A Type of Alxandroff space

BY

Gorgees shaheed Mohammad University of Al-Qadisiya, Collage of Education, Dep. of Math.

Abstract:

In this paper we introduce the concept of A_2 -space (which is a strong type of Alxandroff space) and investigate some of its properties. And also introduce concept of g- A_2 -closed sets and investigate some of its consequences.

1-Introduction:

In 1937 (P. Alexandroff)[2] introduced Alxandroff space (a topological space such that every point has minimal neighborhood). Recently, Pratvlanapa [6] has introduced the concept of generalized closed sets of Alxandroff space. In this paper we obtain new concept of strong type of Alxandroff space (A_2 -space). We investigate various properties of this concept and obtain g-close sets in this space.

2-Preliminaries

Definition 1: An Alxandroff space (A_1 -space)[5] is a set X together with system τ of subsets of X satisfying the following:-

- i) the union of any countable number of sets from τ is a set in τ
- ii) The intersection of a finite number of a sets τ is also in τ
- iii) X and Φ are in τ

the pair (X, τ) is called A-space, the members of τ are called A-open set

<u>Definition</u> 2 [1]: A topological space (X,τ) is said to be compact if every open cover of it, has a finite subset

<u>Definition</u> 3 [1]: A topological space (X, τ) is said to be T_0 space if for any distinct points x, y in X then there exists an open set U which contain one of them but not the other.

<u>Definition</u> 4 [1]: A topological space (X,τ) is said to be T_1 space if for any two distant point y in X, there exists open sets U,V such that $x \in U$ and $y \in V, y \notin U$ and $x \notin V$.

<u>Definition</u> 5 [3]: A topological space (X, τ) is regular if for any $x \in X$ and any closed set F such that $x \notin F$ there exist open set $U, V \in \tau$ such that $x \in U, F \subseteq V$ and $U \cap V = \Phi$.

<u>Definition</u> 6 [5]: A subset M of x is called generalized closed if $cl(M) \subseteq U$ whenever $M \subseteq U$ and U is open.

 $3-A_2$ -space

<u>Definition</u> 7: An A_2 -space is a set X together with system τ of subsets satisfying the following

- i) the union of any number of sets from τ is a set in τ
- ii) The intersection of any set from τ is also in τ
- iii) X and Φ are in τ

a set $\mu \subseteq X$ is called A_2 -open if $\mu \in \tau$ and its complementing is called A_2 -closed or members of τ are called A_2 -closed sets their complementary sets are called open

proposition 1: in general τ is a topology but the converse is not as can be easily see by the following example

Example 1: let $X = \left(\frac{-1}{n}, \frac{1}{n}\right) \subset R$, $n \in \mathbb{N}$ with the ratio topology (natural topology) its clear that (X, τ) is topological space but not A_2 -space since the $\bigcap \left(\frac{-1}{n}, \frac{1}{n}\right) = \{0\}$ which is not open.

Note 1: Every A_2 -space is A_1 -space but the converse is not true always.

<u>Definition</u> 8: with every $M \subseteq X$ we associate its A_2 -closure $(A_2 - \overline{M})$ the intersection of all closed sets containing M.

Proposition 2: \overline{M} is A_2 -closed; $M = \overline{M}$ if M is A_2 -closed

<u>Definition</u> 9: A space (X, τ) is said to be A_2 -compact if every A_2 -open cover of it has finite subset

<u>Definition</u> 10: (X,τ) is said to be $T_0 - A_2$ space if for any distinct points x, y in X then there exists an A_2 -open set U which contain one of the but not the other.

<u>Definition</u> 11: (X,τ) is said to be $T_1 - A_2$ - space if for any two distant point y in X, there exists A_2 -open sets U and V such that $x \in U$ and $y \in V$, $y \notin U$ and $x \notin V$.

