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Abstract : In this research, we have important results about finding the relationship between 
the best approximation degree and the so called  modulus ( or Sendov- Popov modulus ) of 
order k  in the space 1,)(, pIL p , and the polynomial is copositive with the function f  
at the points in an interval ],[ bbI  , and also found assessment between the best 
approximation degree  by algebraic polynomial of degree 1 k  , and the modulus of 
smoothness of degree k , to the function )()( 0

, sp JILf    , 1p  .  
 
1.1. INTRODUCTION , DIFINITIONS AND MAIN RESULTS    
   The theory of Whitney is one of the achievements of scientist Hassler  Whitney in 
approximation theory . The following theory called  Whitney theorem , which provides the 
following :  (Let  pbaLf p 0],,[ , then there exists 11   kkq ,a polynomial of 

degree 1 k ,such that 
              pkbaLk baabfcqf

p
]),[,,(

],[1     

 
   Whitney theorem was proved by Burkill [6] when (  pk ,2 ), Whitney ([6],[7]) when 
( p ), Brudnyi [12] when (  p1 ), Storozhenko  [4] when ( 10  p ). In [9]  
K.A.kopotun  proved the Whitney theorem  of type  k-monotone functions . In(2003) E.S. 
Bhaya [5] proved in theorem (2.1.1) the Whitney theorem of interpolators type for k-
monotone functions for K.A.Kopotun: 
 
Theorem 1.1.1: Let kmNkm  ,,  and )(IWf m

p
k  .Then for any, 1 kn , there 

exists a polynomial nnp   such that : 
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   The classical Whitney theorem establishes the equivalence between the modulus of 
smoothness pr IIf ),,( and the error best approximation pr fE )(  of  a function RIf :  
by algebraic polynomials of degree 1 r  in  pLp 1, [5]. 
 
1.1.2.THE WEIGHTED QUASI  NORMED  SPACE    
   The weighted normed linear space )(, IL p , 1p  , which is the set of all  functions f  on 
the interval I , ],[ bbI   , b   is a positive integer and   is  increasing function called  
weight , hat is the weighted quasi normed space can be define in form 
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1.1.4.THE SPACE )(, IL p , 1p  
   Let  f  function  in )(, IL p , 1p  quasi-normed spaces  , where  ],[ bbI  ,  be an 
interval such that I  and the function    is a positive , that is 0)()( ttf   for every 

0)( tf  and It . 
   The different structure of the spaces  pL , , 10  p  and the numerous questions by others 
lead us to understand the need for the following few facts about pL ,  , 1p . 
   The study of  approximation will be using polynomials, which will represented by the 
symbol p  . The polynomials used in our work differ in the form and according to the degree 
of what we want to achieve in the proof  . Let 0s  and let  siis jJ 1  be the collections  of  
points, so that :  

011 ... jbjjbj ss   , where for  0,0 Js  . We set  



s

i
in jttp

1
)()( . 

 and we let )(0
sJ  be the set of functions f  which change their sign exactly at the points 

si Jj  , and we will write 0f  . Note that our assumption is equivalent to  
btbJttf s  ,0),()( . By ( [11] )for pq 0 ,and by the same method there exists 

)(qc , such that  
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   We consider the space pL ,  ,consisting of all functions f   on an interval I  for which  
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1.1.5. MODULUS OF SMOOTHNESS   
   The modulus of smoothness are intended for mathematicians working in approximation 
theory, numerical analysis and real analysis. Measuring the smoothness of a function by 
differentiability is too crude for many purposes in approximation theory. More subtle 
measurement are provided by the modulus of smoothness. We will use modulus of 
smoothness which are connected with difference of higher orders. 
   For every function f  we define the kth symmetric difference ([10]) of )(, ILf p  , is given 
by 
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 , is the binomial coefficient. 

 
   The kth usual modulus of smoothness ([3]) of a function )(, ILf p ,defined by 
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  The so called  modulus (or sendov-popov modulus) ([8]) an averaged modulus of 
smoothness, defined for bounded measurable functions on I  by: 
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is the kth local modulus of smoothness ([1])of f  .From the definition one can easily see  

                ,, ),,(),,(   IfIf kk  
 
   A new way of measuring smoothness was introduced by Ditzian and Totik ([13]). The 
Ditzian-Totik modulus of smoothness of )(, ILf p  , 1p  which is defined for such an f  
as follows:  
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  After this introduction , the main results which wants to prove : 
 
Theorem 1.1.8.(Whitney Theorem) Let 1,)()( 0

,  pJILf sp  , and let 

1,)(0
11   kJg skk , interpolate f  at 1k  points in side AJ  where  

 IbIbJ A    , then  
   
              pkILk IIfkpCfgf

p
,)(1 ),,(),()(

,





   



 
Theorem 1.1.9. Let 1,)()( 0

,  pJILf sp  then there exist a polynomial  

1,)(0
11   kJp skk  satisfy : 
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1.2. NEW CHEBYSHEV PARTITION  
   We have used in this paper the  following notations , facts also the partition of period i  , 
therefore we found new Chebyshev partition , which is take the form:            

n
jaX j
cos  ,  a positive integer such that nja  0,1  , to an  interval I . Now we  

denote  ],[ 1 jjj XXI        
1 jjjj XXIh  nj 0,  , and  

2

1)()(
nn

ttn 
     hence  

)()( 21 tchtc njn   for jIt  . 
   For  1101 ...,,...,  ssss jbjjbjjjJ  we denote by )(0

sJ  the set of all functions 

)()( 0
, sp JILf  

 has  s0  change sign k  times in sJ  [2],in particular if 0s , then 
)( 0

00 J  denotes the set of all nonnegative functions on ],[ bb .  
    
   Let  iisi

jj   10
min      where bj 0   and bjs 1 . If ),( )(1)( ijiji XXj   , si ,...,1  then it 
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nj 1  , then jiij hcJkhc 21 )1(    , where c is a positive number ,  si ,...,1  , and 
there for , we get the following facts which we used to prove many results 
 
