

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Approximately 2-Absorbing Submodule

Safa Hussam Kadhim^{a,} *, Farhan Dakhil shyaa^a

°university of Al-Qadisah colleg og Education Depart of Mathematics..Email: Post33@qu.edu.iq, farhan.shyaa@qu.edu.iq

ARTICLEINFO

Article history: Received: dd /mm/year Rrevised form: dd /mm/year Accepted : dd /mm/year Available online: dd /mm/year ABSTRACT

In this paper present and study the notion of approximately 2-Absorbing submodules as generalization of 2-Absorbing submodules. Many new properties of this class obtain.

MSC..

Keywords:

2-absorbing submodule, approximately 2-Absorbing submodule, prime submodule

https://doi.org/10.29304/jqcsm.2023.15.31307

1. Introduction

Throughout this paper *R* is a commutative ring with $1 \neq 0$ and *M* is a unitary *R*-module. A. Y. Darainm and F. Soheilnia in [1] introduced the concept of 2-Absorbing submodule where a proper submodule N of *M* is called 2-absorbing submodule of *M* if whenever a, $b \in R, m \in M$ and $abm \in N$, then $am \in N$ or $bm \in N$ or $ab \in (N:M)$.

Our concern in this paper is define and study the concept approximately 2-Absorbing submodule and give many new properties and characterizations.

2. Approximately 2-Absorbing Submodule

Definition 2.1: let N < M, N is called Approximately 2-Absorbing Submodule if whenever a, b \in R, m \in M, abm \in N, then either $a^2m \in N$ or $b^2m \in N$ or $(ab)^2 \in (N: M)$.

Remarks and Example 2.2:

1. every 2- absorbing submodule \Rightarrow Approximately 2-Absorbing Submodule

proof:

*Corresponding author

Email addresses:

Communicated by 'sub etitor'

let a, b \in R, abm \in N \rightarrow am \in N or bm \in N or ab \in (N:M). Then we get

 $a^2m \in N$ or $b^2m \in N$ or $(a b)^2 \in (N:M)$ but the converse is not true for example

 $M = Z_{24}$ asZ - Module let $N = \langle 8 \rangle$ N is not 2 – absorbing by $2.2.2 \in N$ but $2.2 \notin (N: M) = 8Z$ and $2.2 \notin M$. Now N is approximately 2- absorbing

 $2.2.2 \in N$ we get $2^{2}2=8 \in N$ or $2.4.1 \in N$ we get $4^{2}.1=16 \in N$ or $2^{2}.2 \in N$ or $(2.2)^{2} = 16 \in 8 Z = (N: M)$ or $4.2.2 \in N$ or $4^{2}.2 \in N$ or $8.1.1 \in N$ or $8^{2}.1 \in N$.

- 2. "The intersection of each pair of distinct prime submodules of R-module M is Approximately 2-Absorbing Submodule "[1].
- 3. It is clear that every prime submodule is Approximately 2-Absorbing Submodule. However, the converse is not truein general, for example: Consider z_6 as Z-module, < 0 > not prime submodule of z_6 since 2.3 = 0 but $3 \notin < 0 > and 2 \notin (< 0 >: z_6)$ but $< 0 >=< 2 > \cap < 3 >$ and is approximately 2- absorbing sub module of z_6 as Z-module by part 1.
- 4. Let N be Approximately 2-Absorbing Submodule of M, then for each $A \subseteq M$, either $A \subseteq N$ or $A \cap N$ is

Approximately 2-Absorbing Submodule of A

Proof: Suppose $A \not\subseteq N$ then to prove $A \cap N$ is *T* of A

Let $abx \in A \cap N$ with N is approximately 2 absorbing and $x \in M$, a, $b \in R$

We get $a^2 x \in N$ or $b^2 x \in N$ or $(ab)^2 \in (N:M)$ then $a^2 x \in A \cap N$ or $b^2 x \in A \cap N$ or $(ab)^2 \in (A \cap N:A)$

5. Let N ,W be two submodules of an R-module M and N < W . If N is Approximately 2-Absorbing Submodule of M , then N is Approximately 2-Absorbing Submodule of W

proof: If W = M nothing to prove. Let $abx \in N$, $a, b, \in R$, $x \in w$ *then* $x \in M$. But N is T of M so either $a^2x \in N$ or $b^2x \in N$ or $(ab)^2 \in (N: M)$ and since N <W implies $(N: M) \leq (N:W)$ then either $a^2x \in N$ or $b^2x \in N$ or $(ab)^2 \in (N:W)$ hence N is Approximately 2-Absorbing Submodule of W

