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Abstract

The main goal of this work is to find numerical value of a double integral where the integrand is
continuous, by derivation composite rules and its correction terms. Depending on these terms we
improve these values by using Romberg acceleration, after that we used these rules to find the
values of integral with continuous integrands on the region of integral and we compare these results
with composite rule of trapezoidal on the two dimensions (exterior and interior), the resulting
values are better if accuracy and number of sub-intervals are taken in account.

1-Introduction:

Finding the value of double integral is much more complicated than that of a single one, this is
because the former depends on two variables as well as the requirement of continuity and
singularity of the integrand, beside the singularity of the partial derivatives of the integrand which
lead to great difficulties, bearing in mind that we deal with the regions or surfaces and not with
intervals as is the case in single integration. Except some rear cases, it is not easy to solve
numerically these types of double integrals. The importance of these integrals appears in evaluation
of surfaces, the central means and moments of inertia for plane surfaces, in addition to that, to find
the volume under the double integral plane. As an example, the volume yields from rotation of heart
curve p=2(1-coséd)round the polar coordinates, or to evaluate the volume of the sphere
x* +y® +z% = 36inside of the cylinder y*+z°> =6y. Ayers [1]

These led many researchers to work in the field of numerical solution of double integrals. Among
those Hass and Jacobson [2], who through lights on solving integrals with continues integrands of
the expression f(x,y) = f,(x) f,(y)

Here, we derive combined rules (base on suggested [3] and trapezoidal methods) to find the
correction terms for the double integrals. We applied these rules on double integrals in which the
integrand are continues and bounded on integration intervals. These simple methods gave high
accuracy and relatively fast results. We applied the Romberg acceleration convergence method
which gave advantage in comparison with trapezoidal method on the dimensions: interior (x) and
exterior (y). This process will be symbolized by TT(Mohammad [4] )

2- Singular integral for continuous integrand [5,6]
Suppose that J is defined as follows :

J :Xj"f(><)o|x=e(h)+EG(h)+RG 0

Such that f(x) is a continuous integrand lies above the x-axis on the interval [x0 ,xn] , G(h)

represents Largranian approximation of the value of integration, E(h) is a series of correction terms
that can be added to G (h) , J represents the area under the curve y = f(x) and above x-axis and



bounded by the parallel lines x =X, X = X,, the general form of G(h) is given by

G(h) =h(w, f, +w f, +w, f, +...+w f _, +w,f ) -(2)

where w, are weighted factors, and f, = f(x,) , h= %% X, =X +rh, r=012,..n
n

to simplify formula (2) we rewrite the weights in terms of w, provided that w, = 2(1—w,),w, = 2w,.
Now, if we let w, =1/2 , then we will get the trapezoidal rule and then symbolized to the function
G(h) by the symbol

T(h)=g(f0+2f1+2f2+...+ f.)

And when w, =0 we get the mid-point rule and symbolized by the symbol M (h) :
M(h) =h(f, + f,+ f, +...+ f_,) , wherenis the number sub-intervals.

The general formula for the suggested method (which depend on the rules of trapezoid and the
mid-point [3] ) symbolized by Su is
n-1
Su :g(fo + f,+2f(x, +(n—%)h)+22‘(fi + (X, +(i—%)h)j
i=1
Suchthat f = f(x,+ih) ,i=12,...,n . Tofind the correction terms Eg (h) see reference [ 5,6]
2n

The reminder R;, (h) has the formr_ = &k

B,, h? f 9 (1),wherex, <1 < x,is Bernoulli number

3- Romberg integration [7,8]

The Romberg method is an application of Ralston method to find the best value for J using the
trapezoid, mid-point and suggested rules.

Suppose that we applied the error formulas for two different values of h say h;, h,, we find that

J—G(h) = Ash? + Bgh? +Cgh® + ... WE)
J=G(h,) = Ajh? + Bsh? +CghS +.. (4)
where AG , BG ,... are constants .

Substituting p, :lhl in the formula (4), and solving it together with formula (3) for A, and
2

neglecting those terms which contain h*, h®,...from both mentioned formulas we will get

] E(Zze(hIZZ)—G(h)]_ 5)
(2° -1
Where h=h,.

Formula (5) does not represent the accurate value of integration, but it is to some extend closer to
the real value of the integration than the two values G(h/2) ,G(h), it will be symbolized by

3 2°G(h/2)-G(h)
G(h,h/2)—( 221 J ....(6)
Thus,
J-G(h,h/2)= A, h! +B.h’ + ... (7

where A;, B;,...are constants.

