Synthesis and characterization of Various Amides Via Oxazepine Compounds

Nagham. Mahmood. AL-jamali Chemistry Dept., College of Education, University of Kufa.

Abstract:

N-Furfuralidene-(1-phenyl-2.3-dimethyl pyrazolone amine [1] was prepared by condensation of furfuraldehyde with pyrazolone amine . The compound [1] was found to react with maleic anhydride to produce 2-furfuryl-3-(1-phenyl-2,3-dimethyl pyrazolone)-2,3-dihydro [1,3]-oxazepine-4,7-dione [2] which was reacted with different secondary amine (morpholine , piperidine , diethyl amine) to give amide direvatives of maleic acid [3-5] .

Introduction:

These compounds are one class of heterocyclic compound that have a wide spectrum of uses like preparation of various compounds⁽¹⁻³⁾, antimicrobial⁽⁴⁾ analgesic (5) agents, antibacterial^(6,7) other uses^(8,9). These compounds are considered an important branch compounds due to their implication in drugs and industrial fields which have one or more of the heteroatoms such as (nitrogen, oxygen...)^(1-3,10). There are found as construction units in many of biological molecules⁽¹⁰⁾.

Experimental:

All chemical used were supplied from BDH-Chemical company and Fluka-AG.

- -Melting point were recorded using : Electro thermal 9300 , melting point engineering , LTD , U. K .
- -Infrared spectra were recorded using Fourier transform infrared shimadzu (8300) (FT.IR) infrared spectrophotometer , KBr disc was performed by co.s.q.c.Iraq .
- -Elemental analysis (C.H.N) were carried out by EA-O17 mth in center Lab-Institue. Of earth and environ mental science, Al-Albyat university, Jordan.
- -UV-visible spectra were recorded in : shimadzu-1700, double beam with computerized , Japan.

Experimental Work:

N-furfuralidene –(1-phenyl-2,3-dimethyl pryazolone amine [1]^(1,11-5) A mixture of equimolar amount (0.07 mole) of furfuraldehyde and 1-phenyl-2,3-dimethyl-4-amine-pyrazole were reacted by condensation in ethanol for (2) hrs and recrystallized from ethanol to give colored crystal of Schiff's base [1].

2-furfuryl-3-(1-phenyl-2,3-dimethyl pyrazolone)-2,3-di hydro [1,3]-oxazepine-4,7-dione [2]^(1,3) A mixture of (0.05 mole) of compound [1] with maleic anhydride was

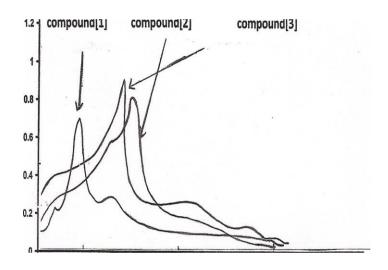
refluxed for (3) hrs in dry benzene , The solvent was removed and recrystallized from dry 1,4-dioxane to give colored crystalline solid of 1,3-oxazepine compound [2] . 2-furfuryl-3-(1-phenyl-2,3-dimethyl pyrazolone)-2,3-dihydro [1,3]-oxazepine-4,7-dione with 4-(morpholine or piperidine or diethyl amine) [3-5] $^{(16)}$ Dissolve (0.005 mole) of 2-furfuryl -3-(1-phenyl-2,3-dimethyl pyrazolone)-2,3-dihydro [1,3]-oxazepine-4,7-dione [2] in dry 1,4-dioxane, (0.02 mole) of dry (morpholine or piperidine or diethyl amine) was added dropwise with stirring, the mixture was heated to (80 C $^{\circ}$) in water bath for (30 min) , the separated crystalline solid was filtered and recrystallized from 1,4-dioxane to give amide derivatives of maleic acid [3-5] .

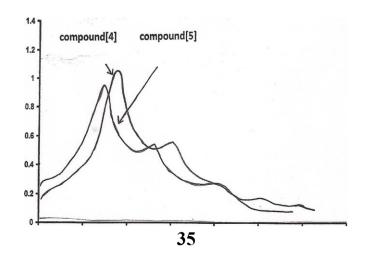
Results and discussion:

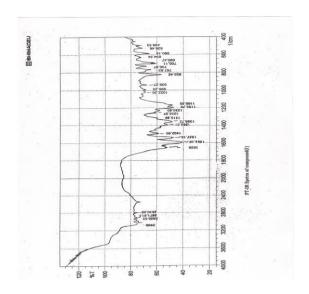
All reactions in this work are presented in scheme (1):

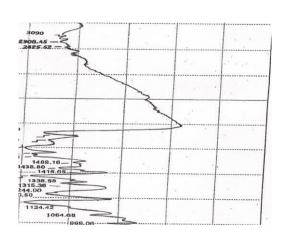
All synthesized compounds [1-5] have been characterization by melting point and spectroscopic methods (Uv-Vis , FT. IR) and C. H. N-analysis .FT. IR-showed appearance band at (1615)cm $^{-1}$ $^{(1,3)}$ due to azomethine (C=N) group of compound [1] , while this band is disappear and other band is appear at (1690)cm $^{-1}$ $^{(1)}$ due to (lactone/lactame) group of oxazepine compound [2] .The formation of compounds [3-5] are followed by disappearance of (lactone) absorption band at (1690)cm $^{-1}$, and appearance of two bands : at (3450)cm $^{-1}$ due to (-OH) group $^{(17)}$ and other band at

(1650)cm $^{-1}$ $^{(16)}$ due to $(-C^{(16)})$ of synthesized amides [3-5], this strong evidence to formation of compounds [1-5]. Other date of functional groups shown in the following Table (1), (C. H. N)-analysis and melting points of compounds [1-5] shown in the Table [2].


