On b*- COMPACTNESS and b-COMPACTNESS

Adea Khaliefa.Al-Obiadi

Adea Khaliefa.Al-Obiadi

College of Science . Al-Mustansiriyia Univesity

ABSRACT

In this paper we use the notions of b- open sets and b*-open sets to introduce and study new generalizations of compactness, which are termed by b-compactness and b*- compactness. We show that b- compactness is strictly stronger than b*- compactness, and this is stronger than compactness. Several characterizations and properties of these spaces are given. Further we introduce and study the notion of b-irresolute functions.

1. INTRODUCTION.

The notion of b-open sets was introduced 1996,by in D. Anderjivic[1]. The class of all b- open (resp. b-closed) sets are denoted by BO(X) (resp. BC(X)). The arbitrary union of b-open sets is a b-open set, while the intersection of a finite number of b-open sets is not necessarily a b-open [1]. It was shown in [1] that, $PO(X) \subseteq BO(X)$ $\subseteq \beta O(X)$ where PO(X) is the class of all pre-open sets[4], and $\beta O(X)$ is the class of all β -open sets[2]. The topology generated by BO(X) was [1] denoted introduced in and by that. τ_{h} SO $\tau_{b} = \{V \subset X : V \cap S \in BO(X), \text{whenever } S \in BO(X)\}$. We denote by b*- open the set $S \in \tau_b$, and its complement by b*-closed.

Throughout this paper X and Y will denote topological spaces on which no separation axioms are assumed unless otherwise stated.

2. PRELIMINARIES.

Definition 2.1.

A subset S of a space X is called a b –open set [1] if $S \subset int(cl(S)) \cup cl(in(S))$ and a b-closed if $cl(in(S)) \cap in(cl(S)) \subset S$, where "int" and "cl" stand for interior and closure operators respectively. **Remark 2.2**.

For any topological space (X,τ) , we have.

 $\tau \subseteq \tau_b \subseteq BO(X)$ and the converse are not true in general as the following example shows.

Example 2.3.

Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then $BO(X) = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}$ and $\tau_b = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. If A = $\{a, c\}$, then A is b-open set but not b*-open.

Now if $\tau = \{ X, \phi, \{a\} \}$, then BO(X) = {X, $\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\} \}$, and $\tau_b = \{X, \phi, \{a\}, \{a, b\}, \{a, c\} \}$, then {a, b} is b*-open but not open. **Definition 2.4.**

A subset U of a space X is called b*-neighborhood (resp. b- neighborhood) of a point x of X if there exist $S \in \tau_b$ (resp. $S \in BO(X)$) such that $x \in S \subseteq U$. We denote by U^{*}_x (resp. U_x) the family of all b*-neighborhood (resp. b-neighborhood) of x.

Remark 2.5.

Every neighborhood is b*-neighborhood and every b*-neighborhood is a b-neighborhood but the converse is not true as the fallowing example shows:

Example 2.6.

Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a, b\}\}.$

Then $BO(X) = \{X, \emptyset, \{a\}, \{a, c\}, \{c, b\}, \{a, b\}, \{b\}\}$ and $V(\Omega, \{a\}, \{a, b\}, \{b\})$. Therefore, $\{b\}$ is the neighborhood of the set of the

 $\tau_{b} = \{X, \emptyset, \{a\}, \{a, b\}, \{b\}\}$. Therefore $\{b\}$ is b*-neighborhood of b hence b-neighborhood, but not a neighborhood of b, and $\{c, b\}$ is a b-neighborhood of c but not b*- neighborhood of c.

Definition 2.7.

Let (X,τ) be a topological space, then the smallest b*-closed (resp. bclosed) set containing a set A is called the b*-closure (resp. b-closure) of A and denoted by b*cl(A) (resp. bcl(A)).

The following remark is an immediate consequence of Definition 2.7. **Remark 2.8.**

For any subset A of a space X, we have.

(1) $A \subseteq bcl(A) \subseteq b^{*}cl(A) \subseteq cl(A)$.

(2) A is b- closed (resp. b*- closed) if and only if bcl(A)=A (resp.

b*cl(A)=A, and A is b*-closed if and only

if b * cl(A) = A.