In a similar way a closer value of the integration can be found using G(h, h/2), and hence we get a
table of values of Romberg table and in general the values of this table can be calculated using

2



2% G(h/2)-G(h) @
1

where k =2,4,6,..., and G is the value of a new column of Romberg table, and G(h/2),G(h) are

present in the previous column, the first column of Romberg table represents the use of the
suggested method on the inner dimension x and the external dimension y, which symbolized by
SuSu, and applying the suggested method based on the inner dimension x and the rule of
trapezoidal on the external dimension y, which symbolized by TSu, and the use of trapezoidal rule
on the internal dimension of x and the suggested method on the external dimension y, which
symbolized by SuT, and finely the value of Romberg table is determined according to the required
accuracy which we call Eps, in which the relative error is as follows

Gz _Gl

G:

<Eps ,G, #0, where G, ,G, are two approximate values of the integral in a single row

1

of Romberg table with a method of numerical integration.

4.Derivation of composite rules to calculate continuous double integrals and formulas for the
error using the trapezoidal rule and the suggested method

Suppose that the integral | is defined as follows

d b
L= [ f(x y)dxdy
which can be written as

|=} T f (x, y)dxdy = GG(h) + Ex (h) + Reg () .(9)

where GG(h) is an approximate value representing the integral using one of the methods
SuT,TSu, SuSu, and that E.; (h) is series of possible correction terms added to the values GG(h)

will divide the integral interval on the internal dimension [a, b] for a number of sub-intervals (n) ,
and divide the integral interval on the external dimension [c, d] for a number of sub-intervals (m),

where h=(d —c)/m, h=(b—a)/n. We let h=h to be able to use Romberg acceleration.

First: the suggested rule on the two dimensions (internal x and external y) (SuSu)
It is known that

e 1)

j f(x,y)dxdy = j j f (X, y) dy dx

can be written on the internal dimension (x) with the suggested method as follows

L N R N N N R N N N N N N NN

3 b n-1

}fSu :ff(x,y)dx:%(f(a, y)+ f (b, y)+2f(a+(n—0.5)h,y)+22 (F(x,y)+ f(X +(i—0.5)h,y)j

ﬁﬁ a i=1

E +b_a hzazf(ﬂq,Y)_b_ah4a4f(/12,)/)+61(b_a) hGaGf(ﬂﬁ’y)_{_m (10)
> 24 ox? 1440 ox* 60480 ox®

"
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where 4, € (a,b),k=1,2,3,..., x, =a+ih,i=123,...,n-1 and h=(b—-a)/n.

Integrating both sides of (10) numerically for y on the interval [c, d] using the suggested method
yields
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SuSu:I j f(x,y)dxdy:%[ f(a,c)+ f(a,d)+ f(b,c)+ f(b,d)+2( f(ac+(n-05)h
+ fc(b?c+(n—0.5)h))+ f(a+(n-05)h,c)+ f(a+(n—05)h,d)+ f(a+(n-0.5)h,c+(n-05)h)

£25 (F(ay)+ 1@c+ (=09 + 10,y + F(B.c+(-09+2f @+ (1-05)hy,) +

i=1

2f(a+(n-0.5)h,c+(i—0.5)h)+ f(x.,c)+ f(x,d)+2f(x,c+(n-05)h)+ f(a+(i-05)h,c)+

f(a+(i—0.5)h,d)+2f(a+(i—0.5)h,c+(n—0.5)h))+4n21 (f(x.,y,)+ f(x,c+(j—0.5)h)

j=1

+ f(@a+(@i-05)h,y,)+ f(a+(@i-05)h,c+(j-05)h) ]+(b-a)(d-c)

L o0 f(,6) 1 0 (h,0,) 61 | f(4.6,) hd-c & flam),

,4\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/

— ) +h?

(24 ox? 1440 ox* 60480 ox® ) (4 24 6y2
2 4 4

hd-c 0 f(bvzﬂ21)+_._)+h4(_ﬂ d-c 0 f(a;/hz)_ﬂ d-c 0 f(b;ﬂzz)_i_m)
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where 6, e(c,d) , i=123,...;and g, €(c,d) , m=123,..,n+1 ,n=123,..

