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1. INTRODUCTION 

 More people die from cardiovascular illnesses than any other cause of death, making them the leading cause of 
death worldwide. Worldwide, cardiovascular diseases (CVDs) are regarded as one of the leading causes of death. 

The World Health Organization estimates that 17.9 million individuals died from CVDs in 2016, which 
contributed to 31% of all deaths worldwide. Due to the high number of premature deaths during the prime of life, 
CVDs place a financial burden on low- and middle-income countries[1]. 

Heart attacks constitute a considerable cause of worldwide deaths nowadays. Prediction of a heart attack may 
dramatically reduce the chance of fatal events in the future. To attain that, the prediction should be precise and away 
from human error[2]. For these reasons, deep learning methods[3] have been extensively applied to assist clinicians in 

producing as accurate results as possible[4][5][6]. Common examples of such methods are Recurrent Neural Networks 
(RNNs)[7] and Long Short-Term Memory Networks (LSTMs)[8]. These methods have been profitably conducted to 

predict healthcare incidents[9]. Unfortunately, the accuracy of these methods is directly proportional to the size of the 
database that are training with. In other words, an inadequate training database is a drawback for their performance 
yields. 

This research aims at addressing the above drawback by exercising a method from the deep learning field that is 
known as the Conditional Tabular Generative Adversarial Network (CTGAN) model[10]. CTGAN is a mathematical 
model that generates what is called synthetic data from a real tabular one. The synthetic term refers to the artificial and 

scalable generation of data instead of the real data that has been gathered from actual natural events.  As a consequence, 
we employ CTGAN to generate an expanded trained database from the results of the patient's laboratory tests. The 

gained database is fed to the RNN and LSTM to enhance their accuracy rate. 

ABSTRACT: Predicting heart attack possibility is a crucial step in saving human life because it is one of the leading 
causes of death. How improve and/or achieve as accurate as possible prediction value is a challenging task. Though 

Deep Learning networks, such as Recurrent Neural Networks (RNNs) and Long Short -Term Memory networks 
(LSTMs), have been widely used to predict medical events, the issue of providing perfect prediction outcomes is still 
progressing. The training data insufficiency is a major hindrance to these network's performance. Accordingly, to 

overcome that issue, this research develops a method for heart attack prediction by using the Conditional Tabular 
Generative Adversarial Network (CTGAN) model. By anticipating and warning the patient that he may be having a 
heart attack, he to take the appropriate preventative steps, the proposed method in this research can help to reduce 

deaths from heart attacks and preserve patients' lives. The suggested method uses the CTGAN model to expand the 
patient's laboratory test results to build a synthetic trained database. Then, the RNN and LSTM are trained on the 

generated dataset to enhance the prediction accuracy, and both RNN and LSTM are evaluated before and after the 
database expansion. The experimental results show that the accuracy of RNN and LSTM is increased to 100% and 
99% from 80% and 65%, respectively and the precision of RNN and LSTM is increased to 100% for each of them 

from 68% and 0, respectively. Finally, sensitivity(recall) increased for RNN and LSTM from 77% and 0 to 100% and 
98%, respectively. 
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The following are the study's primary contributions: 
1) Creating an automated process to predict the extent of cardiac arrest in patients with heart disease;  

2) Improving the RNN and LSTM accuracy by employing the CTGAN method;  
3) Implementing the CTGAN method to expand the training data set of heart patients; 
4) Evaluating the effectiveness of the LSTM and RNN ways that make use of several performance measures. 

The remainder of the project is structured as follows. The relevant literature is covered in Section 2. The primary 
approaches and procedures used in this paper are summarized in Section 3. The suggested system is described in 

Section 4 in great detail. While Section 6 provides a summary of this study, Section 5 describes our observations and 
results. 

 

2. RELATED WORK 

This section evaluates the literature that has been completed in fields that are similar to ours because part of our 
work involves determining the existence of heart issues and safeguarding patient information: 

The authors of this study improved the internal forgetting gate input to present a unique paradig m. The irregular 
time interval is smoothed to provide the time parameter vector, which is then used as the input to the forgetting gate to 
overcome the prediction barrier. The experiment's findings support the model's efficacy, which was developed using 

medical information obtained from a hospital's HIS. The paper's proposed dynamic prediction model outperforms the 
conventional LSTM model in classification by a large margin. An accuracy of 89% was produced by the upgraded 

model[11]. 
To detect probable heart sickness, this study uses convolutional neural networks (CNN) with a cutting-edge dataset 

obtained from the UCI library. This dataset includes certain heart test parameters as well as usual human activities. The 

results show that the suggested model works better than the existing techniques stated in this study. The overa ll 
accuracy of the suggested model is 97%[12]. 

