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Abstract 

     In this paper, we determine the form of Jordan left derivation and Jordan Left 

Centralizers of a Skew matrix ring           over a ring R . 
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1-Introduction 

     Let R be a ring . An additive mapping D     is said to be a derivation 

(resp.,Jordan derivation )if D(xy)= D(x)y + x D(y) for all x,y R (if D(    

            for all x R.An additive mapping D     is said to be a left 

derivation (resp.,Jordan left derivation )if D(xy)=xD(y)+yD(x) for all x,y R (if 

D(           for all x R.the concept of left derivation and Jordan left 

derivation  were introduced by Bresar and Vukman  in [1 ] .For result concerning 

Jordan left derivations we refer the readers to [ 2,3 ,4,5].An additive mapping 

T:     is called left centralizer(resp., Jordan  left centralizer)if T(xy)=T(x)y for 

all x,y R (resp., T(           An additive mapping T:     is called a Jordan 

centralizer if T satisfies T(xy+yx)=T(x)y+yT(x)=T(y)x+xT(y) for all x,y R.For 

result concerning left centralizer we refer the reader to [6,7,8].In [9 ],Hamaguchi 

,give a necessary and sufficient condition for a given mapping  J of a skew matrix 

ring             into itself to be a Jordan derivation also show that there are 

many Jordan derivations of              which are not derivations and refer to 

the properties of Jordan derivations of      ,and derivations of           . 

Also the author consider invariant ideal with respect to these derivations .In this 

paper, we determine the form of Jordan left derivation and Jordan Left 

Centralizers of a Skew matrix ring           over a ring R .Now, we shall recall 

the definitions of Skew matrix ring which is basic in this paper . 

Definition 1.1  :-[  10  ] Skew Matrix ring   

  Let R be a ring ,q an element in R and σ  an endomorphism of R such that  



       and              .Let          be the set of     matrices over 

R with usual addition and the following multiplication  

[
    

    
]  [

    

    
]   = [

                   

               σ          
] 

          is called a skew matrix ring over R . 

We should mentioned the reader that a matrix [
  
  

]  is denoted by        

                    . 

2-Jordan Left Derivation of Skew Matrix Rings 

     In this section ,we shall determined the form of Jordan left derivation of skew 

matrix ring .Let J be a Jordan left derivation of            .First ,we set  

J(    a) [
          
          

] ,J(    b)= [
          
          

] 

J(     = [
          
          

], J(      = [
          
          

] 

Where                 are additive mapping . 

Lemma2.1:- For any a R 

             are Jordan left derivations of R . 
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 So, we get the result . 

 

 



Lemma2.2 :- For any d R. 

1          are Jordan left derivations of R . 
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Lemma  2.3 :- For any a,b   
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4.          

Proof:- Since  
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Then ,we get the result . 

Lemma 2.4 :-for any c,d   
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Proof:-Since  
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Then ,we get the result . 

Theorem 2.5 :-Let R be a ring and J be a Jordan left derivation of            

Then  

 [
  
  

]  [
                                              

                                              
]  

such that  

1        
    ,    

    ,      are Jordan left derivations of R. 
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              are Jordan left derivations of R. 

3                             ,                         

                      

4.                   ,                 σ       and  

                 σ(     )     

 

Proof:-Since  [
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By[ Lemma 2.1]              ,[ Lemma 2.3]and [ Lemma 2.4] we get the result 

. 

3-Jordan Left Centralizer of Skew Matrix Rings 

      In this section ,we shall determined the form of Jordan left centralizer of skew 

matrix ring. Let J be a Jordan Left Centralizer of            .First ,we set  

J(    a) [
          
          

]  ,J(    b)= [
          
          

]   

J(     = [
          
          

],J(      = [
          
          

] 

Where                 are additive mapping. 

Lemma 3.1 :- For any a R 

1.   is  Jordan left centralizer  of R . 
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So ,we get the result . 

Lemma3.2  :- For any d R 

1.      are Jordan left  centralizers of R . 
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Then     
         

    &     are Jordan left centralizers of R. 

Lemma3.3 :- For any a,b   
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 Lemma 3.4 :-For any c ,d   
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Theorem 3.5:- Let R be a ring and J be a Jordan left centralizer of           

Then  

 [
  
  

]  [
                                              

                                              
]  

Such that  

1   is  Jordan left centralizer  of R      
         

        σ          
   0. 

2.      are Jordan left  centralizers of R      
    and     
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Proof:- Since  [
  
  

]                                     
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=[
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Also, by [Lemma 3.1],[Lemma 3.2],[Lemma 3.3] and [Lemma 3.4],we get the 

result . 

 



Theorem 3.6 :-Let R be a ring with  identity and  J a Jordan Left centralizer of  

          .Then there exist                          ́  ́    ́    ́      

Such that  
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Proof:-From [Lemma 3.1,3] 

    
             

Replace a by a+b  
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Replace b by 1,since R has identity  

      =                    

      =                

Then 

                   

Now,Let          .Then  

            

But    
 
      

 
     

 
 
          

 
           

 
 
         

 
      

 
     

Replace c by 1 
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By the same way ,we have  

 
 
       ,where    

 
    



Also ,from [Lemma 3.1,1] 
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By[ Lemma 3.3,1],                

Replace b by 1 ,to get  
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If  b=1 then 
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And since                 q 
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Since         then  
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Now ,by [Lemma 3.4,1] 
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 فوفات جورداى الوركزي اليساري على حلمات الوص اشتماق جورداى اليساري وتطبيك

 التخالفية

 رجاء جفات شاهيي**          وعبذ الرحوي حويذ هجيذ  *                

 ية العلوم ،لسن الرياضيات .*جاهعة بغذاد ،كل

 ** جاهعة المادسية ،كلية التربية ،لسن الرياضيات. 

             

فً هذا البحث حددنا شكل اشتقاق جوردان اليساري وتطبيك جوردان المزكزي اليساري على الخلاصة :

 .Rعلى الحلقة     σ     حلقة المصفوفات 

  

 