4 6 4 6
Since g% and 0 I,a I are continuous functions at each point of the region
oy® oy oxX"  OX
[a,b]x[c,d] ,it means that the value of integral (9) using the rule SuSu with the correction terms
are:

. o
T T T N N R e

ESuSu:j | f(x,y)dxdy:%[ f(a,c)+ f(a,d)+ f(b,c)+ f(b,d)+2(f(ac+(n-05)h
: + fc(b,ac+(n—0.5)h))+ f(a+(n-0.5)h,c)+ f(a+(n-0.5)h,d)+ f(a+(n—0.5)h,c+(n—0.5)h)

+2nZ_1 (fay)+f(ac+(i-05)h)+f(by,)+f(bc+({i-05h+2f(@a+(n-05h,y,)+

i=1

2f(@a+(n-0.5)h,c+(i—-0.5h)+ f(x,c)+ f(x;,d)+2f(x;,c+(n-0.5)h)+ f(a+(i—0.5)h,c)+

f(a+(i—0.5)h,d)+2f(a+(i—0.5)h,c+(n—0.5)h))+4ni (F(%,y,)+ F(x,c+(j—05)h)

[

+f@@a+@i-05)h,y,)+ f(a+@i-05)h,c+(j—05)h)) ] +Aygh® +Bggh® +Cygh® +...

where Bsusus Csusu Asusy @re constants whose values depend on the partial derivatives of the function
f(x,y) ,andthat i=123..,n-1,x, =a+ih,j=123,..,n-1, y; =c+jh

Second:- the suggested method base on the external dimension y and trapezoidal rule on the
internal dimension x (SuT )

b
Applying the trapezoidal method on single integral I f(x,y)dx gives

................................................
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whereas A, €(a,b), k=123,...; x, =a+ih , h=(b—a)/n , and integrating both sides of (11)
numerically for y on the interval [c, d] using the suggested method, also we will get

SE\\\\\\d\\g\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\>SE
SfSuTzf j f(x, y)dxdy—h [f(ac)+f(ad)+f(bc)+f(b d)+2(f(a,c+(n-0.5)h+ f(b,c+(n-0.5)h))
S i anfl S
+2) (f(a,y;)+ f(a,c+(i-0.5)h)+ f(b,y,)+ f(b,c+(i—-0.5h)+ f(x,c)+ f(x,d)
N i=1 N
: .  0Mf(2,0)
v 2t e+ (=05)h) +4> > (F(x,y;)+ f(x.c+(j—05)h) ]+(b—a)(d—c)( h a—2+§z
; =1 i1 X N
L ) 1000 hdec ) nd—c fbp)
vT20 ox* 30240 ox° 4 24 oy’ 4 24 dy’ ¥
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where 6, € (c,d) , i=123,...

Hence, we note that the value of integration (9) using SuT with the correction terms will take the
following form

R N N N N N N N

:> d b 2 ;
ESSuT I I f(x, y)dxdy—h—[ f(a,c)+ f(a,d)+ f(b,c)+ f(b,d)+2(f(a,c+(n-0.5)h+ f(b,c+(n—0.5)h))§§
B ;
+22 (a,y,)+ f(ac+(@i-05h)+ f(b,y,)+ f(b,c+(i-05)h)+ f(x;,c)+ f(x,d)
2 n-1 n-1 2
: +2f(xi,c+(n—0.5)h))+4zz (f(x,y;)+ f(x,c+(j-0.5)h) |+ +A h? + B, h* +Cyh® + !
3 =1 i1 :
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where By, Csisu Asusy are  constants whose values depend on the partial derivatives of the
function f(x,y) ,andthati=123..,n-1,x,=a+ih,j=123,..,n-1,y, =c+ jh

Third: - the suggested method rule on internal dimension x and trapezoidal rule on the
external dimension (TSu) :

Applying the suggested method in single integration i f (x, y)dx We geton

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

: b n-1
;Su:J‘ f(x,y)dx (f(a Y+ fby)+2f(@a+(n- 05)hy+22 (f(x,y)+ f(x, +(—0.5)h, y)j
. i=1
6
Jb-a 0 f(hy) b-a ,0'f(4,y) 6lb-a) o0°f(4.Y)
24 ox? 1440 ox* 60480 ox°
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where 4, € (a,b), k=123,... ,and that x, =a+ih and h=(b—a)/n and integrating both S|des

of the equations (12) numerically for y in the interval [c, d] using the trapezoidal method, we get
to:
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TSU T I f(xy) dxdy—%[ f(a,c)+ f(ad)+ f(b,c)+ f(b,d)+2(f(a+(n-05)h,c)