Lemma 2.9.

Let (X,τ) be a topological space, Let $A \subseteq X$, then $x \in b^*cl(A)$ (resp. $x \in bcl(A)$) if and only if for each b*-open (resp. b-open) set U containing x, $A \cap U \neq \emptyset$.

07

Proof.

Since τ_b is a topology on X, so the proof of the first case is obvious. We prove the second case:

Suppose that $x \notin bcl(A)$. Since bcl(A) is a b- closed set, then U=X-bcl(A) is b- open set containing x and $U \cap A = \phi$.

Conversely, Let $x \in X$, Suppose that there exist a b-open set U containing x such that $U \cap A = \phi$. Then X-U is b-closed and $A \subset X - U$. Hence $bcl(A) \subset X - U$. Therefore $x \notin bcl(A)$.

Now we introduce the following definition.

Definition 2.10.

Let \pounds be a filter on the space X, then the b*-closure of \pounds is denoted by b*cl(\pounds) and defined by b*cl(\pounds) = \cap {b*cl(F): F $\in \pounds$ } and its elements are called the b*-cluster points of \pounds . It is clear that b*cl(\pounds) is a b*-closed set.

Recall that a filter \pounds on a space X is convergent to a point x of X if and only if every neighborhood of x is in \pounds .

Definition 2.11.

A filter £ on a space X is said to be b*-convergent to a point x of X if and only if $U_x^* \subset f$.

Remark 2.12.

By Remark 2.5, it follows that if a filter \pounds on a space X is b*-convergent to x, then it is convergent to x. but the converse may be false as the following example shows.

Example 2.13.

Let (X,τ) be as in example 2.6, let $\pounds = \{X, \{a,b\}\}\)$, then \pounds is a filter on X and \pounds converges to b, and it does not b*-converges to b.

Remark 2.14.

Since τ_b is a topology on X, then u_x^* is a filter on X.

Theorem 2.15.

Let £ be a filter on a space X, and $x \in X$, then x is a b*-cluster point of £ if and only if there exists a filter finer than £ which b*-converges to x. **Proof**.

Let x be a b*-cluster point of £, then $x \in b*cl(F)$ for each $F \in \pounds$. Hence by Lemma 2.9, for each $U \in u_x^*$ and for each $F \in \pounds$, $U \cap F \neq \phi$, Therefore the family $\pounds \cup u_x^*$ of generates some filter \pounds^* on X. Since $\pounds \cup u_x^* \subset \pounds^*$, then \pounds^* is finer than \pounds and it b*-converges to x.

Conversely, if there is a filter \pounds^* finer than \pounds and U_x^* which is b- convergent to a point x, then every b*-open set containing x intersects

every $F \in \pounds$, and hence $x \in b^*cl(F)$ for each $F \in \pounds$. Thus x is a b*-cluster point of £.

3. b*- COMPACTNESS and b-COMPACTNESS.

We introduce the following definitions.

Definition 3.1.

Let (X, τ) be a topological space, a family **6** of subset of X is said to be

a b*-covering (resp.b-covering) of X if $\pmb{6}$ covers X and $\pmb{6} \subset \tau_b$ (resp. $\pmb{6} \subset BO(X))$.

Definition 3.2.

A space X is said to be b-compact (resp. b*-compact), if and only if every b-covering (resp.b*-covering) of X has a finite subcover.

Remark 3.3.

By Remark 2.2, it follows that b-compactness is stronger than b*compactness and this is stronger than compactness. The converse is not true, as the following example shows.

Example 3.4.

Let $X = \{x\} \cup \{x_{\alpha} : \alpha \in \Delta\}$ where the indexed set Δ is uncountable. Let $\tau = \{X, \phi, \{x\}\}$ be the topology on X. It is clear that X is compact space, but it is not b*-compact and hence it is not b-compact, since $\{\{x, x_{\alpha}\}: \alpha \in \Delta\}$ is a b*-covering of X but it has no finite subcover. Hence X is not b-compact.

The next result gives several characterizations of b*-compact spaces. We notice that property (5) holds for b*-compact spaces, but in general it fails for compact spaces.