- 6. sine every quasi-prime submodule is 2-absorbing, (where a proper submodule N of M is called quasi-prime submodule if whenever a, $b \in R$, $m \in M$ and $abm \in N$, then $am \in N$ or $bm \in N$)[2] hence it is Approximately 2-Absorbing Submodule. However Approximately 2-Absorbing Submodule may not be quasi-prime, as the following example shown : Consider the Z-module Z. The submodule N =4Z is Approximately 2-Absorbing Submodule of Z since, if a,b,c \in Z with $abc \in 4Z = N$, then at least two of a,b,c are even . Hence either $(ab)^2 \in N$ or $a^2c \in N$ or $b^2c \in N$. But 4Z is not quasi-prime, since 2.2.1 \in 4Z but 2.1 \notin 4Z.
- 7. Let Nand W be two submodules of an R-module M such that $N \cong W$

If N is Approximately 2-Absorbing Submodule, it is not necessary that W is as the following example explains this :

Consider the Z-module Z , the submodule 2Z is T but $2Z \cong 30Z$ and 30Z is not T since $2.3.5 = 30 \in 30Z$ but $2^2.5 \notin 30Z$ and $(2.3)^2 = 36 \notin 30Z$.

8. The intersection of two Approximately 2-Absorbing Submodule need not be approximately 2-Absorbing Submodule for example : 6 Z and 5 Z are Approximately 2-Absorbing Submodule in the Z -module Z , but 6 Z ∩ 5 Z = 30 Z which is not approximately 2-absorbing.

Proposition 2.3:Let $\varphi: M \rightarrow M'$ be an R-epimorphism. If W is Approximately 2-Absorbing Submodule of M', then φ^- ¹(W) is Approximately 2-Absorbing Submodule of M.

proof: Let $\phi : M \rightarrow M$ epimorphism , If w is Approximately 2-Absorbing Submodule then $\phi^{-1}(W)$ is Approximately 2-Absorbing Submodule of M < M' then $\varphi^{-1}(W) < M$ since φ epimorphism, let bam $\in \varphi^{-1}(W)$ a, b $\in \mathbb{R}$, m $\in M$ a b φ (m) \in W and as is W is T then either b² θ (m) \in w or (ab)² \in (W: M) or a² φ (m) \in W if a² φ (m) \in W then a² m \in $\varphi^{-1}(W)$ if

 $b^2 \varphi(m) \in w$ then $b^2 m \in (\varphi^{-1}W)$ if $(ab)^2 \in (W; M')$ then $(ab)^2 M' \subseteq W$ but

 $\varphi(M) \subseteq M$ so $(ab)^2 \varphi(M) \subseteq W$ that is $(ab)^2 M \subseteq \varphi^{-1}(W)$

 $(ab)^2 \in (\varphi^{-1}(W) M) \oplus \varphi^{-1}(W)$ is Approximately 2-Absorbing Submodule of M.

Proposition 2.4: $f: M \to M'$ be an epimorphism, N < M such that kerf $\subseteq N$ then N is T of M if and only if f(N) is Approximately 2-Absorbing Submodule of M'.

proof:Let $abm' \in f(N)$, $m' \in M'$, $a, b \in R$, m' = f(m) for some $m \in M$

 $abf(m) \in f(N)$ so abf(m) = f(n), for some $n \in N$ f (abm) -f(n) = 0

we get $abm - n \in kerf \subseteq N$ implies that a b m - n \in N but (N is T) so either $a^2m \in$ N or $b^2m \in$ N or $(ab)^2 \in$ (N: M) if $a^2m \in N$ Then $f(m) \in f(N)$ that is $a^2 f(m) \in f(N)$ so $a^2m' \in f(N)$ similarly if $b^2m \in N$ then $f(b^2m) \in f(N)$ implies that $b^2m' \in f(N)$ if $(ab)^2 \in (N:M)$ then $(ab)^2 M \subseteq N$ and so $f((ab)^2 M) \subseteq f(N)$ implies that $(ab)^2 M' \subseteq f(N)$ and we get $(a b)^2 \in (f(N): M')$ Then f (N) is Approximately 2-Absorbing Submodule of M'.