n-1
+fa+(n-05)h,d)+25 (f(ay,)+f(b,y)+2f(@+(n-05)hy)+f(x,c)
i=1
n-1 n-1
+f(x,d)++f(a+(i-05)hc)+ f(a+(i-05hd)+4Y Y (f(x,y,)+f@+(i-05h,y,) ]
j=L =1
2 4 6
+(b—a)(d—)(i h2 9 f(/li’01)+_ 1 40 f(12,92)+ 1 hea f(lz,93)+.._)+
24 OX 1440 ox* 60480 OX
hz(_—h d-c 0°f(am) hd-c azf(b,y21)+ﬂd—c 62f(a+(n—0.5)h,y31)+
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hit d-c 0°f(X, 4 1) h (d-c) *fam,) h (d-c) 8*f(bu,)

— +h*(-
24 12 oy L T oy’ 4 720 oy
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where 6 (c,d) , 1=12,3,... Hence, we note that the value of integration (9) using TSu the with of
correction terms will take the form

- o
# \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\1'/

TSu_J' I f (X, y)dxdy_h—[ f(a,c)+ f(a,d)+ f(b,c)+ f(b,d)+2(f(a+(n—-0.5)h,c)

§+f(a+(n-o.5)h,d))+2z (f(ay,)+f(y)+2f@+(-05)hy,)+ f(x,c)

Crf(x.d)++F @+ (I —05)h,c)+ F(a+(i-05)hd)+43 Y (F(x,y,)+ f@+i-05h,y,) |

j=1 i=1

4 Ag,h? + B h* +Crg h°® +

R T T T T T T N T

where Bg,, Csisu Assy  CONstants whose value depends on the partial derivatives of the function
f(x,y) ,andthat i=123..,n-1,x,=a+ih,j=123,..,n-1,y; =c+ jh
5-Examples:-

1. ! ! In(x+y) dxdy The analytical value is (1.08913865206603) approximated to 14 decimal

places.

4 1
(x+y)
2. ! ! Xe dxdy The analytical value (0.06144772819733) near to fourteen decimal places
3 3
y
3. .2[ .Zf (xy) dxdy has no analytical value.

6-Results: - For the first integration, its plot appears in Figure (1), the results are display in tables
1,2,3,4 by using RTT, RSuSu ,RSuT, RTSu respectively we will obtain following results
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Figure 1:Geometric representation of In(x+y) within the region of integration and around at (1)

n=m TT K=2 K=4 K=6 K=8 K=10
1 1.06916652975401
2 1.08420812969791 1.08922199634588
4 1.08791028604728 1.08914433816373 1.08913916095159
8 1.08883183373270 1.08913901629450 1.08913866150322 1.08913865357547
16 1.08906196466495 1.08913867497570 1.08913865222111 1.08913865207378 1.08913865206789
32 1.08911948129137 1.08913865350018 1.08913865206848 1.08913865206606 1.08913865206603 1.08913865206603
Table 1:shows the calculation of double integral ? ? In( x + y) dx dy using method RTT
11
n=m SuSu K=2 K=4 K=6 K=8
1 1.08420812969791
1.08791028604728 | 1.08914433816373
1.08883183373270 | 1.08913901629450 1.08913866150322
1.08906196466495 | 1.08913867497570 1.08913865222111 1.08913865207378
16 | 1.08911948129137 | 1.08913865350018 1.08913865206848 1.08913865206606 | 1.08913865206603
Table 2:shows the Double integration calculation ? ? In(x + y)dxdy tomethod RSuSu
11
n=m SuT K=2 K=4 K=6 K=8
1 | 1.07684668996939
2 | 1.08606992611514 | 1.08914433816373
4 | 1.08837174374966 | 1.08913901629450 | 1.08913866150322
8 | 1.08894694216919 | 1.08913867497570 | 1.08913865222111 1.08913865207378
16 | 1.08909072566744 | 1.08913865350018 | 1.08913865206848 1.08913865206606 | 1.08913865206603
Table 3:shows the Double integration calculation ? ? In( x + y)dxdy tomethod RTSu
11
n=m TSu K=2 K=4 K=6 K=8
1 | 1.07684668996939
2 | 1.08606992611514 | 1.08914433816373
4 | 1.08837174374966 | 1.08913901629450 | 1.08913866150322
8 | 1.08894694216919 | 1.08913867497570 | 1.08913865222111 | 1.08913865207378
16 | 1.08909072566744 | 1.08913865350018 | 1.08913865206848 | 1.08913865206606 | 1.08913865206603