Theorem 3.5.

Let (X,τ) be a topological space. Then the following are equivalent:

- 1. X is b*-compact.
- 2. Every b*-covering of X has a finite subcover.
- 3. Every filter over X possesses at least one b*-cluster point.
- 4. Any ultrafilter over X is b*-converges.
- 5. Each family of b*-closed sets in X whose intersection is empty contains a finite subfamily whose intersection is empty.

Proof.

 $(1 \Leftrightarrow 2)$: Follows directly from Definition 3.2.

 $(3\Rightarrow 4)$: Let (3) holds and ψ be any ultrafilter over X. Since ψ is a filter, hence by (3) there is a b*-cluster point x of ψ . Therefore by Theorem 2.15,

On b*- COMPACTNESS and b- COMPACTNESS Adea Khaliefa.Al-Obiadi

there is a filter finer than ψ which b*-converges to x, this is ψ itself, since it is an ultrafilter.

 $(4\Rightarrow3)$: Let (4) holds and £ be a filter on X. There is an ultrafilter ψ finer than £, which is ψ is b*-convergent to a point x. Therefore x is b*-cluster point of £.

 $(3\Rightarrow5)$: Let (3) holds and ξ be a family of b*-closed sets in X whose intersection is empty. If the intersection of any finite subfamily of ξ is not

empty, then ξ will generate a filter on X. Hence by (3), ξ will have a b*-cluster point. Since each element of ξ is b*-closed, so by Remark 2.8 this b*-cluster point belongs to each element of ξ . Thus the intersection of

 ξ is not empty which contradicts the assumption. Therefore (5) holds.

 $(5\Rightarrow3)$: Suppose that (5) holds, and £ is a filter on X which has no b*cluster point. Then the family {b*cl (F): F \in £} is a family of b*-closed sets in X whose intersection is empty, but there exists no finite subfamily of sets of £ which does not intersect, and this contradicts (5).

 $(2 \Leftrightarrow 5)$: This follows from Demogan's formulae.

Definition 3.6.

A point x of a space X is said to be a b-limit (resp. b*-limit) point of a set A if every b- open (resp. b*-open) set containing x contains a point of A distinct from x.

It is clear that, if x is a b-limit point, then it is a b^* -limit point, by Remark 2.2.

Theorem 3.7.

If X is b-compact and A is an infinite subset of X, then A has at least one b-limit point in X.

Proof:

Suppose that A has no b-limit point in X. Then for each $x \in X$, there is a b-open set V_x containing x such that $V_x \cap A = \{x\}$ (or $= \phi$), then $V = \{V_x: x \in X\}$ is a b-covering of X. Since X is b-compact, there is a finite subcover of V, say $V^* = \{V_{x_1}, V_{x_2}, ..., V_{x_n}\}$, $n \in N$. Since each V_{x_i} , i=1,2,...,n contains at most one element of A, so A is a finite set. This is a contradiction.

Similarly we can prove the following theorem.

Theorem 3.8.

If X is b*-compact and A is an infinite subset of X, then A has at least one b*-limit point in X.

Lemma 3.9.[5]

Let (X, τ) a topological space, Y be a subspace of X, and $A \subset Y$ then,

العرو الثاني والسبعون ١١٠

(1) $cl_{Y}(A) = cl(A) \cap Y$.

(2) $\operatorname{int}(A) = \operatorname{int}_{Y}(y) \cap \operatorname{int}(A)$.

Where $int_{v}(resp. cl_{v})$ denotes the interior (resp. closure) operator relative to Y.

Lemma 3.10.[3]

Let A be an open set in X, then for every subset B of X we have $A \cap cl(B) \subset cl(A \cap B)$

Now we introduce the following result.

Theorem 3.11.

If Y is an open subspace of a space X and $A \in BO(Y)$, then $A \in BO(X)$.