Researchers created a non-intrusive robot in this study. Using the most common ECG, a system based on deep 

learning networks may conduct basic categorization of certain ECG data, such as whether it belongs to a normal or 
abnormal EKG (arrhythmia present). The MIT-BIH provides access to the arrhythmia database. For LSTM and 1D-

CNN, they compared performance using a range of deep learning architectures. The results can be further enhanced by 
adopting a more complex deep learning architecture with an interest in computing cost. The researchers also talked 
about how deep learning methods like 1D-CNN can be used to classify arrhythmias. The fact that the proposed method 

does not require any noise filtering feature engineering mechanisms is its most significant feature. The collected results 
demonstrate that the researcher's performance in effectively classifying an ECG as normal or arrhythmic, where 
accuracy is 99%, is superior to other published data[13]. 

This study demonstrates the potential for additional investigation into the generation of synthetic EEG data using 
deep learning techniques like TGAN and CTGAN. The EEG data from CTGAN exhibits higher similarity than TGAN 

through visualization and similarity score. The researchers attempted to use the synthesized dataset as input data for 
several machine learning algorithms, unlike the related research. However, this study has a problem in that machine 
learning models do not perform better than the real data when the synthetic data from our trials is utilized as the input 

data. Using data from the website www.kaggle.com, the accuracy value for all methods employed in this  study ranged 
from 49.1% to 49.8%[14]. 

This study's main goal was to categorize cardiac disease using various models  and a real-world dataset. To forecast 

the presence of the condition, A dataset of people with heart disease was subjected to the k-modes clustering algorithm. 
Bins of 10 intervals were created using the diastolic and systolic blood pressure data, while the age attribute of the 

dataset was translated to years and divided into bins of 5 years. To account for the differences in the progression and 
features of heart disease between men and women, the data were further divided based on gender. For both the male 
and female datasets, the elbow curve approach was used to estimate the right number of clusters. The figures showed an 

accuracy of 87.23% for the MLP model. These results show that k-modes clustering can reliably predict cardiac 
disease, and the method may aid in the development of focused diagnostic and therapeutic approaches for the disease. 
The 70,000-item Kaggle dataset on cardiovascular disease was used in the study, and Google Colab was used to build 

all of the algorithms. All algorithms have accuracy levels above 86%, with decision trees having the lowest accuracy 
(86.37%) and multilayer perceptrons having the maximum accuracy (as already indicated). Limitations Despite the 

positive outcomes, there are a few limits that should be taken into account. First of all, the study may not apply to other 
demographics or patient groups since just one dataset was employed. Additionally, the study neglected other potential 
risk factors for heart disease, such as genetic predispositions or features of lifestyle, and only considered a small 

number of clinical and demographic information. Additionally, the model's performance on a test dataset was not 
assessed, which may have provided insight into how well the model generalizes to fresh, untested data. Fina lly, the 
interpretability of the findings and their capacity to explain the clustering that the approach generated were not 

assessed. Further study is encouraged to overcome these problems and comprehend the potential of k-modes clustering 
for cardiac disease prediction in light of these restrictions[15].  
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3. MATERIALS AND METHODS 

The primary methods and supplies used in this work are summarized in this section. 

 
3.1  FEATURE STANDARDIZATION 

 Work was done on feature scaling, which entails altering values using one of two main techniques:  normalization 

or standardization, before entering the data for the algorithms utilized. The input values are altered during 
normalization such that they fall between 0 and 1. Standardization techniques change the values to have a standard 
deviation of 1 and a zero-centered value. This work employed the normalization technique[16]. 

