On direct product of Semi – neat subgroup of Abelian Group G

Hhtem M .A. Abdullah

College of basic Education. Al-Mustansiriyia Univesity

Abstract:

In [8]. M.A.H. Abdullah gave some new results of pure 1-2 and 3 subgroups of Abelian Group G, and in [9], he gave new definition of subgroups which more general of pure subgroups, called semi-pure.

In This paper we shall gave the general cose of the results by M.A.H Abdullah [9].

We shall define new subgroups which are a family of semi – pure and called semi – neat which more general of semi – neat subgroups. More ever we are studying some general properties of semi – pure, and use these properties to obtain conditions for direct product of semi- neat.

Introduction:

We shall use definitions and some important results of paper [2], [7], [8] and [10]. In this paper we shall give and study some important concept and new results, which is use in the theory of Abelian Groups.

It is well known that a subgroups S of G is said to be pure in G, $(\forall n), x \in S$ and $(\forall n), n \in Z^+$ if n|x in G then n|x in S (See[4]60).

And S is neat in G if $\forall p$ (p is prime number if p|x in G then p|x in S.

In more general case of neat subgroups, we shall define new subgroups as the following:

١

Definition A

Let S be a subgroup of G, we said S is semi neat in G if S satisfy the following condition:

 $(\forall a), a \in S$ and for some P (prime number), if p|a in G then p|a is S (1)

Clearly every neat subgroup of G is semi – neat in G.

Example: Suppose that $G = Z_{12}$ and $S = \{0, 6\}$.

Take p=3, so we have 3|6 in G, because 3(6)=6, and the solution element (6) belong to S, which means that 3|6 in S.

Thus, S is a semi –neat in G.

By the above definition of the semi – neat subgroup, we consequently, that the pure subgroups are is well known that the following diagram of implications.

Divisible \rightarrow	pure	\rightarrow	Neat
\downarrow	\downarrow		\downarrow
Semi - divisible→	semi – pure	\rightarrow	Semi – neat

Remark: I (a) = $\langle a \rangle \cup f$ (a), where $\langle a \rangle$ is a cyclic - semi group generated by a, and we denoted f (a) by the set of the solution of eq (1).

Clearly $f(a) \supseteq f(a)$ for all $n \in Z^+$, we need the following lemma s to get some results.

Lemma A: For all $x \in G$, $x \notin f(a)$ and for all $m \in Z^+$ then $I(a^m) \not\subset I(a)$.

Proof:

Evidently $\langle a^m \rangle \subseteq \langle a \rangle$ and $f(a^m) \subseteq f(a)$. Hence I $(a^m) \subseteq I$ (a). But a is the only generator of the semi - group $\langle a \rangle$. Hence $a \notin \langle a^m \rangle$ what together with $a \notin f$ (a). Implies $a \notin f$ (a^m) . This means that $a \notin \langle a^m \rangle \cup f(a^m) = I(a^m)$. Therefore I $(a^m) \subset I$ (a).

Lemma B:

IF a \notin f (a), then a is the only generator of I (a) and is also the only generator of a \cup f(a).

<u>Proof:</u>

Let I (b)=I (a) hold. If $b \in \{a^2, a^3, \dots\}$ Then I (b) \subset I (a), if $b \in f(a)$ then

العرو الثاني والسبعون ١١ ٢٠٢

On direct product of Semi – neat subgroup of Abelian Group G Hhtem M .A. Abdullah

I (b) \subseteq f(a) \subseteq I (a), hence I (b) \subseteq I (a) hold too. The prooffor a \cup f(a) is similar.

Lemma C:

IF I (a) = I (b) the either $a \in f(a)$ and $b \in f(b)$ or $a \notin f(a)$ and $b \notin f(b)$.

