Journal of University of Thi- Qar..... Vol. (10).. No. (3)... Sept 2015

F-CONTINUOUS FUNCTIONS AND SUB-F-CONTINUOUS FUNCTIONS

Mayada Gassab Mohammed Department of Mathematics College of Education University of Thi-Qar

Abstract:

In this paper we introduce and study F-closed sets and new types of generalized continuity.

Introduction:

A subset A of a topological space X is said to be F-closed if it is the intersection of an open and closed set . in this paper we introduce three different notions of generalized continuity , namely F- irresoluteness , F-continuity and sub-F- continuity and we discuss some properties of these functions

Definition (1-1):

A subset A of a space (X, τ) is called F-closed if A=U \cap V such that U is open set and V is closed set in X. we denote the collection of all F-closed subsets of X by F(X, τ).

Remarks(1-2):

A subset A of X is F-closed set iff X-A is the union of an open set and a closed set .

- 1. Any open (resp. closed) subset of X is F-closed set.
- 2. The complement of a F-closed subset need not be F-closed set .

Definition (1-3) :

A subset A of a space (X, τ) is said to be preopen set if A \subseteq int(cl A).

Remarks (1-4):

- 1. Every open set is preopen set.
- 2. Every preopen and F-closed set is open set .

Journal of University of Thi- Qar..... Vol. (10).. No. (3)... Sept 2015

Proposition (1-5):

Let A be a subset of a space (X, τ) , then the following statements are equivalent:

- 1. A is F-closed set .
- 2. $A=U \cap cl A$, U is open set in X.
- 3. cl A- A is closed set.

Remark (1-6) :

Let A any sub set of a space (X, τ) then A need not be F-closed set, but if (X, τ) has property which every dense subset of X is open set then A is F-closed set.

Proposition (1-7):

Let A and B be F-closed subsets of a space $(X,\,\tau)$. If A \cap clB=clA $\cap B=\phi$, then $A\cup B\!\in\!F(x,\,\tau)\,.$

Proof:

Suppose there are open sets U and V such that $A=U\cap clA$ and $B=V\cap clB$. Since $A\cap clB=B\cap clA=\phi$, then $A\cup B=(U\cup V)\cap cl(A\cup B)$, from definition of F-closed set we obtain $A\cup B\in F(X, \tau)$.

Definition (1-8):

A function $f : (X, \tau) \to (Y, \tau')$ is said to be F-irresolute function iff for any F-closed set U in Y then $f^{1}(U)$ is F-closed set in X.

Definition (1-9) :

A function f: $(X, \tau) \rightarrow (Y, \tau')$ is said to be F-continuous function iff for any open set U in Y then $f^{-1}(U)$ is F-closed set in X.

Definition (1-10) :

A function $(X, \tau) \to (Y, \tau')$ is said to be sub-F-continuous function if there is a subbase or base B for Y such that for any U \in B then f⁻¹(U) is F-closed set in X.

Journal of University of Thi- Qar..... Vol. (10).. No. (3)... Sept 2015

Theorem (1-11) :

Let $f:(X, \tau) \to (Y, \tau')$ be a function , then

- 1. If f is continuous function then f is F-irresolute function.
- 2. If f is F-irresolute function then f is F-continuous function .
- 3. If f is F-continuous function then f is sub-F- continuous function .

Remark (1-12) :

The converse of theorem above is not true in general. The following examples explain that.

Example (1-13) :

Let $f : (R, \tau_u) \rightarrow (R, \tau_u), \tau_u$ is usual topology on R, we will define f on R as follows : f(x) = 1 if x > 0 and f(x) = x if $x \le 0$

We note that f is not continuous function but f is F-irresolute function because for any F-closed set U in R then $f^{-1}(U) = U \cup (0,\infty)$ if $1 \in U$ and

 $f^{1}(U)=U \cap (-\infty, 0)$ if 1∉U, U∪ (0,∞) and U ∩ (-∞, 0) are F-closed sets ,therefore , f is F-irresolute function .

Example (1-14) :

Let $f: (R, \tau_u) \rightarrow (R, \tau_u)$ such that f(x)=x if $x \neq 0$ and f(0)=1. For any $U \subset R$ we have $f^{-1}(U)=U-\{0\}$ if $1 \notin U$ and $f^{-1}(U)=U\cup\{0\}$ if $1 \in U$.

Hence, if U is an open interval then $f^1(U)$ is F-closed . thus f is sub-F-continuous function , but f is not F-continuous function because there is an open set $U=R-\{0\}\cup\{1\backslash n\mid n\!\in\!N\ ,\ n\!\geq 2\ \}$ and $f^1(U)=\{x\!\in\!R\mid x\neq 1\backslash n\ for\ each\ n\geq 2\}$ is not F-closed set .

Example(1-15) :

Let $E=\{1\setminus n, n\in N\}$, let $f: (R, \tau_u) \rightarrow (R, \tau_u)$ such that f(x)=x if $x\in E$ and f(x)=0 if $x\in R-E$, f is not F-irresolute function because $\{0\}$ is F-closed set in R but f¹(0)= R-E is not F- closed in R

We note that f is F-continuous function because any an open set U then $f^{1}(U)$ is F-closed set in R.

Remark (1-16) :

From theorem (1-11), we get the relation among F-irresolute ,F-continuous, sub-Fcontinuous and continuous function as follows

Continuous function \rightarrow F-irresolute function \rightarrow F- continuous function \rightarrow sub-F- continuous function.

Defintion (1-17) :

A function $f:(X, \tau) \to (Y, \tau')$ is said to be pre-continuous function iff for any an open set U in Y then $f^{-1}(U)$ is preopen set in X.

Theorem (1-18) :

A function $f:(X, \tau) \to (Y, \tau')$ is continuous function iff f is pre-continuous and sub-Fcontinuous function .

Proof:

Suppose that f is pre-continuous and sub –F-continuous function and B is a base for Y such that for any $U \in B$ then $f^{-1}(U)$ is F-closed set. Now let $V \in \tau'$ and $f(x) \in V$.

There is $a \in U \in B$ such that $f(x) \in U \subseteq V$.

Since $f^{1}(U)$ is pre-open and F-closed set then $f^{-1}(U)$ is an open set , therefore , f is continuous function .

Proposition (1-19) :

Let $f:\!(X,\tau)\!\to\!(Y,\tau')$ and $g{:}(Y,\tau')\!\to\!(Z,\tau'')$ two functions , then

- 1. If f and g are F-irresolute functions, then gof is F-irresolute function.
- 2. If f is F-continuous function and g is continuous functions, then gof is F-continuous function .

Remarks (1-20) :

- 1. The composition of two F-continuous functions need not be F-continuous function.
- 2. The composition of a sub- F-continuous function and continuous function need not be sub-F-continuous function .

References:

[1] Samir B. Hadid ,Introduction to general topology .Mussel, 1988.

[2] G.B. Navalagi, Definition bank in general topology, 16/7/2000.

[3] Ganster, M. and Reilly, A decomposition of continuity, New York, 1977.

[4]Wilhelm , M . Some negative examples concerning nearly continuity , comment . Math. 28 (1986) , 187-194 .