The Uv-spectra of compound [2] shown absorption $maxima^{(1,16)}$ at (395)nm due to charge transfer of the furfuryl group and the oxazepine cyclic , while the absorption is decrease in compounds [3-5] to (378-360)nm due to break of the oxazepine cyclic⁽¹⁾ and formation of amides [3-5] , Table [3]


Table (3) – UV- Visible absorption maxima of compounds [1-5]


Com. No.	λ _{max} (nm)			
1	290			
2	395			
3	378			
4	360			
5	345			


Acknowlegement:

I would like to express my thanks to Mr. Muhanad abu Al-soaud in center lab.Institute of Earth and Environmental science-AL-byat University H. J. K. in Jordon for providing C. H. N. element analytical and some material .

Comp. No.	Structural Formula	υ (C-H) str. Aromatic Alipatic	v (C=N) Imine Group	(C=O) str. Lactone ,Lactame	(C-O) str. Lacto ne	(-OH) str.	(C=O) of amide
1	Me Me N-ph	3080 2920,2990	1615	-	-	ı	1620
2	CH-N N-ph	3090 2908,2825	-	1690 1680	1240	ı	1610
3	OH Me N N-ph	3040 2908,2819	-	- 1675	_	3450	1640
4	OH Me N N-ph	3045 2935,2908	_	- 1680	_	3480	1655
5	OH Me M-ph	3091 2935,2891	_	- 1695	_	3455	1685

References:

- 1- Nagham. M. Al-Jamali, Ph.D. Thesis, University of Baghdad (2008).
- 2- Xin.P, Zhang.M and Fang.W.,J.Chinese Chem.Soci.,47,535-539 (2002).
- 3- Birgul.O and Cesur.Z., Molecules, 9,894-901 (2004).
- 4- N. F. Eweiss and A. A. Bahajaj, J. Heterocyclic. Chem. 24, 1173 (1987).
- 5- Vakula. T. Radha and V. Range, J. Pract. Chem., 315, 185 (1973).
- 6-Yang. Z., Ren-Z. Qiao, peng-Feixu, Zi-Yi. Zhany and kai-Bei. Yn, J. of the Chinese Chem.. Soc., 49, 369 (2002).
- 7- Hansong. C. Zengmingli and Y. Han, J. Agric. Food. Chem., 48, p.5312-5315 (2000).
- 8- Hellen.K and Balasubramaniar.N., Ind.Journal of Chemical Technology ,9,363-372 (2002) .

- 9- Feas. A. Hussain, ph. D. Thesis, University of Baghdad (2005).
- 10- F. A. Carey "Organic Chemistry" Mc Graw-Hill, Inc. Americal, 3, p. 453-454 (1996).
- 11- Reevs.R., J.Am. Chem. Soc., 84, 3332 (1962).
- 12- Nagham. M. Al-Jamali , Journal of Al-Qadisiah for pure Science., $10,1,\,p.\,131-138\,(2005)$.
- 13- Nagham. M. Al-Jamali and Sami . W. Radhi ; Al- Mustansiria Journal of Science., . 15,. 3, p. 56-66 (2004) .
- 14- Nagham. M. Al-Jamali, Journal of Babylone., 11,.3, p. 452-458 (2006).
- 15- Nagham. M. Al-Jamali , Journal of Al-Qadisiah for pure Science., 9,. 4, p. 257-267 (2004) .
- 16- Obaid .H. Abid., National Journal of Chemistry, 3, p. 480-492 (2001).
- 17- Nagham. M. Al-Jamali .,J.Al-Qadisiah for pure Science., 3,12 (2007).

Table (1) FT.IR date (Cm⁻¹) of compounds [1-5] Table (2)-physical data of compounds [1-5]

Comp. No	M.F	m. p/ C ்	Calc. Found	С %	Н %	N %
1	C ₁₆ H ₁₅ N ₃ O ₂	198	86.32 86.19		5.33 5.39	14.94 14.70
2	C20H17N3O5	150	64.00 64.09		4.53 4.60	11.20 11.08
3	C24H26N4O6	181	60.75 60.81		5.48 5.32	11.81 11.95
4	C25H28N4O5	165	64.65 64.74		6.03 6.14	12.06 12.18
5	C24H28N4O5	173	63.71 63.34		6.19 6.08	12.38 12.22

تحضير ودراسة خصائص أمايدات مختلفةعن طريق مركبات الأوكسازبين

نغم محمود الجمالي قسم الكيمياء كلية التربية جامعة الكوفة

الخلاصة:

تم تحضير المركب N- فورفور الدين -(1- فنيل -3,2 -(1- فنيل بايراز ولون أمين [1] بتكاثف فورفور الديهايد مع امين البايراز ولون . ثم تم مفاعلة المركب الاخير مع انهيدريد الماليك فأعطى 2- فورفوريل -3,2- ثنائي مثيل بايراز ولون -3,2 -(1- فنيل -3,2- ثنائي مثيل بايراز ولون -3,2 -(1- فنيل -3,2 -(1- فنيل -3,2 -(1- فنيل -3,2 -(1- فنيل -3,2 -(1- فاعطى مشتقات والذي تم مفاعلته مع امينات ثانوية مختلفة منها (المورفولين ، البايبيريدين ، ثنائي اثيل امين) فاعطى مشتقات الامايد لحامض الماليك -(1- -(1