Proof:

If I (a) =I (b), $a \in f(a)$ and $b \notin f(b)$ then a=b. Since I (b) has the only generator by b. But this is a contradiction with the fact that $a \in f(a)$, $b \notin f(b)$

Lemma D:

Let $a \in JI\{si \mid i \in I\}$, where si are semi- neat subgroups f G and let: $r(a) = Max \{n \in N \mid a^n \notin f(a)\}$ and $r(a) = Max \{n \in N \mid a \notin f(ai)\}$ Then $r(a) = Max \{r(ai) \mid i \in I\}$

<u>Remark</u>

1- Max {r (ai), $i \in I$ } always exists, since r (ai) <= r (a) 2. the elements $a, b \in S$, where S is semi-next in C

2- the elements $a, b \in S$, where S is semi neat in G,

Proof

The equality holds if $a \in f(a)$ i.e. if $ai \in f(ai)$, for all $i \in I$. In this case r(a)=0, r(ai)=0 for all $i \in I$ (see[1].p121) Hence Max $\{r(ai)/i \in I\}=0$ too. If $a \notin f(a)$, then $R(a) = Max \{n \in N / a^n \notin f(a)\} >= 1$ But $a^{r(a)} \notin f(a), a^{r(a)+1} \in f(a)$, therefore there exists $a_k \in I$ such that $a^{r(a)} \notin f(a_k), a_k^{r(a)+1} \in f(a_k)$, hence $r(a_k)=r(a)$ For all $I \in I$. moreover $r(a_k)=r(a)$. Thus are have Max $\{r(ai)/i \in I\} = r(a)$. Now, we are ready to show the following result.

٣

Theorem 1:

Let S be a semi - neat in G, and let a, $b \in S$ then I (a) $\not\subset$ I (b) if and only if either a \cup f (a) $\not\subset$ b \cup f (b) or there exists an $n \ge 2$ such that a=bⁿ.

Proof

Let I (a) \subset I (b), then either a \in f(b) or a= bⁿ, n \in {2,3,...}. Let a \in f(b). If I (a) =f(b) then b \in f(b), hence b \cup f(b) =f(b). But in this case a \cup f(a) \subseteq I (a) \subset I (b) = f(b)=b \cup f(b) holds i.e a \cup f(a) \subset b \cup f(b). If a \in f (b) and I (b) \supset f (b), then b \in f (b), hence b \cup f(b) \supset f(b). But in this case a \cup f(a) \subseteq f(b) \subset b \cup f(b) ,hence a \cup f(a) \subset b \cup f(b) again.

Conversely, let a \cup f(a) \subset b \cup f(a) hold, then b \neq a ,hence

 $a \in f(a)$. This I (a) $\subseteq f(b) \subseteq I(b)$. If I (a) = I (b), then

 $(a \neq b), a \in f(a) \text{ and } b \in f(a), \text{ hence } a \cup f(a) \subseteq b \cup f(b) \text{ and } b \in f(a)$

 $b \cup f(b) \subseteq a \cup f(a)$,therefore $b \cup f(b) = a \cup f(a)$. But this is a contradiction with

a \cup f(a) $\not\subset$ b \cup f(b). thus I (a) \neq I (b) and since that a= bⁿ, then I (a) $\not\subset$ I(b)

Now, we shall give the characterization of I(a) $\not\subset$ I(b) by the direct product of semi- neat subgroups .

Theorem 2:

Let $s = JI \{ si \mid i \in I \}$, where si are semi-neat subgroups, $a, b \in S$ then $I(a) \not\subset I(b) \leftrightarrow ai \cup f(ai) \not\subset bi \cup f(bi)$ for all $i \in I$.

Proof:

Let I (a) $\not\subset$ t I (b). Since a, b \in Sand s= JI { si | i \in I} so

I (ai) $\not\subset$ t I (bi) for all $i \in$ I. By using above theorem we get

ai \cup f(ai) $\not\subset$ t $\ bi \cup$ f(bi) .