 \leftarrow let a b m \in N then f (abm) \in f (N) so abf (m) \in f (N) sine f(N) is Approximately 2-Absorbing Submodule of M' we get

- 1. $a^2 f(m) \in f(N)$ then $f(a^2m) = f(n)$, for some $n \in N$ hence $a^2 m n \in ker f \subseteq N$ so $a^2 m \in N$
- 2. $b^2 f(m) \in f(N)$ then similarly $b^2 m \in N$
- 3. if $(ab)^2 \in (f(N): M')$ then $(ab)^2 M' \subseteq f(N)$ so $(ab)^2 f(x) \in f(N), \forall x \in M$ so that $f((ab)^2 x) = f(n)$, for some $n \in N$ and hence $(ab)^2 x \in N$ for each $x \in M$ thus $(ab)^2 \in (N:R M)$, N is Approximately 2-Absorbing Submodule of M. **<u>Corollary2.5</u>**: R be a ring Let, M an R-module and N, K submodules of M with $K \le N$. Then N is Approximately 2-Absorbing Submodule of M if and only if $\frac{N}{K}$ is Approximately 2-Absorbing Submodule of $\frac{M}{K}$. **Proof:** Let N is Approximately 2-Absorbing Submodule of M

Let ab $(m + K) \in \frac{N}{\kappa}$ then abm $\in N$ with N is Approximately 2-Absorbing Submodule of M then $a^2 m \in N$ or $b^2m \in N$ N or $(ab)^2 \in (N_R:M)$ we get $a^2 (m+k) \in \frac{N}{\kappa}$ or $b^2 (m+k) \in \frac{N}{\kappa}$ or $(ab)^2 \in (\frac{N}{\kappa}: \mathbb{R}, \frac{M}{\kappa})$ \leftarrow let abm $\in N \implies$ abm + K $\in \frac{N}{K}$ With $\frac{N}{K}$ is Approximately 2-Absorbing Submodule of $\frac{M}{K}$ then $a^2m + K \in \frac{N}{K}$ or b^2 $(m+K) \in \frac{N}{\nu} \operatorname{or}(ab)^2 \in (\frac{N}{\nu}:_R \frac{M}{\nu})$

We get $a^2m \in N$ or $b^2m \in N$ or $(ab)^2 \in (N :_R M)$

Proposition 2.6: Let N a proper submodule of an R-module M. Then N is Approximately 2-Absorbing Submodule of M if and only if abK \subseteq N for some a , b \in R , K \subseteq M . implies $(ab)^2 \in (N:M)$, or $a^2K \subseteq N$ or $b^2K \subseteq N$ Then N is Approximately 2-Absorbing Submodule of M.

proof: Let N be Approximately 2-Absorbing Submodule and $abK \subseteq N$ suppose that $(ab)^2 \notin (N:M)$, $a^2K \notin N$ and $b^2K \notin N$. Then there exists m_1 , m_2 in K such that $a^2m_1 \notin N$ and $b^2m_2 \notin N$, Since $abm_1 \in N$ and $(ab)^2 \notin (N:M)$, $a^2m_1 \notin N$ then $b^2m_1 \in N$ also $abm_2 \in N$ and $(ab)^2 \notin (N:M)$, $b^2m_2 \notin N$ then $a^2m_2 \in N$.Now $(ab)^2 (m_1 + m_2) \in N$ and $(ab)^2 \notin (N:M)$. We have $a^2 (m_1 + m_2) \in N$, *i.e.* $a^2m_1 + a^2m_2 \in N$ we get $a^2m_1 \in N$ contradiction ! If $b^2 (m_1 + m_2) \in N$, *i.e.* $b^2m_1 + b^2m_2 \in N$ so $b^2m_2 \in N$ contradiction !then either $(ab)^2 \in (N:M)$ or $a^2K \subseteq N$ or $b^2K \subseteq N$.