  
3.2  LONG SHORT-TERM MEMORY (LSTM) 

A special case of RNNs is LSTM. It is made to deal with the issue of gradients that burst or disappear. The 
memory cell and several gates make up the LSTM's fundamental design. It was initially introduced in 1997 that these 
memory cells and gates were added to each neuron in the network [6]. Google and Apple's Siri both use recurrent 

neural networks(RNNs), the most complex technique for processing sequential data. It is the first algorithm to recall its 
input thanks to its internal memory, which makes it perfect for machine learning problems needing sequential data. 
RNNs work on the principle that they can predict an output by maintaining and reinforcing the output of a previous 

layer. Whether or not the information from the prior timestamp should be recalled is decided in the first section. This 
cell attempts to learn new information using the input from the second part. The cell then sends the updated data from 

the current timestamp of the third segment to the following timestamp. These three LSTM cell constituents are referred 
to by Gates. The first, second, and third components are referred to as the forget gate, input gate, and output gate, 
respectively. The hidden state of an LSTM is identical to that of a traditional RNN, with H(t -1) denoting the hidden 

state of the prior timestamp and the present timestamp, respectively, to represent a cell state for the LSTM, and H(t) 
denoting the current timestamp's hidden state. The timestamps C(t-1) and C(t), which stand for the prior and current 
timestamps, respectively, are used to represent a cell state for the LSTM [17]. LSTM includes two types of activation 

functions: sigmoid and its range are between (0 and 1), as it is used with the forgetting gate, because it tends more to 
forget unimportant words, while tanh has its range between (1 and -1), as it works to remember important words. 

The following stages are used to implement this algorithm: 
Step 1: The forget gate is used to determine what should be forgotten based on knowledge from a prior time step;  
Step 2: New information is sought via input gate and tanh for updating cell state; 

Step 3: The information from the two gates above is used to update the cell state; 
Step 4: Information is usefully provided by the squashing operation and the output gate. 

 

3.3 RECURRENT NEURAL NETWORK (RNN) 

Recurrent neural networks (RNNs), Apple's Siri, and Google voice search are built on the most complex algorithm 

analyzing sequential data. Due to its internal memory, it is the first algorithm to recall its input, which makes it ideal fo r 
machine learning issues requiring sequential data. RNN works(as shown in Fig.1) on the principle that it can predict a 
layer's output by preserving that layer's output and feeding it back into the input[18]. To create a single layer of 

recurrent neural networks, the nodes from various layers of the neural network are condensed[19]. RNN uses the 
sigmoid or tanh function for hidden layers. The tanh function has better performance. Only the identity activation 
function is considered linear. All other activation functions are non-linear. 

 

 

 

 

 

 

 

 

 

 
FIGURE 1. - Structure of Recurrent Neural Networks[20] 

 
The following stages enable this algorithm to function: 

Step 1: Initialize. We first determine the dimensions  of the various parameters U, V, W, b, and c before 
implementing the fundamental RNN cell; 
Step 2: Forward pass; 
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Step 3: Compute Loss; 
Step 4: Backward pass; 

Step 5: Update weights; 
Step 6: Repeat steps 2–5; 

 

3.4  DATA AUGMENTATION 

Data augmentation is a series of techniques used to add additional data to a machine learning model, either in the 

form of copies of current data that have been significantly adjusted or newly produced synthetic data from existing 
data. The machine learning model is smoothed out, and data overfitting is reduced. The approaches for data 
augmentation can be applied to a variety of data kinds, including tabular data, photos, audio, video, text, and other sorts 

of data[21][22]. 
 
3.5  GENERATIVE ADVERSARIAL NETWORK (GAN) 

Let's dissect "Generative Adversarial Networks" into their parts to better understand them. Because of this, the first 
word in the statement, generative, denotes the existence of a network that continuously generates new data, while the 

second term, adversarial, denotes the existence of two networks that conflict with one another. A network is nothing 
more than an arrangement of data that is always changing and producing new data. The first used was a GAN, a deep 
learning model[23]. It consists of two neural networks that compete with one another: the discriminator, which is 

trained to distinguish between real and fake data, and the generator, which creates fictitious data. To trick the 
discriminator, the generator makes adjustments throughout training, which comprises learning to produce fake data that 
is indistinguishable from the real data[24]. 

 
3.6 PERFORMANCE METRICS  

Four evaluation metrics_accuracy, precision, sensitivity, and F1-score—are employed in this study. The accuracy 
measure counts the number of times a classifier correctly classified data throughout the entire dataset. It is presented as 
the proportion of correctly classified instances to all cases that were correctly classified. Precision is the ratio of 

accurately labeled positive instances to all cases that were either correctly or mistakenly classified as positive. In other 
words, accuracy measures the frequency of instances that can be positively detected as affirmative. By dividing the 
total number of positive instances, including the incorrectly categorized negative cases, by the total number of positive 

cases, sensitivity calculates how well the system can classify positive cases. The F1-score combines sensitivity and 
precision measurements. which is used to assess a classifier's accuracy. The following equations produce the four 

metrics listed above:[25][26][27] 
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Where the acronyms mentioned above can be clarified as follows: 

True Positive (TP) is the positive states that are correctly labeled as positive states.  

