
Qar Vol.9 No.2 June 2014-Journal of University of Thi

1

Branch and Bound Method to Minimize Three Objective Functions with

Unequal Release Dates

Araibi Sami M
(1)

 Al-Zuwaini Mohammed K
(2)

(1)
Dept. of Mathematics, College of Education for Pure Sciences, Thi-Qar University

s_m8339@yahoo.com

(2)
 Department of Mathematics College of Computer Science and Mathematics Thi-Qar University

mkzz50@yahoo.com

Abstract

In this paper, a single machine scheduling problem is considered to minimize Multiple

Objectives Function (MOF). The aim in this study is to find the optimal solution for the sum

of the number of tardy jobs (∑

), maximum tardiness () and makespan () with

unequal release dates. Ten special cases are derived and proved that yield optimal solutions. A

Branch and Bound algorithm is proposed with two lower bounds (,) and two upper

bounds (,) that introduced in this paper, in order to find the exact (optimal) solution

for it with two dominance rules which helped in reducing the number of branches in the

search tree. Results of extensive computational tests show the proposed (BAB) algorithm is

effective in solving problem up to (40) jobs at a time less than or equal to (30) minutes. In

general, this problem is strongly NP-hard, and to the best of our knowledge this problem was

not studied before.

Keywords: Single machine, Scheduling, Multi-criteria, Number of tardy jobs, Maximum

tardiness, Makespan, Release date.

1. Introduction
In this paper, the problem of scheduling n independent jobs on a single machine with

unequal release date was considered to minimize the sum of the number of tardy jobs,

maximum tardiness and makespan by using the (BAB) method. This problem is denoted by

(1/ / ∑

 + +).

2. Approaches for Multi-Criteria Problems
In the literature there are two approaches for the multi-criteria problems [6]:

The first one is hierarchical or lexicographical minimization. The performance criteria

 are indexed in order of decreasing importance. First, is minimized. Next, is

minimized subject to the constraint that the schedule has minimal value. If necessary, is

minimized subject to the constraint that the values for and are equal to the values

determined in the previous step. The obvious disadvantage of this approach is that the

resulting schedule may perform very poorly on all criteria except the first one; this is a serious

mailto:mkzz50@yahoo.com
mailto:s_m8339@yahoo.com
mailto:mkzz50@yahoo.com
mailto:mkzz50@yahoo.com

Qar Vol.9 No.2 June 2014-Journal of University of Thi

2

setback if the criteria are not subject to a hierarchy but are somewhat equally important. The

first result on multi-criteria scheduling, obtained by Smith, is based on this approach [5]. The

studies by Chang P. and Su L.(2001) [3] and Chen W., et al.(1997) [4] are examples of

hierarchical minimization problems with earliness and tardiness costs. The computational

complexity results in hierarchical minimization are reviewed in Lee and Vairaktarakis (1993)

[9].

The second method is simultaneous minimization. In the simultaneous approach there

are two types, the first one typically generates all efficient schedules and selects the one that

yields the best composite objective function value of these criteria. The second is to find the

sum of these objectives as we used in this paper. Several scheduling problems considering the

simultaneous minimization of various forms of earliness and tardiness costs have been studied

in the literature (see, e.g. Hoogeveen, (1995) [7]; Moslehi, et al. (2005) [10]).

3. Problem Formulation

Single machine scheduling models seem to be very simple but are very important for

understanding and modeling multiple machines models. A set N={1,2,…,n} of n independent

jobs has to be scheduled on a single machine in order to optimize a given criterion.

The (MOF) problem (1/ / ∑

 + +) can be stated as follows:

A set of n independent jobs N={1,2,…,n} are available for processing at time , job

 is to be processed without interruption on a single machine that can be

handled only one job at a time, requires processing time , and ideally should be completed

at its due date . For a given sequence of the jobs, completion time , number of tardy

jobs ∑ and the tardiness are given by:

 { }
} (1)

 {

 (2)

 max{ (3)

The problem is strongly NP-hard because the problem 1/ /∑

 is NP-hard [3] and

the problem 1/ / is strongly NP-hard [13].

The problem is to find a sequence that minimizes the cost M. This problem is denoted

by (Z) and can be stated as follows:

Qar Vol.9 No.2 June 2014-Journal of University of Thi

3

 {∑

 }

 }

… (Z)

Where denotes the position of job in the ordering and S denotes the set of all

enumerated schedules.

Note that if =0 for each job , then the problem (Z) is reduced to the problem

1//∑

 + + .

4. Decomposition of Problem (Z) and Some Basic Results

In this section the problem (Z) is decomposed into three subproblems with a simple

structure. Some results are stated which help in solving the problem (Z).

M= ∑

This problem can be decomposed into three subproblems (,) and .

 }

….(

 }

….(

 {∑

 }

 }

….

Theorem (1): M where , , and M are the minimum objective

function values of and (Z), respectively.