Theorem2.7:Let N a proper submodule of an R-module M , then the following statement are equivalent :

- 1. N is Approximately 2-Absorbing Submodule of M
- 2. If IJK \subseteq N, for some ideal I and J of R and some submodule K of M then either $I^2K \subseteq N$ or $(IJ)^2 \subseteq (N:M)$.

proof: (1) \Longrightarrow (2)

Suppose N is Approximately 2-Absorbing Submodule of M and IJK \subseteq N for some ideals I and J of R and some submodule K of M and $(IJ)^2 \notin (N:M)$.

let(*IJ*)² \nsubseteq (N:M) to show that I² K ⊆ N or J² K ⊆ N suppose I² K \nsubseteq N and J² K \nsubseteq N there exist a₁, a₂ show that a₁∈ I and a₂ ∈ J and a²₁ K \oiint N and a²₂ K \oiint N have $a_1^2 a_2^2$ K ⊆ N since N is *T* so we have $(a_1a_2)^2 \in (N:M)$ Since (IJ)² \nsubseteq (N:M), ∃ b₁∈ *I*, b₂∈ *J* such that (b₁b₂)² \notin (N:M), But b₁ b₂ K ⊆ N We have b₁² K ⊆ N or b₂² K ⊆ N

Case (1) $b_{1}^{2} K \subseteq N$ and $b_{2}^{2} K \notin N$ Since $a_{1}^{2} b_{2}^{2} K \subseteq N$ and $b_{2}^{2} K \notin N$ and $a_{1}^{2} K \notin N$ so $(a_{1} b_{2})^{2} \in (N:M)$ by Proposition 2.6 Since $b_{1}^{2} K \subseteq N$ and $a_{1}^{2} K \notin N$ we get $(a_{1}^{2} + b_{1}^{2}) K \notin N \Longrightarrow (a_{1}^{2} + b_{1}^{2}) b_{2}^{2} K \subseteq N$ neither $(a_{1}^{2} + b_{1}^{2}) K \subseteq N$ nor $b_{2}^{2} K \subseteq N$ we get $((a_{1}^{2} + b_{1}^{2}) b_{2}^{2}) \in (N:M)$ by Proposition 2.1.6 but $(a_{1}^{2} + b_{1}^{2}) b_{2}^{2} = a_{1}^{2} b_{2}^{2} + b_{1}^{2} b_{2}^{2} \in (N:M) \Longrightarrow (b_{1} b_{2})^{2} \in (N:M)$ contradiction

Case 2) $b^{2}_{2} K \subseteq N$ and $b^{2}_{1} K \not\subseteq N$. By a similar argument of case(1),

we reach to a contradiction

Case 3) $b_1^2 K \subseteq N$ and $b_2^2 K \subseteq N$ Since $b_2^2 K \subseteq N$ and $a_2^2 K \notin N$ we conclude $(a_2^2 + b_2^2) K \notin N$ but $a_1^2 (a_2^2 + b_2^2) K \subseteq N$ and Neither $a_1^2 K \subseteq N$ nor $(a_2^2 + b_2^2) K \subseteq N$ hance $a_1^2 (a_2^2 + b_2^2) \in (N:M)$ by Proposition 2.6 since $(a_1a_2)^2 \in (N:M)$ and $a_1^2 a_2^2 + a_1^2 b_2^2 \in (N:M)$ we have $a_1^2 b_2^2 \in (N:M)$ $(a_1^2 + b_1^2) a_2^2 K \subseteq N \implies a_2^2 K \subseteq N$ or $(a_1^2 + b_1^2) K \subseteq N$ or $(a_1^2 + b_1^2) a_2^2 \in (N:M)$ by Proposition 2.6.But $(a_1^2 + b_1^2) a_2^2 = a_1^2 a_2^2 + b_1^2 a_2^2$ So $= a_1^2 a_2^2 + b_1^2 a_2^2 \in (N:M)$ we get $b_1^2 a_2^2 \in (N:M)$ Now, $(a_1^2 + b_1^2) (a_2^2 + b_2^2) K \subseteq N$ we have $a_1^2 a_2^2 + a_1^2 b_2^2 + b_1^2 a_2^2 \in (N:M)$ by Proposition 2.6 so $b_1^2 b_2^2 \in (N:M)$ is contradiction !

Theorem 2.8: If N is Approximately 2-Absorbing Submodule of M , then (N:RM) is approximately 2-absorbing ideal of R.

proof: Let $abc \in (N:_RM)$, $abc \in R a^2c \notin (N:M)$, $b^2 c \notin (N:M)$, show that $(ab)^2 \in (N:M)$ there exist m_1 , $m_2 \in M$ such that $a^2cm_1 \notin N$, $b^2cm_2 \notin N$ But $ab (cm_1 + cm_2) \in N$ since N is approximately 2-absorbing so $a^2 (cm_1 + cm_2) \in N$ or $b^2 (cm_1 + cm_2)$ or $(a^2 b^2) \in (N:R M)$ we get $a^2cm_1 + a^2cm_2 \in N$ then $a^2cm_1 \in N$ which is contradiction !if $b^2cm_1 + b^2cm_2 \in N$ then $b^2cm_1 \in N$ which is contradiction then $(ab)^2 \in (N:M)$.

