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Abstract

The main objective of this study is to obtain and compare the performance of
"Maximum likelihood estimator (MLE) and Bayesian estimators of the scale parameter
6 of the Rayleigh distribution. In order to get better understanding in our Bayesian
analysis we consider informative prior as well as non-informative prior using Jeffery
prior information under loss functions (modified squred error loss function, Quadratic
error loss function) to find the best method for estimation, which used the samples size
(10, 20, 30, 50, 100). The comparison of the estimators, based on their mean squared
errors (MSE's), we obtain that, MinMSE is the best estimator, while the performance of
Bayes estimator under modified squared error loss function with non-informative prior
with a value of the scale parameter (6 = 1.5) is the best estimator comparing to other
for all simple size.
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1. Introduction

Inferences on the Rayleigh distribution
have been studied by many authors.
Rasheed H. A. (2011)[7] estimated the

scale parameter of the Rayleigh
distribution by applying the Bayes
estimators  under  different  loss
functions  (using  Jeffrey  prior
information). Dey S. (2012) [2] Bayes
estimators are  obtained  under
symmetric and asymmetric linear

exponential loss functions using a non-
informative prior. Oayd R. G. (2012)[6]
derived the standard Bayes estimators
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Rayleigh distribution. Kazem T. H.,,
Rashid H. A., Al Obeidi N. J.(2012)[4]
used Bayes' estimators for the mean of
Rayleigh  distribution  with  three
different prior prior by Jeffery's prior
based on loss functions (modified
squred error loss function, Quadratic
error loss function). The comparison
was based on the simulation method
information's are presented under the
squared error loss function. Al-Bderi
H. J.(2013)[1] estimated the shape and
scale parameters together in generalized
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Rayleigh distribution by using three
Nonbayesian (classical) and three
Bayesian methods (Maximum
Likelihood Estimator, Ordinary Least
Squares Estimator, Rank Set Sampling
Estimator, Standard Bayes Estimator,
Lindley Approximation Estimator and
Shrinkage Estimator. Globe H. I,
Shafig M. B.(2013)[3] estimated the

scale  parameter  for  Rayleigh
distribution using Bayes method
depending Jeffrey's information

method.The aim of this study was to
estimate the scale parameter of Raleigh
distribution  using the maximum
likelihood and Bayes estimators are
obtained under informative prior, as
well as under non-informative Prior by
Jeffery's prior basedon loss functions
(modified squred error loss function,
Quadratic error loss function). The
comparison was based on the
simulation method

2. Rayleigh distribution

Let us consider t; t, . t, tobe
independent and identically distributed
random variable from rayleigh
distribution having pdf:[1]
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Where 6 is the shape parameter.The
cumulative distribution function (cdf) is
given by:

t2

F(tlo)=1—e" 8
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3. Maximum Likelihood
Estimator

The likelihood function for Rayleigh
distribution pdf is given by:

n 2
i=1t

1

2" _z
L(ti;6)=9—nt e o

.(3)

By taking the log and differentiating
partially with respect to 6, We get:

dlnL(t;0) _— n
@ 0

Y t?

+92
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Then the MLE of 8 is the solution of
equation (4) after equating the first
derivative to zero is given by:
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4. Bayes Estimators

4.1.  This method is based on the
assumption of distribution
unknown parameter to this
former distribution parameter

dictate as follows:

9:1(0) = ,0< 0 <0, c>0...(6)

So, the posterior distribution for 6
using Jeffery prior is:

L(t;; 6).91(6)

1 = Jy L(t;;0)g:(6)d6

()

Substituting (3) , (6) in (7) we get:

n+c—1e_7p

p

h(818) = On+<r(n+c) ’

wherep = Z t?.....(8)
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The posterior density is recognized as
the density of the Gamma distribution:
6~ Gamma (n+ ¢, 0)

I. Jeffreys prior information,
under modified squred error loss
function[7]

L(6,0) =067(8,0)*

Risk = E(L(8,0)

= f 07(0,0)? h,(6|t)d6

0

By taking differentiating partially with
respect to 8, and equating the first
derivative to zero is given by:

~ J, 07 hy(8]t)do
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ii. Jeffrey's prior information,
under Quadratic error loss function[5]:

L(8,0) = <§0%9>2

Risk = E(L(,0))

[00]

o-06\°

0

By taking differentiating partially with
respect to 8, and equating the first
derivative to zero is given by:

5 Jy hi(61t)de

o1
fo §h1(9|t)d9

p
n+c

)

. (10)
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4.2.  Bayes estimators for the
parameter 6, was considered

with non-informative prior.

g1(8) « \/1(6), where I(0) is the

Fisher information . Then

91(6) = by/1(6) . (11),
where b is constant
0%1nl(t]|6)
I(6) = —nE <T> - (12)
From (6),(7) we get:
b3
9:(0) == (;/— . (13)

So, the posterior distribution for 6
using Jeffery prior is:

L(Olty, ty, ., tn) g1(6)

h,(0]t) = — '
1 fO L(@Itl. tz; ey tn)gl(e) ae

(14)

Substituting (3) , (8) in (9) which has
the following probability density
function:

_b
pTl+Ze 0

10 = garriv 2)

..(15)

From the Equation (15) we note that p
is distributed with Gamma distribution
rn+2,0)

By using modified

i- Jeffreys prior non-informative prior,
under modified squred error loss
function.