22
Table 4:shows the Double integration calculation | |

11

In(x + y)dxdy tomethod RTSu




From table 1, it is observed by Mohammad [4] using TT that when n=m=32, the above integral
value is correct to four decimal places, while is equal to the analytical value if Romberg
acceleration was used. On the other hand we deduce from table 2 that using SuSu for the case when
n=m=16 the value of above integral is correct to four decimal places too, while is equal to the
analytical values if Romberg acceleration rule together with the mentioned rule are applied.
Moreover, the table 3 shows that using SuT for n=m=16 gives a correct value for the above integral
for three decimal places, but Romberg acceleration rule together with the mentioned yields the same
value of analytical one. Finally, we occlude from table 4 for the case n=m=16, the integral value
will be correct to three decimal places if TSu was applied, while we obtain an identical value to the
analytical value if Romberg acceleration rule together with the mentioned one were applied.

From the first column in each one of above four tables which respectively correspond to the
methods TT, SuSu, SuT, TSu , we deduce that method SuSu converges to the real (analytical) values
faster in comparison with other methods with less number of sub-intervals. For example, when
n=m=16 the value of the integral given by SuSu is correct to four decimal places, while in the other

methods the resulting value is correct to three decimal places’
For the second integration, its plot appears in Figure (2), the results are display in tables 5, 6, 7, 8
by using RTT, RSuSu ,RSuT, RTSu respectively we will obtain following results

< eY)
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Figure 2:Geometric representation of xe **¥ within the region of integration and around at (2)

n=m TT K=2 K=4 K=6 K=8
1 | 1.08420812969791
2 1.08791028604728 1.08914433816373
4 | 1.08883183373270 1.08913901629450 1.08913866150322
8 1.08906196466495 1.08913867497570 1.08913865222111 1.08913865207378
16 | 1.08911948129137 1.08913865350018 1.08913865206848 1.08913865206606 1.08913865206603

Table 5:shows the Double integration calculation j
3

1

J’ xe ¥ dxdy to method RTT

0




n=m SuSu K=2 K=4 K=6 K=8
1 0.05782362963111
2 0.06055283133530 0.06146256523669
4 0.06122471007084 0.06144866964935 0.06144774327686
8 0.06139201796392 0.06144778726162 0.06144772843577 0.06144772820020
16 0.06143380341025 0.06144773189235 0.06144772820107 0.06144772819734 0.06144772819733

Table 6:show the double integration calculationj
3

i t
I xe Y dxdy O

0

method RSuS

h=m suT K=2 K=4 K=6 K=8 K=10
1 | 0.04366154360653
2 | 0.05604308067686 | 0.06137025970030
4 | 006031782705260 | 006144274251118 | 0.06144757469857
8 | 0.06116501747462 | 006144741428196 | 006144772573335 | 0.06144772813072
16 | 006137703577462 | 006144770854128 | 0.06144772815857 | 0.06144772819707 | 0.06144772819733
32 | 006143005416985 | 0.06144772606826 | 0.06144772819673 | 006144772819733 | 0.06144772819733 | 0.06144772819733
4 1
Table 7:shows the double integration calculation I J' xe Y dxdy to method RSuT
3 0
n=m TSu K=2 K=4 K=6 K=8 K=10
1 0.06120218879710
2 0.06148920027908 0.06155487077308
2 0.06146324766041 0.06145459678752 0.06144791185515
8 0.06145193209606 0.06144816024128 0.06144773113820 0.06144772826067
16 0.06144879945658 0.06144775524343 0.06144772824357 0.06144772819762 0.06144772819734
32 0.06144799728044 0.06144772988839 0.06144772819806 0.06144772819733 0.06144772819733 0.06144772819733

4 1
Table 8:shows the Double integration calculation I j xe ) dxdy to method RTSu
3 0




From table 5, it is observed by Mohammad [4] using TT that when n=m=32, the above integral
value is correct to four decimal places, while is equal to the analytical value if Romberg
acceleration was used. On the other hand we deduce from table 6 that using SuSu for the case when
n=m=32 the value of above integral is correct to four decimal places too, while is equal to the
analytical values if Romberg acceleration rule together with the mentioned rule are applied.
Moreover, the table 7 shows that using TSu for n=m=32 gives a correct value for the above integral
for six decimal places, but Romberg acceleration rule together with the mentioned rule yield the
same value of analytical one. Finally, we occlude from table 8 for the case n=m=32, the integral
value will be correct to three decimal places if TSu was applied, while we obtain an identical value
to the analytical value if Romberg acceleration rule together with the mentioned one were applied.