Conversely, let ai \cup f (ai) $\not\subset$ t bi \cup f (bi) for all i \in I, then bi \neq ai, hence

ai \in f(bi). This implies I (ai) \subseteq f (bi) \subseteq I (bi). If I (ai) = I (bi) then (ai \neq bi), ai \in f(bi)and bi \in f(ai) ,hence

ai \cup f(ai) \subseteq bi \cup f(bi) therefore ,we get ai \cup f(ai)=bi \cup f(bi).but this is a

contradiction to the fact ai \cup f(ai) $\not\subset$ bi \cup f(bi) we obtain I(ai) \neq I(bi)

On direct product of Semi – neat subgroup of Abelian Group G Hhtem M .A. Abdullah

for all $i \in I$. Thus I(a) $\subset \subset I(b)$.

Theorem 3:

Let $s=JI \{si | i \in I \}$ when si are semi- neat subgroups of G, a, $b \in s$ then

I (ai) $\not\subset$ I(bi) \leftrightarrow ai \cup f(ai) $\not\subset$ bi \cup f(bi) for all i \in I.

Proof:

Let I (ai) $\not\subset$ I(bi) for all $i \in I$.

Therefore we have I (a) $\not\subset$ I (b). By using theorem 2 we get ai \cup f(ai) $\not\subset$ bi \cup f(bi) for all i \in I.

Conversely, if we have ai \cup f (ai) $\not\subset$ bi \cup f (bi) for all i \in I, so we get

 $ai \neq bi$ for all $i \in I$. Therefore $ai \in f$ (bi) and this implies

 $I(ai) \subseteq f(bi) \subseteq I(bi)$

Again by theorem2 we get I (a) $\not\subset$ I (b), but ai \neq bi so ai \in f(bi) and bi \in f(ai), thus ai \cup f(ai) = bi \cup f(bi), but this is contradiction with ai \cup f(ai) $\not\subset$ bi \cup f(bi) we obtain I(ai) \neq I(bi) and so I(ai) $\not\subset$ I(bi)

From theorems 1,2 and 3 we get the following characterization of direct product of semi – neat subgroups of G by the last theorem. Theorem A_{1}

Theorem 4:

Let $s = JI \{ si | I \in I, si are semi - pure subgroups of G \} a, b \in S$ then the following conditions are equivalent:

(i) $I(a) \not\subset I(b)$

(ii) ai \cup f(ai) $\not\subset$ bi \cup f(bi)for all i \in I(iii) I (ai) $\not\subset$ I)bi)for all i \in I

<u>References</u>

- [1] ABRHAN, and Stake, 1. R-systems of unary alyebras . J Math (1993) slovaca p.120-123
- [2] CATINO,F on complete ideals in semigroups Czech .Math J .40(115) 1990 155-158.
- [3] FABBICI, lone-sided direct product of two semigroups (ACTA. Math .1994. Hungary p.160-166).
- [4] Fuchs. LASZIO, Abelian Groups. U.S.A (1980).
- [5] Fuchs. LASZIO, Infinite Abelian Groups. U.S.A (1980)
- [6] Lagos's.Generalized ideals in semi-groups Acta, SCI, Math 22 (1961) 217-222. (Hungary).
- [7] MICCOLI, M.M on-ideals in semi-groups Czech .Mathj 39 (114)

العرو الثاني والسبعون ١١ ٢٠٢

On direct product of Semi – neat subgroup of Abelian Group G Hhtem M .A. Abdullah

1989. (522-527)

- [8] M.A.H.Abdulla on pure-1-2 and 3 subgroups PU .M.A ser A vol. 3 no 3-4 p 135-139 Italy (1992).
- [9] M.A.H. Abdulla. Direct product of semi pure. Abhath Zeka V.4 P: 119-226 (2008).
- [10] STEINFEID .0 RIngs and semI-groups. AcadeI'rlla kado Buaapest

(1979).

[11] SULKA .R on Maximal principle ideals of semigroups. PU.M.A ser D vol. 2 NO 1-2 p (111-113) ITALY (1990).