Theorem 2.9: Let N be a submodule of a multiplication R-module M such that (N :_R M) is approximately 2-absorbing ideal of R. Then N is Approximately 2-Absorbing Submodule of M .

Proof:As $(N :_R M) \neq R$, $N \neq M$. Let $a, b \in R$, $m \in M$, and $abm \in N$. Since M is a multiplication R-module, there exists an ideal I of R such that Rm = IM. Thus $abIM \subseteq N$. Hence, $abI \subseteq (N :_R M)$. Now by assumption, $(ab)^2 \in (N :_R M)$ or $a^2I \subseteq (N :_R M)$ or $b^2I \subseteq (N :_R M)$. Therefore, $(ab)^2 \in (N :_R M)$ or $a^2IM \subseteq N$ or $b^2IM \subseteq N$. Thus $(ab)^2 \in (N :_R M)$ or $a^2m \in N$ or $b^2m \in N$.by[3]

Proposition 2.10: Let R be a commutative ring , M is a cyclic R-module and N is a submodule of M. Then N is Approximately 2-Absorbing Submodule of M if and only if $(N:_{R}M)$ is approximately 2-absorbing ideal of R.

Proof: \Rightarrow Let N is T of M Assume M = Rm, m \in M. Let abc \in (N:_R M) when a,b,c \in R but (ab)² \notin (N:M) and b²c \notin (N:_R M),

prove $a^2c \in (N:_RM)$ it following from $abcm \in N$, and $(ab)^2 m \notin N b^2 cm \notin N$. That , $a^2c m \in N$ then $a^2c \in (N:M)$

← let (N:_RM) is approximately 2-absorbing ideal of *R*, let $abx \in N$, $x \in M$, x = cm, $c \in R$ so $abc m \in N \implies abc \in (N:_R m)$ = (N:M) by (N :_RM) is approximately 2-absorbing ideal of R a² c ∈ (N: M) or b² c ∈ (N:M) or (ab)² ∈ (N:M) a² cm ∈ N or b² cm ∈ N or (ab)² ∈ N:M) a² x ∈ N or b² x ∈ N or (ab)² ∈ (N:M) N is Approximately 2-Absorbing Submodule of M.

Proposition2.11: Suppose M is a finitely generated multiplication R-module . If I approximately is 2-absorbing ideal of R such that ann $M \subseteq I$, then IM is Approximately 2-Absorbing Submodule of M.

Proof: Let $abm \in IM$ where $a, b \in R, m \in M$, hence $ab(m) \subseteq IM$. Since M is multiplication then (m)=JM for some ideal J of R. Thus $abJM \subseteq IM$

abJ ⊆ I+annM = I by [3]. But I is approximately 2- absorbing ideal of R, so either $(ab)^2 \in I$ or $a^2J \subseteq I$ or $b^2J \subseteq I$, it follows that $(ab)^2 \in (IM_{R}M)$

or $a^2 JM \subseteq IM$ or $b^2 JM \subseteq IM$; that is either $(ab)^2 \in (IM:R M)$ or $a^2 (m) \subseteq IM$ or $b^2 (m) \subseteq IM$ Thus $(ab)^2 \in (IM:R M)$ or $a^2m \in IM$ or $b^2m \in IM$ and so IM is Approximately 2-Absorbing Submodule of M.

<u>Corollary 2.12</u> Suppose M is a faithful finitely generated multiplication R-module . If I is approximately 2-absorbing ideal of R, then IM is Approximately 2-Absorbing Submodule of M.

<u>Proof:</u> It follows directly by Proposition 2.11.

Corollary 2.13: Let *M* be a faithful finitely generated multiplication R-module . Then every proper submodule of M is Approximately 2-Absorbing Submodule if and only if every proper ideal of R is approximately 2-absorbing .

Proof : \leftarrow It follows directly by Corollary (2.12).

 \Rightarrow Let I be a proper ideal of R. Then N = IM is a proper submodule of M

So it is Approximately 2-Absorbing Submodule and hence by Theorem (2.8), (N:M) is approximately 2-absorbing ideal. But M is faithful finitely generated multiplication R-module, so (N:M)=I by [3,Theorem.3.1].

