that 

for each case where 8n , there is no non zero almost Kahler manifold with a constant curvature tensor 

and this tensor is equal to zero when this manifold is Kahler. Oguro and Sekigava [13] are proved that an 4-

dimentional almost Kahler manifold was a Kahler manifold. 

       One of the important subjects of almost Kahler manifold is a constant type. The first one who studied  

this concept was Gray [6], [7]. He studied some kinds of nearly Kahler manifolds of a constant type which 

they have some properties , for example holomorphic sectional curvature tensor . Kirichenko studied the 

property of a constant type on general kinds of almost Hermitian manifold. He found [11] new method for 

this study which depends on adjoint G-structure space, with structure group is the unitary group. 

        The concept of almost Hermitian manifold of class W-parkahler found by Habeeb M. Abood [4] as a 

generalization of the concept of almost Hermitian manifold of class 1R  (parakahler manifold) . He found 

the sufficient and necessary condition in which that an almost Hermitian manifold is W-parakahler 

manifold.  
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1-Almost Kahler manifold. Let M  be an n2 - dimensional smooth manifold,  MC
 be an algebra of 

smooth functions  on  M ,  MX  be a Lie algebra of vector fields on M . Denote by   to the 

Riemannian connection of metric g. Let d be the exterior differentiation. 

Definition 1.1 [11]. An almost Hermitian structure (AH – structure) on M is a pair of tensors  

  .,., gJ ,  where J is an almost complex structure,  .,.g  is  a Riemannian metric, 

such that  MXYXYXJYJX  ,,,, . A smooth manifold M with AH-structure is called 

an almost Hermitian manifold (AH-manifold). 

       In Tp(M) there exist a basis of the form  nn  ,.....,,,......, 11 . Its corresponding frame is 

 nnp  ,.....,,,......,, 11 . 

 Suppose that the indices i, j, k, l in the range 1, 2, …….,2n and the indices a, b, c, d, e, f, g, h in the range 

1,2,… ,n. Denote  naa ˆ , then its corresponding its frame can be written as the form 

 nnp ˆ1̂1 ,.....,,,......,,  . 

It is known [12] that the setting an AH-structure on M is equivalent to the setting of a G- structure in the 

principle fiber bundle of all complex frames of manifold M which contains G- structure that is the unitary 

group U(n), and this U(n) is called an adjoint G- structure. In the space of the adjoint G- structure, the 

following forms define matrices which gives components of tensor fields g and J: 

    ,
10

01
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0

0
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
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n

ni
j

n

n
ij

I

I
J

I

I
g                                  (1.1) 

Where nI  is the unit matrix of order  n . 

Definition 1.2 [9]. Let M be an AH-manifold with AH-structure   .,., gJ . AH-structure is 

called an almost Kähler structure (AK-structure) if the fundamental form   JYXYX ,),( is 

closed, i.e. 0d . A smooth manifold M with AK-structure is called an almost Kahler manifold(AK-

manifold) 

Remark. By the Banaru’s classification of AH-manifold [1], the AK-manifold satisfies the following 

properties: 

0,0 ][
][  abc

abcc
ab

ab
c BBBB  

where 
ab
cB  and 

abcB are called  Kirichenko’s virtual and structure tensors rspectively. 
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Proposition  1.1 [5]. In adjoint G- structure space, the total group of structure equation of AK-manifold is 

the following forms: 

1. cb
abcba

b
a Bd    

2.
cb

abcb
b
aa Bd        

3. c
d

hbd
achac

bd
dca

bcddc
adc
b

c
b

a
c

a
b

BBABBd   )2(  

4.
c
d

abdb
d

adca
d

dbc
d

abcddabc
d

abc BBBBBdB      

 where  ac
bd

A  are a system of functions in the adjoint G-structure space which are symmetric by the lower 

and upper indices. 

Proposition 1.2 [15]. The second group of the structure equation of connection in Riemannian manifold is 

given by the form:  

lki
jkl

k
j

i
k

i
j Rd  

2

1
, 

Where  i
jkl

R  is a system of functions which are the components of Riemannian curvature tensor. 

Proposition 1.3  [5] . By using the  propositions 1.1 and 1.2, the components of Riemannian curvature 

tensor of AK-manifold in the adjoint G- structure space are:  

1. 
a
bcd

a
bcd

BR 2             2. hbd
achac

bddbh
caha

dcb
BBABBR 24

ˆ
  

3.    cbh
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a
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BBBBAR 42ˆ             4. 

adc
b

a
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ˆ
ˆ            6. 

cbh
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ad

a

dcb
BBBBAR 42

ˆ

ˆˆ   

7.  hac
bdhbd

accah
dbha

dcb
BBABBR 24

ˆ
ˆˆ               8. 

bcd
a

a

dcb
BR 

ˆ
ˆˆˆ  

9.   hcd
haba

cdb
BBR 4ˆ           10.  
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d

a

dcb
BR 2

ˆˆ    

11.   
dab

c
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dcb
BR 2ˆˆ                    12. 

][
ˆˆˆ 4

dabca

dcb
BR    

13.   ][
ˆ

4 dabc
a
bcd BR            14.  

c
dab

a
dcb BR 2

ˆ
ˆ    
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15  
d

cab
a

dbc
BR 2

ˆ
ˆ                  16. hab

hcda

dcb
BBR 4

ˆ
ˆˆ
  

   and  the others are conjugate of them. 