Proof:

Qar Vol.9 No.2 June 2014-Journal of University of Thi

4

Let be the maximum tardiness obtained by using preemption scheduling (i.e.

(GEDD) order (sequencing the n jobs in non-decreasing order of smallest remaining due

dates) [5]) then … (4)

 Let be the makespan obtained by using (SRD) rule [1] then … (5)

And let be the number of tardy jobs obtained by using relax release dates

 and , , to get the problem 1//∑

 having due date

 for each job , this relaxed problem is solved by Moor algorithm [11] then

 ∑

 … (6)

Then from (4), (5) and (6) we get

 {∑

 } +

 ∑

 + }

Hence M.

5. Special cases yield optimal solution

A machine scheduling problem of type NP-hard is not easily solvable and it is more

difficult when the objective function is multi objective. Using some mathematical

programming techniques to find the optimal solution for this kind of problem as: dynamic

programming and branch and bound method. Some time special cases for this problem can be

solved. A special case for scheduling problem means finding an optimal schedule directly

without using mathematical programming techniques. A special case if it exists depends on

satisfying some conditions in order to make the problem easily solvable. These conditions

depend on the objective function as well as the jobs [8]. In this section some special cases of

our problem (Z) are given.

Case (1): If and , (j=1,2,…,n), then (MA) gives an optimal solution, for

1/ / ∑

 .

Proof:

Since ∑

 and ∑

 in any order. Then

problem (Z) reduces to the problem 1/ / ∑

 , but this problem was solved by (MA)

[12]. Then (MA) gives an optimal solution for the problem 1/ / ∑

 .

Case (2): If all jobs have a common due date (i.e. ,) and if (SRD)

gives , then (SRD) is an optimal solution for 1/ / ∑

 problem.

Qar Vol.9 No.2 June 2014-Journal of University of Thi

5

Proof:

Sine , then no job with be tardy, i.e. =0 and ∑

 =0. Then the

problem 1/ / ∑

 is reduced to 1/ / , but this

problem was solved by (SRD) [1]. Then (SRD) gives the optimal solution.

Case (3): If , and , (j=1,2,…,n), then (MA) gives an optimal solution.

Proof:

Since , and

 {

 in any order.

Then the problem 1/ , , /∑

 is reduced to 1/

/∑

 , but this problem was solved by (MA) [12]. So (MA) gives an optimal solution for

the problem 1/ / ∑

 .

Case (4): If the (SRD) rule satisfies for each job in (SRD), then (SRD) gives an

optimal solution for 1/ / ∑

 problem.

Proof:

Since , in SRD. Then no job with be tardy, i.e. ∑

 =0 and =0. Then

the problem 1/ / ∑

 is reduced to 1/ / , but this problem

was solved by (SRD) [1]. So (SRD) gives an optimal solution.

Case (5): If (SRD) rule satisfy , job in (SRD) (where k is a positive integer),

then (SRD) gives an optimal solution for 1/ / ∑

 problem.

Proof:

Since , in (SRD). Then ∑

 and . Then the problem

1/ , / ∑

 is reduced to 1/ / , but this problem was

solved by (SRD) [1]. Then (SRD) gives an optimal solution.

Case (6): The (SRD) rule is optimal for the problem 1/ / ∑

 if

and , (j=1,2,…,n).

Proof:

Since , (j=1,2,…,n) , i.e. ∑

 = n. And = . Then the

problem 1/ , , / ∑

 is reduced to 1/ / , but

this problem was solved by (SRD) [1]. Then (SRD) gives an optimal solution.

Qar Vol.9 No.2 June 2014-Journal of University of Thi

6

Case (7): If and (MA) = (EDD), then (MA) gives optimal solution for

1/ / ∑

 problem.

Proof:

Since ∑

 in any order. Since 1/ / minimized by (EDD) rule

[2]. And (MA) = (EDD). Then (MA) schedule is optimal for both criterion (∑

and). Hence (MA) is optimal for 1/ / ∑

 problem.

Case (8): If , and if there is a schedule satisfy = , job , then the

schedule gives an optimal solution for 1/ , , = / ∑

problem.

Proof:

For the condition of processing time and release dates in any order, =

 and = , , then = , this means all the jobs are just-in-time (JIT),

i.e. =0 and ∑

 and the cost of objective function depends on only. Hence

the schedule gives the optimal solution for 1/ , , = / ∑

 problem.

Case (9): If and ∑

 (MA)=∑

 (EDD), then (EDD) rule is optimal for the

problem 1/ / ∑

 .

Proof:

The condition of release date gives ∑

 in any order. Since 1/

 /∑

 is minimized by (MA)[12]. And ∑

 (EDD) = ∑

 (MA). Then (EDD) rule is

optimal for both criterion (∑

 and). Hence (EDD) rule is optimal for 1/ /

∑

 problem.

Case (10): If the schedule satisfies (SRD) and (EDD) at the same time, then gives an

optimal solution for 1/ / ∑

 + + problem.