From the first column in each one of the above four tables which respectively correspond to the
methods TT, SuSu, SuT, TSu , we deduce that method SuSu converges to the real (analytical) values
faster in comparison with other methods with less number of subintervals. For example, when
n=m=16 the value of the integral given by SuSu is correct to four decimal places, SuT to three
decimal places and TSu to five decimal places.

For the third integration, its plot appears in Figure (3), the results are display in tables 9, 10, 11,
12 by using RTT, RSuSu ,RSuT, RTSu respectively we will obtain following results

Figure 3:Geometric representation of (xy )5 within the region of integration and around at (3)

10



n=m T K=2 K= K=6 K=8 K=10
1 2.08667353966681
2 2.08401453957666 2.08312820621328
4 2.08339748332247 2.08319179790441 2.08319603735048
8 2.08324720403810 2.08319711094330 2.08319746514590 2.08319748780931
16 2.08320990405829 2.08319747073169 2.08319749471759 2.08319749518698 2.08319749521591
32 2.08320059628184 2.08319749368968 2.08319749522022 2.08319749522819 2.08319749522835 2.08319749522837
64 2.08319827041953 2.08319749513209 2.08319749522825 2.08319749522838 2.08319749522838 2.08319749522838
3 3 1
Table 9:shows the Double integration calculation [ [ (xy)?dxdy tomethod RTT
2 2
n=m susu K=2 K= K=6 K=8 K=10
1 2.08401453957666
2 2.08330748332247 2.08319179790441
4 2.08324720403810 2.08319711094330 2.08319746514590
8 2.08320990405829 2.08319747073169 2.08319749471759 2.08319749518698
16 2.08320059628184 2.08319749368968 2.08319749522022 2.08319749522819 2.08319749522835
32 2.08319827041953 2.08319749513209 2.08319749522825 2.08319749522838 2.08319749522838 2.08319749522838

Table 10:shows the Double integration calculation
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n=m suT K=2 K=4 K=6 K=8 K=10 K=12
1 | 2.09171221935446
2 | 208520079588142 | 2.08315032139040
4 | 2.08371776627863 | 2.08319342307770 | 2.08319629652352
8 | 208332735430560 | 208319721710137 | 2.08319747003628 | 2.08319748866347
16 | 208322004668058 | 2.08310747744221 | 208319749479827 | 2.08319749519131 | 2.08319749521601
32 | 208320560725286 | 2.08310749411020 | 2.08319749522150 | 2.08319749522822 | 2.08319749522836 | 2.08319749522837
64 | 208310952318201 | 2.08310749515830 | 2.08319749522827 | 2.08310749522833 | 2.08319749502838 | 2.08310749522838 | 2.08319749522838
3 3 1
Table 11:shows the Double integration calculation I J' (xy)? dxdy to method RSuT
2 2
n Tsu K=2 K=4 K=6 K=8 K=10
1 2.07896212037993
2 2.08211986237696 2.08317244304264
4 2.08292682604702 2.08319581393704 2.08319737199666
8 2.08312974759935 2.08319738811680 2.08319749306211 2.08319749498379
16 | 2.08318055327565 2.08319748850108 2.08319749519337 2.08319749522720 2.08319749522815
32 | 208319325042446 2.08319749480740 2.08319749522782 2.08319749522837 2.08319749522837 2.08319749522838

3 3
Table 12:shows the Double integration calculation _[ j (xy)
2 2

12

1

ydxdy to method RTSu



1

As far as the fourth integral H(Xy);dxdy concern, a plot of which is shown in Figure 3, its

analytical value is unknown. Tables 9,10,11 and 12 are respectively results of applying the above
four methods. It appear to us that the values are the same horizontally in three successive columns
when m=n=32 using RSuSu , one column when RTSu is applied, and four columns for the other two
cases RSUT and RTT. This means that the actual value of the above integral is (2.08319749522838)
rounded to 14 decimal places.

Discussion and conclusion: Three theorems were proved to solve double integrals over their given
intervals. From the tables corresponding to the rules SuT, YSu, SuSu and TT we conclude that they
give good results, but they need relatively high number of sub-intervals. But using Romberg
acceleration after external adjustment, we reach better results which were closer to the real values of
the integrals. Comparing the four methods left us to deduce that RSuSu is the best among the other
methods, which gave in all selected examples more accurate and fast convergence to the real value
with less number of subintervals.
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