                 )(thJ njii   also  )()( ttnn ni   for it                       … (1.2.1 
 
   We would like to point out that the symbol  i  , 1,...,1  kv  , not represent a derivatives 
but a symbol of a set of points that exist between )(ijX  and 1)( ijX , meaning within an period 

i  , and 
s

i
iI

1

 , we  proved many  results and theories  on the period  i , and the fact that the 

periods i  , si ,...,1  isomorphic and have the same properties , so is the proof of these 
results is true on the aggregate period I  . In [5] , recall that for any continuous function f  on 

],[ ba  there exist an algebraic polynomial 1kp  of degree 1 k  interpolating f inside ],[ ba   
,such that  
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1.3.AUXILIARY RESULTS 
   Our aim in Auxiliary results is  to present the following Lemma and demonstrate its , which 
are important to complete the target which we want to reach it.   
 
 



Lemma 1.3.1. Let iiJ   and 1,)()( 0
,  pLf iip  .Then there exist 

)()( 0
11 ikk fp    interpolate f  at 1k  , points in side iJ  ,  then for any constant 
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Proof: 

Case (1) :Let iiJ  , and suppose  
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polynomial of degree 1 k , interpolating f  inside iJ  and belongs to )(0
i .Since 

0)( ijf  ,  si ,...,1 ,and we now that )(1 fpk  is nondecreasing for  ji tj  , and hence  
0)(1  fpk   for ji tj    (since  0)( itf  ).  

   Thus 0)(1   fpf k ,  changes sign in side i . In particular 0)(1   fpf k  for 
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then for any constant 0  such that :         
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Case (2): By the same method in case (1) and in particular 0)(1   fpf k  
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   From the above cases and since AJ  super set in the interpolate set of  iJ  and by (1.3.2) and 
(1.3.3) then obtain 
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Lemma 1.3.4.  Let )()( 0

, iipLf     , then there exist )()( 0
11 ikk fp    

interpolate f  at 1k  points inside i , such that 
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Proof: 
   For an interval iJ  ,  such that  
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   Since ii Jk )1(   , which means i  consists of 1k  interval iJ  with iiJk  )1( , 
4k , therefore let 
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   It is sufficient to prove (1.3.5) for the interval i  ,  from the fact (1.2.1) assume 

iii JkJ  )1(  , 4k . 
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   Now , applied the same relation in (1.2.2) , for  an interval iJ  , we get 
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Lemma 1.3.7. Let 1,)()( 0

,  pLf iip   , then there exist  a polynomial  

)()( 0
11 ikk fq    interpolate f  at 1k  the points inside i , such that  
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Proof: 
   By using Lemma (1.3.4), there exist a polynomial 1kq  of degree 1 k  copositive with f  

in i  and interpolate f  at the points  inside i , hence  we have from (1.3.4) 
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   By  -modulus (or Sendove Popov modulus) with weight  ,  for f  on i , we get  
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1.4. PROOF OF THEOREM 1.1.8  
 
   Let 0  be a fixed and let sii ,...,1,   be an interval of length 
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   Also by (1.3.4)  there exist  a linear polynomial  111 )(   kkk fhh  copositive and  

interpolate f  at k  points in side BJ  , where 
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by lemma (1.3.1) , we get 
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by lemma (1.3.7) and inequality (1.4.1) we get 
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also there exist a linear polynomial 11   kkg , copositive and  interpolate f  at k  points in 
side  AJ  , where bIb     also  bIb   , hence  
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and  by lemma (1.3.7) and inequality (1.4.2) we get 
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(1.4.3) means there exist a polynomial copositive and interpolate f  in an  interval AJ  , such 
that  bIb    and satisfy the Whitney theorem .  
    



   And by the same method in the above  we can  get the same result for an interval AJ  such 
that  Ibb   .  
   Hence the result is true for I . If 0   then the inequality (1.4.3) is not true. 
 
 
1.5. PROOF OF THEOREM 1.1.9 
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   By (1.3.4)  there  exist a polynomial  )(`1 fqk  such that  
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 مѧѧن  تقریѧѧب وبѧѧین المقیѧѧاس أفѧѧضل العلاقѧѧة بѧѧین درجѧѧة أیجѧѧاد فѧѧي ھѧѧذا البحѧѧث لѧѧدینا نتѧѧائج رئیѧѧسیة حѧѧول :المѧѧستخلص 
,)(,1  فѧي الفѧضاء   kالرتبѧة pIL p  ةѧѧوان الدال  f ةѧون حافظѧارة تكѧللإشѧاط فѧد النقѧѧرة  عنѧѧي الفت],[ bbI   
  وبѧین مقیѧاس النعومѧة 1k یѧساوي أو تقریب بواسطة متعددة حدود درجتھا اقѧل أفضل العلاقة بین درجة أیجاد تم وأیضا

)()( للدالة  k یساوي أوذو درجة اقل  0
, sp JILf  ، 1p للإشارة المحافظة.   
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