Proposition 2.14: Let M be an R-module , N a proper submodule of M , if N is approximately 2-absorbing then $(N :_R < m>)$ is approximately 2-absorbing ideal for each m \in M-N.

Proof: Let $abc \in (N;_R < m>)$ then $abcm \in N$, but N is approximately 2-absorbing submodule then $a^2(cm) \in N$ or $b^2(cm) \in N$ or $(ab)^2 \in (N:_R M)$, so that $a^2 cm \in N$ or $b^2 cm \in N$ or $(ab)^2 M \subseteq N$ that is $a^2 c \in (N : (m))$ or $b^2 c \in (N:_R (m))$ or $(ab)^2 \in (N:_R (m))$ hence $(N:_R (m))$ is approximately 2-absorbing ideal.

Proposition 2.15: Let N be a proper submodule of an R-module M. The following statements are equivalent:

- 1. N is Approximately 2-Absorbing Submodule of M
- 2. $(N:_M I)$ is approximately 2-absorbing, for each ideal I of R with IM $\not\subseteq N$
- 3. (N:_M (r)) is approximately 2-absorbing submodule for each $r \in R$ with rM $\not\subseteq N$

Proof: (1) (2) Let I be an ideal of R with IM $\not\subseteq$ N is a proper submodule of M

Let $abm \in (N :_M I)$ where $a, b \in R, m \in M$, then $ab(Im) \subseteq N$ But N is approximately 2-absorbing submodule of M, so by Proposition(2.6), either $a^2(Im) \subseteq N$ or $b^2(Im) \subseteq N$ or $(ab)^2 \in (N : R M) \subseteq ((N : I): M)$. Hence either $a^2m \in (N : I)$ or $b^2m \in (N : I)$ or $(ab)^2 \in ((N : M I): M)$. Thus $(N :_M I)$ is approximately 2-absorbing submodule.

(2) (3) It is clear.

(3) (1) Take r = 1 then (N : (1)) = N, so N is approximately 2-absorbing.

Proposition 2.16: Let N is Approximately 2-Absorbing Submodule of an R-module M. For any a, b, $c \in R$, $m \in M$, abcm $\in N$ implies either $(ab)^2 m \in N$ or $a^2c m \in N$ or $b^2c m \in N$

Proof: Let $abm \in N$, then $ab(cm) \in N$ Since N is T then a^2 (cm) $\in N$ or $b^2(cm) \in N$ or $(ab)^2 \in (N:M)$. So $a^2c m \in N$ or $b^2c m \in N$ or $(ab)^2m \in N$.

Theorem2.1.17: Let N be a proper submodule of an R-module M. Consider the following statements:

- 1. N is Approximately 2-Absorbing Submodule of M
- 2. For each $a, b \in \mathbb{R}$, $m \in M$. If $a^2b^2m \notin \mathbb{N}$, then $(\mathbb{N}: abm) \subseteq (\mathbb{N}: a^2m) \cup (\mathbb{N}: b^2m)$.
- 3. For each $a, b \in \mathbb{R}$, $m \in M$ if $a^2b^2m \notin N$ then $(N: abm) \subseteq (N: a^2m)$ or

 $(N: abm) \subseteq (N:b^2m)$ Then $(1) \Rightarrow (2) \Rightarrow (3)$ and if M is cyclic, then $(3) \Rightarrow (1)$

Proof: (1) \implies (2) Let $c \in (N : abm)$ then $cabm \in N$ so $abcm \in N$. Since N is T, we get either $a^2 cm \in N$ or $b^2 cm \in N$ or $a^2b^2M \subseteq N$.but $a^2b^2m \notin N$ (by hypotheses). Then only $c \in (N : a^2 m)$ or $c \in (N : b^2m)$

Thus $(N:ab m) \subseteq (N:a^2m) \cup (N:b^2m)$.

- 1. **(3)** It is clear.
- 2. (1) Now suppose that $M=(m_1)$ for some $m_1 \in M$. Let $abm \in N$. But $m=m_1r$ for some $r \in R$ then abrm₁ \in N and suppose that $a^2 b^2 \notin$ (N :M) so, $a^2 b^2 m_1 \notin$ N and r \in (N : abm_1). Hence either r \in (N : a^2m_1) or r \in (N : b^2m_1) by condition(3). And so $a^2rm_1 \in \mathbb{N}$ or $b^2rm_1 \in \mathbb{N}$, that is either $a^2m \in \mathbb{N}$ or $b^2m \in \mathbb{N}$ N. Hence N is Approximately 2-Absorbing Submodule.