<u>Definition</u> 12: (X,τ) is regular if for any $x \in X$ and any A_2 -closed set F such that $x \notin F$ there exist A_2 -open set $U, V \in \tau$ such that $x \in U, F \subseteq V$ and $U \cap V = \Phi$.

<u>Definition</u> 13: let M be a sub set of (X,τ) . A point $p \in M$ is called A_2 -interior point of M of $p \in G \subseteq M$ where G is A_2 -open, the set of A_2 -interior points of M denoted by A_2 -int(M).

Propositions 3: i)

- 1) The A_2 -interiors of a set M is the union of all A_2 -open subset of M
- 2) A_2 -int(M) is A_2 -open
- 3) if G is an A_2 -open subset of M then $G \subseteq A_2 int(M) \subseteq M$
- ii) M is A_2 -open if $M = A_2$ -int

Theorem 1: (X, τ) is $T_0 - A_2$ space if $x \neq y$ in impels $\{x \neq y \neq y \}$.

<u>Definition</u> 14: A subset M of X is called $g - A_2$ closed if $A_2 - cl(M) \subseteq U$ whenever $M \subseteq U$ and U is A_2 -open.

proposition 4: Every A_2 -closed is $g - A_2$ closed the converse is not true as shown by the following example.

Example 2: Let X = R - Q and $\tau = \{X, \phi, \bigcup G_i\}$ where G_i runs over all countable subset of R - Q then (X, τ) is an A_2 -space

let B be the set of all irrational numbers in $(0,\infty)$ then B is not A_2 -closed but B is $g - A_2$ closed since x is the only A_2 -open and A_2 -closed set contain B.

Theorem 2: A set M is $g - A_2$ closed if $A_2 - cl(M) - M$ contain no non empty A_2 -closed set.

<u>Proof</u>: let M be a $g - A_2$ closed and let F be an A_2 -closed set such that $F \subseteq A_2 - cl(M) - M$ and hence $F \subseteq A_2 - cl(M) ...(1)$

since F is A_2 -closed then F^c is A_2 -open and $M \subseteq F^c$ (since $F \subseteq M^c$) since M is a $g - A_2$ closed (by Def of $g - A_2$ closed) $A_2 - cl(M) \subseteq F^c \Rightarrow$ and this show that $F \subset (A_2 - cl(M))^c$...(2)

then by (1) and (2) we get $F \subseteq A_2 - cl(M) \cap (A_2 - cl(M))^c = \phi$ and hence $F = \phi$,

<u>Conversely</u>: supposed that $M \subseteq U$ when every U is A_2 -open in X if $A_2 - cl(M) \not\subset U$ then $A_2 - cl(M) \cap U^c \neq \emptyset$

since \overline{M} and U^c are both A_2 -closed then $A_2-cl(M)\cap U^c$ is A_2 -closed (non empty) of $(A_2-cl(M)-M)$ but $(A_2-cl(M)-M)$ has no non-empty on A_2 -closed and this contradiction and hence $A_2-cl(M)\subseteq U$ and then M is $g-A_2$ -closed.

Corollary 1: A $g - A_2$ closed set M is A_2 -closed if $(A_2 - cl(M) - M)$ is A_2 -closed.

proof: \Rightarrow if M is A_2 -closed then M is $g - A_2$ closed and by theorem (2) $A_2 - cl(M) - M = \phi$ and hence $(A_2 - cl(M) - M)$ is A_2 -closed conversely,

 \Leftarrow suppose that $(A_2 - cl(M) - M)$ is A_2 -closed, M is $g - A_2$ closed and $(A_2 - cl(M) - M)$ is A_2 -closed subset of itself by the theorem () $A_2 - cl(M) - M = \phi$ and hence $A_2 - cl(M) = M$ and so M is A_2 -closed.