False Positive (FP) denotes the negative states that are incorrectly labeled as positive states.  

True Negative (TN) represents the right classification of negative diagnosis. 

False Negative (FN) indicates the positive cases that are incorrectly classified as negative 
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To evaluate the method used to increase the data for the data set used in this paper, the equations shown below 

were used : 
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where (r) represents all the values in the real data and (x) represents all the values in the synthetic data. 
 

                     
eticRowsTotalSynth

sntheticRowMatchingSy
SCORE 1                              (6) 

 

4. PROPOSED SYSTEM 

This study demonstrates the creation of a secure and efficient healthcare system by leveraging existing knowledge 

of cardiac conditions. By utilizing a collection of clinical markers, the system aims to assist in the diagnosis and 
classification of cardiac patients. It is crucial to improve performance accuracy, especially when compared to previous 
similar studies. In this study, we compare the performance of long short-term memory (LSTM) algorithms and 

recurrent neural network (RNN) algorithms. 
Since these algorithms perform better with larger data sets, we initially augmented the patient data set (training 

data only) using the CTGAN method. The results obtained for the newly generated data, measured using the New Row 
Synthesis metric, were promising. Subsequently, we compared the performance of LSTM and RNN algorithms in 
predicting the likelihood of cardiac patients experiencing a heart attack. 

The system is composed of two phases, as illustrated in Fig.1data augmentation of the original dataset and 
diagnosis of the patient's condition. Below is a detailed explanation of these phases. 

 

 

 
             Dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2. - The Architecture of the Proposed System 

4.1 PRE-PROCESSING PHASE 

Likely, the data values in this collection were manually entered, obtained from many sources, and subsequently 
made public by numerous government entities because our system uses an available dataset. This means that these 

values must be preprocessed before classification. Although there are several ways to perform the pre-processing task, 
we use the Feature Scaling method in our suggested solution. It is a technique for spreading independently occurring 
features in the data uniformly throughout a predetermined range. It has a broad range of magnitudes or values under 

control.  A machine learning algorithm would often rely on values regardless of the units in the absence of feature 
scaling, therefore big values would be preferred over tiny values even if they were b igger. As part of the 
standardization procedure, a feature value is rescaled using Equation (7), resulting in a distribution with a mean of 0 

and a variance of 1. 
 

Pre-processing phase 

Splitting data set phase 

Test set (30%) Training set(70%) 

Data augmentation by CTGAN 

Prediction by LSTM & RNN 

Model Evaluation  

Evaluation Data Augmentation by 

NewRowSynthesis 
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𝑉𝑛𝑒𝑤 =
𝑉𝑖 −𝑉𝜇 

𝑉𝜎

                           (7) 

 

Where 𝑉𝑖 is a value for a feature from the dataset, 𝑉𝑛𝑒𝑤 is a scaled value for a feature, 𝑉𝜇 is the average of the 

feature values, and 𝑉𝜎 is the feature value standard deviation. 

 
4.2 SPLITTING DATA PHASE 

After the necessary preprocessing, The data will be divided into two sets after the appropriate preprocessing: the 

training set, whose main goal is to allow machine learning algorithms to produce exact findings, and the testing set. , 
which is used to evaluate the system's performance. In essence, a training set makes up 70% of the data, whereas a 
testing set makes up 30%. 

 
4.3 DATA AUGMENTATION PHASE 

Data augmentation, a collection of techniques, can be utilized to artificially increase the amount of data by creating 
new data points from existing data. Deep learning models are employed to either add new data points or make minor 
adjustments to the existing data. 

Data augmentation enhances the performance and output of machine learning models by introducing more diverse 
instances to the training datasets. Machine learning models perform better and achieve higher accuracy when trained on 
extensive and diverse datasets. However, collecting and labeling such data can be time-consuming and costly. 

Implementing data augmentation strategies can help businesses reduce these operational expenses by modifying 
existing datasets. 