N of M is called a pure submodule of an R-module M if $IM \cap N = IN$ or any ideal I of R [4].

Proposition 2.18: Let N be a proper pure submodule of an R-module M , If (0) is Approximately 2-Absorbing Submodule of M, then N is Approximately 2-Absorbing Submodule.

Proof: Let $abm \in N$ where $a, b \in R$, $m \in M$ Put I=(ab) then $abm \in IM \cap N$, but $IM \cap N = IN$, so abm = abn for some $n \in IM$ N, then ab(m - n) = 0, but (o) is approximately 2-absorbing then a^2 (m - n) = 0 or b^2 (m - n) = 0 or

 $(ab)^2 \in \operatorname{ann} M \subseteq (N:M)$. So we get $a^2 m = a^2 n \in N$ or $b^2 m = b^2 n \in N$ or $(ab)^2 \in (N:M)$. Thus N is Approximately 2-Absorbing Submodule.

proposition 2.19: Let N be a proper submodule of an R-module M and S multiplicative subset of R, then $S^{-1}N$ is T of S^{-1} R-submodule of $S^{-1}M$ if N is Approximately 2-Absorbing Submodule.

proof: Let $\bar{a}, \bar{b} \in S^{-1} \mathbb{R}, \bar{x} \in S^{-1}\mathbb{M}$, then $\bar{a} = \frac{a_1}{s_1}, \bar{b} = \frac{b_1}{s_2}, \bar{x} = \frac{x_1}{s_3}$ for some

 $a_1, b_1, \in \mathbb{R}, x_1 \in M$ $s_1, s_2, s_3 \in S \frac{a_1}{s_1} \frac{b_1}{s_2} \frac{x_1}{s_3} \in S^{-1}\mathbb{N}$ then $\frac{a_1b_1x_1}{t} \in S^{-1}\mathbb{N}$ where $s_1 s_2 s_3 = t \in S$. Then there exists $t_1 \in S$ such that $t_1a_1b_1x_1 \in \mathbb{N}$ since N is T we get $t_1a_1^2x_1 \in \mathbb{N}$ or $b_1^2x_1 \in \mathbb{N}$ or $t_1(a_1b_1)^2 \in (\mathbb{N}:\mathbb{M})$ If $t_1a_1^2x_1 \in \mathbb{N}$, then $\frac{t_1a_1^2x_1}{t_1s_1s_2} \in \mathbb{N}$ $S^{-1}N$, so $\frac{a_1^2}{s_1} \frac{x_1}{s_2} \in S^{-1}N$. If $b_1^2 x_1 \in N$, then $\frac{b_1^2 x_1}{s_2 s_2} \in S^{-1}N$ so $\frac{b_1^2}{s_2} \frac{x_1}{s_2} \in S^{-1}N$. If $t_1(a_1b_1)^2 \in (N:M)$ then $\frac{t_1(a_1b_1)^2}{t_1s_1s_2} \in S^{-1}N$. $S^{-1}N \ so \ \frac{a_1^2}{s_1} \ \frac{b_1^2}{s_2} \in S^{-1}(N:M)$. But $S^{-1}(N:M) \subseteq (S^{-1}N:S^{-1}M)$ then $\frac{a_1^2}{s_1} \ \frac{b_1^2}{s_2} \in (S^{-1}N:S^{-1}M)$. Hence $S^{-1}N$ is Approximately 2-Absorbing Submodule.

Let $\varphi: \mathbb{M} \longrightarrow S^{-1}\mathbb{M}$ defined by $\varphi(\mathbb{m}) = \frac{m}{1}$ for each $\mathbb{m} \in M$. It is clear that φ is an R-homomorphism

References

^[1] A.Y Darani, F.Soheilnia, "2-Absorbing and Weakly 2-Absorbing Submodules", www.math.science.cmu.ac.th/thaijournal.2011.

H.M.Abdul-Razak "Quasi-Prime Modules and Quasi-Prime Submo.m.,,,mhn,.dules", M.Sc.Thesis, College of Education Ibn Al-Haitham, [2] University of Baghdad, ,(1999).

^[3] Z.A. El-Bast, and P.F. Smith, "Multiplication Modules", Comm. in Algebra, 16(1988), 755-779.

^[4] E. W.Andeson and K..Fulle. "ings and ategories of Modules" Springer - Verlage, New York, 1992.