L(6,0) =067(0,0)*
Risk = E(L(8,6))
= J 67(0,0)% h,(6|t)de
0
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By taking differentiating partially with
respect to 8, and equating the first
derivative to zero is given by:

ii- Jeffreys prior non-informative
prior, under Quadratic Loss
function

A\ 2

1(6,0) = (90%9>

According to the above mentioned
loss functions, we drive the
corresponding Bayes' estimators for 6
using Risk function R (6 — 6) which
minimize the posterior risk

-~ (17)

0—0

R(é—e)zfo (T) h,(0]t)de

By taking differentiating partially with
respect to 8, and equating the first
derivative to zero is given by:

§5:B

- ..(18)

5. Simulation Study and Results

In this paper we used the simulation in
Monte Carlo to compare the different
methods that are used to estimate the
parameter of Rayleigh distribution,
This method is summarized in the
following steps:

1. Specify the default values:

o Select many different samples
size (n), where n=10, 20, 30, 50, and
100.

. Different values were selected
for the scale parameter 8, where

6 =0.5,1.5,2.5,3.5.
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o Assuming the values c and r in
the posterior distributon and modified
squred error loss function respectively
,which are as follows: c=2, r=3.

2. Generate data:

o Random variable values are
generated according to the reverse
conversion method:

t = [0In(1 — w2

o Comparing all methods of
estimation for the scale parameter 6
by employing the mean squares error
(MSE) which is defined as follows:

MSE(0) = %Z(éi —0)° ..(20)

Where L is the number of
replications,(L=1000).

3. Results: The table(1) shows the
results of the study.

6. Conclusions

The results of the simulation study
for estimating the scale parameter
(6) of Rayleigh distribution, are
summarized and tabulated in table
(1) which contain the MSE's for
estimating the scale parameter, we
have observed that:

The results showed that, the
performance of Bayes estimator
under modified squred error loss
function with non-informative prior
with a small value of (6 = 0.5) is
the best estimator comparing to
others.

the performance of Bayes estimator
under Quadratic error loss function
with posterior distribution with a
value of  (6=1.5) is the best
estimator comparing to other for
small simple size .
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¢ In general, the performance of Bayes
estimator under modified squred
error loss function with non-
informative prior with a value of the
scale parameter (6 = 1.5) is the
best estimator comparing to other for
all simple size.

e The results showed that the sample
size increased with decreasing
values MSE and this conform to the
statistical theory.
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e Table 1: MSE of estimated parameter of Rayleigh distribution withc =2, r
=3
0 n | M.LE Bayes1(M.S.L) Bayes1(Q.L) Bayes2(M.S.L) Bayes2(Q.L) Best
0.5 10 1.3004e-05 2.7777e04 2.0043e-04 6.77477e-06 1.3004e-05 Bayes2(M.S.L
20 1.36496e-06 1.31578e-05 1.46009e-05 3.05712e-07 1.36496e-06 Bayes2(M.S.L)
30 1.3649e-06 8.62028e-06 1.05727e-07 3.81675e-08 1.36496e-06 Bayes2(M.S.L)
50 3.6239e-07 5.10204e-06 8.166527e-08 8.10441e-08 3.6239e-07 Bayes2(M.S.L)
100 4.6089e-08 2.52525e-06 2.21239e-08 2.12201e-08 4.60891e-08 Bayes2(M.S.L)
1.5 10 5.71288e-03 2.50000E-04 2.21239%e-04 1.38731e-03 5.71288e-03 Bayse1(Q.L)
20 1.04161e-03 1.18421e-04 2.10672e-04 1.37333e-03 1.04161e-03 Bayse1(Q.L)
30 2.96291e-04 7.75862e-05 2.10487e-04 3.63696e-04 2.96291e-04 Baysel(M.S.L)
50 2.27496e-04 4.59184e-05 1.91719e-04 2.55788e-04 2.27496e-04 Baysel(M.S.L)
100 1.31409e-04 2.27273e-05 1.20794e-04 1.39113e-04 1.31409e-04 Baysel(M.S.L)
2.5 10 6.97900e-02 6.94444e-04 6.97900e-03 1.32978e-02 6.97900e-02 Bayse1(M.S.L)
20 1.03316e-02 3.28947e-04 5.03316e-03 1.32110e-02 1.03316e-02 Bayse1(M.S.L)
30 3.31644e-03 2.15517e-04 3.31644e-03 3.93750e-03 3.31644e-03 Bayse1(M.S.L)
50 2.44206e-03 1.27551e-04 2.44206e-03 2.69842e-03 2.44206e-03 Bayse1(M.S.L)
100 1.37934e-03 6.31313e-05 1.37934e-03 1.44853e-03 1.37934e-03 Baysel(M.S.L)
3.5 10 | 3.17692e-02 | 1.36111e-03 3.65737e-02 5.37686e-02 3.17692e-02 | Baysel(M.S.L)
20 2.38111e-02 6.44737e-04 3.19406e-02 5.33997e-02 2.38111e-02 Bayse1(M.S.L)
30 1.46619e-02 4.22414e-04 3.17098e-02 1.72140e-02 1.46619e-02 Bayse1(M.S.L)
50 1.06453e-02 2.50000e-04 9.30101e-03 1.16928e-02 1.06453e-02 Bayse1(M.S.L)
100 5.96642e-03 1.23737e-04 5.57544e-03 6.24827e-03 5.96642e-03 Bayse1(M.S.L)
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