Theorem 3: if M and N are $g - A_2$ closed then $M \cup N$ is $g - A_2$ closed proof: suppose that $M \cup N \subset U$ when U is A_2 -open then $M \subset U$ and $N \subset U$ since both of M and N are $g - A_2$ closed then $A_2 - cl(M) \subset U$ $A_2 - cl(N) \subset U$ we have $A_2 - cl(M) \cup A_2 - cl(N) \subseteq U$ since

 $A_2 - cl(M) \cup A_2 - cl(N) = A_2 - cl(M \cup N)$ then $A_2 - (cl(M \cup N)) \subset U$ and hence $M \cup N$ is $g - A_2$ closed.

Theorem 4: suppose that $N \subseteq M \subseteq X$, N is $g - A_2$ closed so relation to M and that M is $g - A_2$ closed subset as x then N is $g - A_2$ closed relation to x.

<u>Proof</u>: let $N \subset U$ and suppose that U is A_2 -open in X then $N \subseteq M \cap U$

 $N \cap M \subseteq M \cap U$ but $M \cap U$ is A_2 -open and N is $g - A_2$ closed and by hypothesis $A_2 - cl(N) \cap M \subseteq M \cap U \subseteq U$

 $M \cap A_2 - cl(N) \subseteq U \Rightarrow M \subseteq (A_2 - cl(N))^c \cup U$ and since M is $g - A_2$ closed in x and $U \cup (A_2 - cl(N))^c$ is A_2 -open then

$$A_2-cl(M)\subseteq (A_2-cl(N))^c\cup U$$
,

$$A_2 - cl(N) \subseteq (A_2 - cl(M)) \subseteq (A_2 - cl(N)) \cap U,$$

$$A_2 - cl(N) \subseteq (A_2 - cl(M)) \cap (A_2 - cl(N)) \subseteq U$$
 and hence $A_2 - cl(N) \subseteq U$.

<u>Corollary</u> 2: let M be a $g - A_2$ closed set and suppose that F is a A_2 -closed set then $M \cap F$ is $g - A_2$ closed set.

<u>Proof</u>: since M is $g - A_2$ closed in x and F is A_2 -closed in x then $M \cap F$ is A_2 -closed in M and hence $M \cap F$ is $g - A_2$ closed in M

since $M \cap F$ is $g - A_2$ closed in M and $M \cap F \subseteq M$ and M is $g - A_2$ closed in X by theorem (4) then $M \cap F$ is $g - A_2$ closed in X.

Theorem 5: Let (X,τ) be a A_2 -space and $M \subseteq X$ if M is $g - A_2$ closed and $M \subseteq F \subseteq \overline{M}$ then F is $g - A_2$ -closed

<u>proof</u>: since F is $g - A_2$ -closed, $\overline{F} - F$ has no contain non empty $g - A_2$ closed set

since $M \subseteq F \subseteq \overline{M}$

 $F \subseteq \overline{M}$ since \overline{M} is A_2 -closed $\Rightarrow \overline{\overline{M}} = \overline{M}$

 $\overline{F} \subset \overline{M}, M \subset F, F^c \subset M^c$ then $\overline{F} - F \subseteq \overline{M} - M$ and hence $\overline{F} - F$ cannot has any A_2 -closed (since M is $g - A_2$ closed).

Theorem 6: Let (X, τ) be a A_2 -space if $N \subseteq M \subseteq X$ and N is $g - A_2$ closed in X then N is $g - A_2$ closed in M

Proof: $N \subset U$ when U is A_2 -open in M

we most prove that $\left(\overline{N}\right)_{M} \subseteq U$

since U is A_2 -open in M then there is A_2 -open G in X such that $U = G \cap M$ and $N \subset U = G \cap M \subseteq G \Rightarrow N \subseteq G$

since G is A_2 -open in X and N is $g-A_2$ closed in X then $\overline{N} \subseteq G$ and hence $\overline{N} \subseteq M \subseteq G \cap M = U$ but

$$\left(\overline{N}\right)_{M} = \overline{N} \cap M \text{ then } \left(\overline{N}\right)_{M} \subseteq U$$
and hence N is $\alpha = A$ closed in

and hence N is $g - A_2$ closed in M.