Proof:

Since $A \in BO(Y)$, Then $A \subset int_{Y}(cl_{Y}(A)) \cup cl_{Y}(int_{Y}(A))$, Since $A \subset Y$

and int(Y) = Y.

```
Therefore A = A \cap Y = A \cap \operatorname{int}(Y) \subset [\operatorname{int}_Y(cl_Y(A)) \cap \operatorname{int}(Y)] \cup [cl_Y(\operatorname{int}_Y(A) \cap \operatorname{int}(Y)]. Now
                                                                                  (by Lemma 3.9)
\operatorname{int}_{V}(cl_{V}(A)) \cap \operatorname{int}(Y) = \operatorname{int}(cl_{V}(A)),
```

```
= int(cl(A) \cap Y), (by Lemma 3.9)
```

```
\subset \operatorname{int}(cl(A))
```

and $cl_{Y}(\operatorname{int}_{Y}(A))\cap \operatorname{int}(Y)$	
$=[cl(\operatorname{int}_{Y}(A))\cap Y]\cap \operatorname{int}(Y)$	
$= cl(int_y(A) \cap int_Y(Y)] \cap Y$	
$= cl(\operatorname{int}_{Y}(A)) \cap Y$	
$\subset cl(\operatorname{int}_Y(A) \cap Y)$,	(by Lemma 3.10)
$= cl(\operatorname{int}_{Y}(A) \cap \operatorname{int}(Y))$	
= cl(int(A)) ,	(by Lemma 3.9)
Therefore, $A \subset int(cl(A)) \cup cl(int(A))$. Thus $A \in BO(X)$.

Theorem 3.12.

If Y is an open, b-closed (resp.b*-closed) subspace of a b-compact (resp.b*-compact) space X, then Y is b-compact (resp.b*-compact). **Proof**:

For the case where Y is open, b- closed and X is b- compact. Let $\{A_{\alpha}: \alpha \in \Delta\}$ be a b-covering of Y relative to Y. Since Y is open in X, so by Theorem 3.11, $A_{\alpha} \in BO(X)$ for each $\alpha \in \Delta$. Since Y is a b-closed set, hence $X - Y \in BO(X)$. Therefore the family $\{A_{\alpha}, \alpha \in \Delta\} \cup \{X - Y\}$ is a b-covering of X. Since X is b-compact, there is a finite subcovering say $\{A_{\alpha_1}, A_{\alpha_2}, ..., A_{\alpha_n}\} \cup \{X - Y\}$, but $Y \subseteq X$ and $\{X - Y\}$ covers no part of Y, so $\{A_{\alpha_1}, A_{\alpha_2}, \dots, A_{\alpha_n}\}$ covers Y. Hence Y is b-compact.

The second case holds, because τ_b is a topology.

Similarly, we can prove the following result.

Theorem 3.13.

Every b-closed (resp.b* closed) subset of a b-compact (resp. b*compact) space is compact.

Now we introduce the following definition.

Definition 3.14.

A function $f: X \to Y$ is said to be b-irresolute (resp. b-continuous) if the inverse image of every b- open (resp. open) set of Y is a b-open set in X.

Remark 3.15.

Continuous function and b-irresolute functions are independent as the following examples show:

Example 3.16.

Let $X = \{1, 2, 3\}$, $Y = \{a, b\}$, let $\tau = \{X, \phi, \{1\}, \{1, 3\}\}$, and $\sigma = \{Y, \phi, \{a\}\}$ be a topologies on X and Y respectively. Then BO(X)= $\{X, \phi, \{1\}, \{1, 3\}, \{1, 2\}\}$ and BO(Y)= $\{Y, \phi, \{a\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ as follows f(1) = f(2) = a, f(3) = b Then f is b-irresolute but not continuous.

Example 3.17.

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{c\}\}, \sigma = \{Y, \phi, \{b, c\}\},\$ f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = f(b) = a, and f(c) = c, BO(X) = $\{X, \phi, \{c\}, \{a, c\}, \{b, c\}\},\$

BO(Y) = {X, ϕ , {b, c}, {a, b}, {a, c}, {c}, {b}}. Then f is continuous, but not b-irresolute since $f^{-1}(\{a, b\}) = \{a, b\}$ which is not b-open in X.

Remark 3.18.

Every continuous function is b-continuous but not conversely, as the following example shows.

Example 3.19.