In this system, the CTGAN technique is used. CTGAN utilizes a generative adversarial network (GAN) to model 
the distribution of tabular data and selects representative rows from that distribution. To address CTGAN's non -
Gaussian and multimodal distribution, we employ mode-specific normalization. A GAN consists of two components: 

the generator, which produces synthetic data, and the discriminator, which learns to differentiate between real and 
generated data by utilizing the instances created by the generator. 

After applying data augmentation using the CTGAN method on a dataset comprising 13 features and 300 rows, we 

obtain a new dataset with 13 features and 5000 rows. Several metrics such as Memory Requirements, Machine 
Learning Efficacy, Statistical Similarity, Distance to Closest Record, CategoricalCAP, and NumericalLR (NLR) can be 
used to evaluate the performance. In our case, we measured the performance of CTGAN using the New Row Synthesis 

metric, where the optimal ratio was 1.0. This metric determines if each row in the generated data is unique or if it 
duplicates an existing row in the real data. Consequently, the resulting GAN can emulate a synthetic dataset that is 

entirely fabricated but maintains the same structure as the actual data. 
 

4.4 EVALUATION DATA AUGMENTATION PHASE  

This metric aims to identify rows that are identical between the real and synthetic datasets. For a match to occur, 
all individual values in the real row must exactly match those in the synthetic row. The specific matching requirements 
depend on the type of data: 

Boolean/categorical data: The value in the real data and the value in the synthetic data must be identical. 
Numerical or date-time scale data: All values must match between the real and synthetic data, or if the synthetic 

value is within a certain percentage of the real value, it is considered a match. By default, this percentage parameter is 
set to 0.01 (1%). 

The next step is to calculate the percentage of rows in the synthetic data that correspond to a row in the real data. 

The complement of this score ensures that 1 represents the best score (each row is unique) and 0 represents the poorest 
score (each row has a match). 

 

4.5 PREDICTION PHASE 

We analyze two well-known algorithms (LSTM and RNN) to identify which is superior based on the assessment 

metrics because the suggested system has the potential to directly impact human life and the diagnosis of health 
conditions.  

 

5. EXPERIMENTAL RESULTS AND DISCUSSION 

The proposed work consists of two phases: data augmentation for the medical dataset and estimation of the 
likelihood of cardiac patients experiencing a cardiac arrest. This section focuses on examining and evaluating the 

outcomes of these phases. It should be noted that the system is implemented in Python, and the dataset1 used in these 
stages is publicly available, containing various features such as age, gender, anemia, diabetes, high blood pressure, and 
other factors that can significantly impact a person's risk of developing heart disease. 

The first phase addresses the main issue of the small size of the dataset used in our work. To address this, we 
propose increasing the size of the dataset using the CTGAN method. The performance of this method was evaluated 
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using the New Row Synthesis measure, which is a well-known performance metric. We achieved a ratio of 1.0, 
indicating the highest performance rate for the chosen scale. 

The second phase involves two steps to accomplish our objectives:  
In the first step, we used the LSTM and RNN algorithms to predict the extent of the possibility of heart patients 

having a heart attack by applying them to the data set of heart patients before augmentation as shown in the following 

summary: 
 

 
 
(1)The data set can be found online at (https://www.kaggle.com/datasets/cherngs/heart-disease-cleveland-uci) 

Summary of RNN 
 

Layer (type)                                           Output Shape              Param #    
================================================================= 
 simple_rnn_10 (Simple RNN)             (None, 12, 10)            120        

 
 dropout_13 (Dropout)                          (None, 12, 10)            0          

 simple_rnn_11 (Simple RNN)             (None, 10)                  210        
 
 dropout_14 (Dropout)                          (None, 10)                   0          

 
 dense_8 (Dense)                                   (None, 1)                    11                                                   
================================================================= 

Total params: 341 
Trainable params: 341 

Non-trainable params: 0 
 

Summary of LSTM 

 
Layer (type)                            Output Shape              Param #    
================================================================= 

 lstm_9 (LSTM)                      (None, 12, 10)               480        
 
 lstm_10 (LSTM)                    (None, 12, 10)               840        

 
 lstm_11 (LSTM)                    (None, 10)                     840        

 
 dropout_15 (Dropout)            (None, 10)                      0          
 

 dense_9 (Dense)                     (None, 1)                       11                                
================================================================= 
Total params: 2,171 