<u>Note</u> 2: Every A_2 -open and $g - A_2$ closed is A_2 -closed.

Corollary 3: Let $N \subset M$ where M is A_2 -open and $g - A_2$ closed then N is $g - A_2$ closed relative to M if N is $g - A_2$ closed in X.

Theorem 7: In A_2 -space (X, τ) then $\tau = F$ (where F the set of all A_2 -closed) if every subset of X is a $g - A_2$ closed set

<u>Proof</u>: suppose that $\tau = F$ and that $M \subset F$ where U is A_2 -open and M subset of X

then $\overline{M} \subset \overline{U} = U$ since U is A_2 -closed $\overline{M} \subset U$ and hence M is $g - A_2$ closed conversely suppose that every subset of x is $g - A_2$ closed let $U \in \tau$

then since $M \subset U$

and U is g-closed we have $\overline{U} \subset U \Rightarrow \overline{U} = U$ and hence $U \in F$ thus $\tau \subset F$ since every A_2 -closed is $g - A_2$ closed and hence $F \subseteq \tau$

<u>Definition</u> 15: Let (X,τ) be a A_2 -space a subset M of X is called compact if every A_2 -open cover of its has a finite sub cover $(A_2$ -open cover if there exist A_2 -open set such that $[M \subset \bigcup_i U_i]$.

Theorem 8: Let (X,τ) be a A_2 -space such that X is A_2 -compact and M is $g - A_2$ closed sub set of X then M is A_2 -compact.

<u>Proof</u>: Let ζ be an A_2 -open cover of M then $M \subset \bigcup \zeta$ and hence $\overline{M} \subset \bigcup \zeta$ since M is $g - A_2$ closed and since \overline{M} is A_2 -closed since any closed of

 A_2 -compact is A_2 -compact then \overline{M} is A_2 -compact and hence there is A_2 -open sates say $U_1, U_2, ..., U_n \in \mathcal{L}$ such that $M \subset \overline{M} \subset U_1 \cup U_2, ..., U_n$ so $M \subset U_1 \cup U_2, ..., U_n$ and hence M is A_2 -compact.

<u>Definition</u> 16: (X,τ) is called A_2 -regular space if for any $x \in X$ and any closed set F such that $x \notin F$ there is $U,V \in \tau$ such that $x \in U,F \subseteq V$ and $U \cap V = \phi$.

Theorem 9: let (X, τ) is a and X is regular space then if M is compact set then M is $g - A_2$ closed

<u>Proof</u>: suppose that $M \subset U \in \tau$, since M compact then there is an finite cover $V \in \tau$ such that $M \subset V \subset \overline{V} \subset U$ and hence $\overline{M} \subset \overline{V} \subset U$ we have M is $g - A_2$ closed.

Reference:

- **1-** Alxandroff, A.D., Additive set function in abstract space, Mat. Sb. (N.S.) 8(50) (1940), 307-348
- 2- P. Alexandroff, Diskrete Raume, Mat. Sb., 2 (1937), pp. 501-518
- **3-** Das, p. and Rashid, M.A., Certain separation axioms in a space, Korean J. Math. Sciences 7(2000),81-93
- **4-** F.G. Arenas, Alxandroff space, Acta Math. Unv. Comenianae, vol. LXVIII, (1) (1999), 17-25
- **5-** Levine. N., Generalized closed sets in topology, Rend. Circ. Math. Palermo 19(2) (1970), 89-96.
- **6-** Pratulananda, Generalized closed sets and a new separation axiom in Alxandroff space, archivum mathematicum, tomus 39, (2003), 299-307.

الخلاصة

في هذا البحث قدمنا مفهوم فضاء- A_2 وناقشنا بعض خواصه كذلك قدمنا مفهوم المجموعات المغلقة العمومية - A_2 وناقشنا بعض صفاته.