Let X=Y= {a, b, c}, let τ ={X, ϕ } and σ ={Y, ϕ , {a}}. Then BO(X) = P(X), where P(X) is the power set of X. Define f: (X, τ) \rightarrow (Y, σ) to be the identity function, then f is b-continuous, but not continuous

It is easy to prove the following result.

Theorem 3.20.

Every b- irresolute is b-continuous, but not conversely as it is shown by the following example.

Example 3.21.

Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{Y, \phi, \{b, c\}\}.$ Then BO(X)= $\{X, \phi, \{a\}, \{b\}, \{a, c\}, \{b, c\}\}, and$

BO(Y)={Y, ϕ ,{b,c},{b},{c},{a,c},{a,b}}

Let $f: (X,\tau) \to (Y, \sigma)$ be the identity map. Then f is b-continuous function but not b- irresolute, since $f^{-1}(\{c\}) = \{c\}$ which is not b-open in X.

It is easy to prove the following:

Theorem 3.22.

Let $f\colon (X,\tau\,)\to (Y,\sigma)$ be an open and continuous function, then f is b- irresolute.

Proof:

Let $A \in BO(Y)$, then $A \subset int(cl(A)) \cup cl(int(A))$. Hence $f^{1}(A) \subset f^{1}(int(cl(A) \cup cl(int(A)))$. Since f is continuous, so $f^{1}(int(cl(A)) \subseteq int(f^{1}(cl(A))))$. Since f is open, so f^{1} is continuous and $f^{1}(cl(A)) \subseteq cl(f^{1}(A))$. Therefore $f^{1}(cl(int(A))) \subseteq cl(f^{-1}(int(A))) \subseteq cl(int(f^{-1}(A)))$ $f^{1}(int(cl(A)) \subseteq int(cl(f^{1}(A))))$. Hence $f^{1}(A) \subseteq int(cl(f^{1}(A)))$ $f^{1}(int(f^{1}(A)))$. Hence $f^{1}(A)$ is b-open set, thus f is b-irresolute.

Theorem 3.23.

Let f: $(X,\tau) \rightarrow (Y, \sigma)$ be a function. Then the following are equivalent 1. f is b- irresolute.

- 2. For $x \in X$ and any b-open set V of Y containing f(x), there exists $U \in BO(X)$, such that $x \in U$ and $f(U) \subset V$.
- 3. The inverse image of every b-closed set of Y is a b-closed set of X.

Proof: Obvious.

Theorem 3. 24.

Let $f: X \to Y$ be a b-irresolute function of X onto Y. If X is b-compact, then Y is b-compact.

Proof: Obvious.

Corollary 3.25.

Let $f: X \to Y$ be an open and continuous function of X onto Y. If X is b-compact, then Y is b-compact.

Proof: This follows from Theorems 3.22 and 3.24.

Corollary 3.26.

b-compactness is a topological property.

Theorem 3.27.

Let $\{X_{\alpha}: \alpha \in \Delta\}$ be any family of spaces if the product space $\prod X_{\alpha}$ is b-compact, Then X_{α} is b-compact for each $\alpha \in \Delta$. **Proof** :

Let the product space $\prod X_{\alpha}$ be a b-compact, and $p_{\alpha} : \prod X_{\alpha} \to X_{\alpha}$ be the projection function of $\prod X_{\alpha}$ onto X_{α} which is continuous and open. Then by Corollary 3.25, each X_{α} is b-compact.

Note:

In Definition 3.14, if b-open set is replaced by b*-open set, then we have the definition of the b*-irresolute and b*-continuous functions, and the results of the first definition are true for the new one.

REFERENCES

- [1] D. Andrijevic, "On b-open sets" МАТЕМАТИЧҚИ ВЕСНИҚ, **48** (1996), 59-64.
- [2] M. E. Abd El- Monsef, S. N. El-Deeb and R. A. Mahmoud" β-open sets and β-continuous mappings" Bull. Fac. Sci. Assiut. Univ. 12(1983), 77-90.
- [3] N. Bourbaki, Elements de Mathematique, Topologie Generale 1, Hermann, Paris (1966).
- [4] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb"On precontinuous and weak pre-continuous mappings" Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [5] W.J. Pervin, "Foundation of General Topology "Academic Press, New York (1964).