Trainable params: 2,171 
Non-trainable params: 0 

 
In the second step, we applied the same algorithm above, but after data augmentation for the same set of data 

mentioned above as shown in the following summary:  

 
Summary of RNN 
Layer (type)                                   Output Shape              Param #    

============================================================= 
 simple_rnn_4 (SimpleRNN)        (None, 12, 10)             120        

dropout_7 (Dropout)                     (None, 12, 10)             0          
 
 simple_rnn_5 (SimpleRNN)        (None, 10)                    210        

 
 dropout_8 (Dropout)                     (None, 10)                    0          
 

https://www.kaggle.com/datasets/cherngs/heart-disease-cleveland-uci
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 dense_5 (Dense)                            (None, 1)                      11                 
============================================================= 

Total params: 341 
Trainable params: 341 
Non-trainable params: 0 

 
Summary of LSTM 

Layer (type)                        Output Shape              Param # 
============================================================= 
lstm_6 (LSTM)                    (None, 12, 10)              480 

 
lstm_7 (LSTM)                    (None, 12, 10)               840 
 

lstm_8 (LSTM)                     (None, 10)                    840 
 

dropout_6 (Dropout)             (None, 10)                      0 
 
dense_4 (Dense)                    (None, 1)                       11 

================================================================= 
Total params: 2,171 
Trainable params: 2,171 

Non-trainable params: 0 
The results were according to the tables and figures listed below: 

 
A: Performance of RNN  and LSTM algorithms before data augmentation : 

 
 

Table 1. - The performance results of RNN and LSTM prediction techniques 
 

Applied method Accuracy Precision Sensitivity F1_score 

RNN 80% 68% 77% 72% 

LSTM 65% 0 0 
0 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

                  FIGURE 3. - The accuracy of RNN                                                             FIGURE 4. - The accuracy of LSTM     

 
B: Performance of RNN and LSTM algorithms after data augmentation : 
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Table 2. - The performance results of RNN and LSTM prediction techniques 
 

Applied method Accuracy Precision Sensitivity F1_score 

RNN 100% 100% 100% 100% 

LSTM 99% 100% 98% 
99% 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

          FIGURE 5. - The accuracy of RNN                                                              FIGURE 6. - The accuracy of LSTM  
 

Fig. 7 shows a comparison between the LSTM algorithm before and after data augmentation depending on the 

metrics employed in this work.  
 

 
   
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
FIGURE 7. - The performance comparison between LSTM before and after data augmentation 

Fig.8 based on the selected metrics specified in this work, compares the Recurrent Neural Network algorithm 
before and after data augmentation. 
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FIGURE 8. - The performance comparison between RNN before and after data augmentation  

These figures show the superiority of the RNN algorithm over the LSTM algorithm. 

Table 3 shows a comparison of our research's findings with those of various relevant studies. This table has five 
columns: the reference number, the year this reference was published, the dataset this reference utilized, the technique 

this reference used, and the accuracy this reference attained. 
 

Table 3. - Comparison between the results of certain related research and the suggested approach 

 

 

6.   CONCLUSION 

In this paper, the CTGAN method was used for augmentation of the patient's data set, because the LSTM and RNN 
algorithms used in our work need a large data set to work efficiently and with higher accuracy. After implementing the 

above-mentioned algorithms to predict the extent of cardiac patients' possibility of cardiac arrest, we obtained an 
accuracy of 99% and 100% for each LSTM and RNN, respectively. In future research, it is possible to use other 
methods to augment the data set and compare them to choose the best one in terms of accuracy. 

 
 
 

 

Reference Year Dataset Method(s)       Accuracy 

[1] 2021 UCI 
convolutional neural networks 

(CNN) 
97% 

[2] 2021 www.kaggle.com 

CTGAN, TGAN methods 
Random Forest, XGBoost, 

LightGMB, and Catboost 

algorithms 

49.8% 

[3] 2023 MIT BH 
LSTM 
CNN 

LSTM = 78% 
CNN = 99% 

[4] 2023 www.kaggle.com 
Decision tree classifier, 

multilayer perceptron, random 

forest classifier, and XGBoost 

XGBoost = 87% 

Our Proposed work 2023 www.kaggle.com 
CTGAN method 
LSTM method 
RNN method 

LSTM = 99% 
RNN = 100% 
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