   Proposition 1.4  [11] . An AH-manifold is a manifold of a constant type c if and only if 

   in adjoint G-structure space satisfies: 

  
ad
bchbc

had cBB 2  , where  
d
b

a
c

d
c

a
b

ad
bc

  . 

Definition 1.3 [15]. A Ricci tensor r is a tensor of type (2,0) which is defined by: 

kijl
klk

ijkij RgRr  . 

Definition 1.4 [15]. A scalar curvature tensor denoted by k, which is defined by: 

ij
ijrgk  . 

Proposition 1.5 . An AH-manifold has an J-invariant Ricci tensor if and only if in adjoint G-

structure space satisfies  0
ˆ
a

b
r . 

Proof. An AH-manifold has an J-invariant Ricci tensor if an only if JrrJ   . 

Then directly by computing this relation in adjoint G-structure space, we get:  

i
j

i
j JrrJ )()(    which means that 

k
j

i
k

k
j

i
k

JrrJ   

Therefore by (1.1) we get that  0
ˆ
a

b
r . 

2- Almost Kahler manifold of class W-parakahler.  As for as the Riemannian space is concerned, 

the conformal curvature tensor or Wely’s tensor is defined by the form [15]: 

,)(
)1)(2(

)(
2

1
jlgikgjkgilg

mm

K
ilgjkrikgilrikgjlrjlgikr

mijklRijklW 







 where ijklR  are the components of the Riemannian tensor, ijr are the components of Ricci tensor, 

ijg are components of the Riemannian metric g and K is the scalar curvature tensor. According to our 

case, the AH-manifold which we have, nm 2 , then the Weyl’s tensor is defined by the following: 
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)12)(1(2

)(
)(

)1(2

1









nn

jlgikgjkgilgK

ilgjkrikgilrikgjlrjlgikr
n

ijklRijklW

This tensor has similar properties to those of the Riemannian curvature tensor.  

Definition 2.1 [4] . The AK-manifold is called a conformal parakahler manifold (or of class W-parakahler), 

if the conformal curvature tensor satisfies the following equality: 

 TZJYJXWTZYXW ,),(,),(   X , Y , Z X(M) 

Note that, this equality is similar to the equality of 1R manifold(parakahler manifold)[8], so we study 

this manifold by the name of W- parakahler manifold. 

Proposition 2.1  [4] . The AH-manifold is W- parakahler manifold if and only if, in the ajoint G-structure 

space, the following condition satisfies: 

0ˆˆˆ 
cdbabcdaabcd WWW . 

The main result of this paper is the following theorem.  

Theorem 2.1 . Suppose that M is an AK-manifold of class W-parakahler  with J-invariant Ricci tensor, then 

M is an Einstein manifold if and only if M is a manifold of a constant type. 

Proof. Suppose that M is an AK-manifold of class W-parakahler with J-invariant Ricci tensor. 

By the proposition(2.1)  we get: 

0ˆˆˆ 
cdbabcdaabcd WWW . 

The condition 0ˆˆ


cdba
W  means that the Weyl s tensor  is given by the form: 

)1)(12(2

)(
)(

)1(2

1 ˆˆˆˆ
ˆˆˆˆˆˆˆˆˆˆ 









nn

ggggk
grgrgrgr

n
R

cadbdacb
dacbcbdacadbdbcacdba

         (2.1) 

Acording to the components of the metric g in (1.1), the equation (2.1) can be as the form: 

)1)(12(2

)(
)(

)1(2

1
ˆˆ 









nn

k
rrrr

n
R

a
c

b
d

a
d

b
ca

d
b
c

b
c

a
d

a
c

b
d

b
d

a
ccdba


                           (2.2) 

Suppose that M is Einstein manifold  

Since Ricci tensor is J-invariant 

Then we get  
a
b

a
b

er   and (2.2) can be written as the form 
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c

b
c
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a
c

b
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b
d

a
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
  

ab
cdcdba nn

k

n

e
R )

)1)(12(2)1(2
(ˆˆ 




  

 Since M is AK-manifold. 

Then by proposition 1.3 we obtain: 

ab
cdhcd

hab

nn

k

n

e
BB )

)1)(12(2)1(2
(

4

1





  

Therefore, by the proposition 1.4, M is a manifold of the constant type with 

c )
)1)(12(2)1(2

(
8

1




 nn

k

n

e
  

Conversely, suppose that M is an AK-manifold of class W-parakahler such that M of a constant type. 

Then by the proposition 2.1 we have   0ˆˆˆ 
cdbabcdaabcd WWW . 

And by the proposition 1.4 we have  
ab
cdhcd

hab cBB 2 . 

Therefore we obtain : 

)1)(12(2

)(
)(
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1
4




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


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d
b
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b
c

a
d

a
c

b
d

b
d

a
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

  

Then we get that: )(
)1(2

1
)

)12)(1(2
8( a

d
b
c

b
c

a
d

a
c

b
d

b
d

a
c

ab
cd

k rrrr
nnn

c  






                    

(2.3) 

By folding the equation (2.3) by the indices b and d (d=b), then we obtain: 

a
c

a
c

a
c

a
c

a
c rnrrnr

n

knnc
)2()(

12

)12)(1(16





   

Then 
a
c

a
c

nn

knnc
r 

)2)(12(

)12)(1(16




  

Since Ricci tensor is J-invariant. 

Then by the proposition 1.5 we have 0
ˆ
a

b
r . 
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Then 
i
j

i
j

nn

knnc
r 

)2)(12(

)12)(1(16




   

Therefore M is the Einstein manifold with Einstein constant  
)2)(12(

)12)(1(16

nn

knnc
e




 . 
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