Proof:

Consider the sequence where and Partial sequences and and are two

jobs with and .

Let be a completion time of last job in and be the number of tardy jobs in

(). Let a new sequence (by interchange jobs and in original sequence)

(see Fig (1)).

 :

Qar Vol.9 No.2 June 2014-Journal of University of Thi

7

 :

 Fig (1): The schedules and

In : The number of tardy jobs in subsequence in .

Let max{ , }.

 + and max{ , }+ .

If

Then ∑ {

If .

Then ∑ {

In : The number of tardy jobs in subsequence in .

Let max{ , }

 and

 .

If
 , then, job i is late and ∑

 .

If
 .

Then ∑

 {

Then ∑ ∑

 … (7)

For schedule : The maximum tardiness in subsequence in .

 =max{ , , }, where = ,

 max{ , 0} and

 max{ , 0}

For schedule : The maximum tardiness in in .

Qar Vol.9 No.2 June 2014-Journal of University of Thi

8

 =max{ ,

 ,
 },

 max{

 , 0} and

 , 0}

Since

 and , then

So
 =max{ ,

 },

Since max{ , } max{ , }

 (Since and 0).

 max

 .

Since

 and max{ , }+ .

 Either
 and .

 (Since).

 Or
 and .

 (since and 0).

 max{

 .

Therefore
 =max{ ,

 } max{ , , }=

Then
 … (8)

The makespan in is

The makespan in is

Since
 ,then

 …(9)

From (7), (8) and (9), we get

 ∑ ∑

 … (10)

Then from (10) gives an optimal solution for 1/ /∑

 + + .

6. Dominance Rules

Because of branching scheme, the size of the search tree is directly linked to the length

of the current sequence (which represents the number of nodes). Hence, a preprocessing step

Qar Vol.9 No.2 June 2014-Journal of University of Thi

9

is performed in order to remove as many positions as possible. Reducing the current sequence

is done by using several dominance rules. Dominance rules usually specify whether a node

can be eliminated before its lower bound is calculated. Clearly, dominance rules are

particularly useful when a node can be eliminated which has a lower bound that is less than

the optimum solution. Some of dominance rules are valid for minimization of the sum of the

number of tardy jobs, maximum tardiness and makespan.

As in the preprocessing step, similar dominance rules are also used within the branch

and bound procedure to cut nodes that is dominated by others. These improvements lead to

very large decrease in the number of nodes to obtain the optimal solution.

Below two of dominance rules are stated in order to decrease the number of nodes in

search tree as well as decreasing the solution time [8].

Dominance Rule (1): If and then job proceed job in the optimal solution

for the problem (Z).

Proof: It is clear from case (10).

Dominance Rule (2): If be a partial sequence which it's jobs are scheduled, K N. For

 =N K, if , and () () 0. Then job proceed job

in the optimal solution for the problem (Z).

Proof:

Let (, ,) be the schedule which is obtained by interchanging jobs and in (, ,).

All jobs other than and have the same completion time in (, ,) as in (, ,). So the

difference in completion time between (, ,) and (, ,) depends only on the completion

time of jobs and . Let be a completion time of last job in .

In (, ,), =

In (, ,),
 =

But (
) since () and (0)

Then
 … (11)

The maximum tardiness in (, ,) is:

 =max{ , , }, where =

 max{() , 0} and

 max{() , 0}

Since () () and , then

Qar Vol.9 No.2 June 2014-Journal of University of Thi

10

So =max{ , }

The maximum tardiness of (, ,) is:

 =max{ ,

 ,
 },

 ,0} and

 max{(max{

 , }+) , 0}

But (
) since

() () , and .

And (
) since

 and it has the same due date.

Then
 … (12)

From the condition, () () 0 the jobs and are late in both

partial schedules (, ,) and (, ,).

Then from (11), (12) and lateness of jobs and we get, in the optimal solution for the

problem (Z).

7. The Upper bound (UB)

In this section, heuristic methods are proposed and applied once at the root node of

search tree (BAB) algorithm to find an upper bound (UB) on (Z). We suggested two heuristic

methods, the best one of the heuristic is used to provide an upper bound (UB).

7.1. Heuristic (1)

The following algorithm (heuristic) is proposed to obtain the first upper bound ()

for problem (Z).

Algorithm

Step (1): Order the jobs by (SRD) to obtain a sequence , .

Step (2): If there exists a tie (jobs with the same release dates) applying (MA) on these jobs,

otherwise go to Step (5).

Step (3): Let Q be a sequence of tardy jobs which is obtained from

Step (4): Let =(be a new sequence which is obtained from after

ordering the jobs of Q according to (EDD), go to Step (6).

Step (5): Compute = ∑

 , go to Step (7).

Qar Vol.9 No.2 June 2014-Journal of University of Thi

11

Step (6): Compute = ∑

 .

Step (7): Stop.

Example (1): The first heuristic is illustrated in four jobs scheduling problem.

 1 2 3 4

 3 4 3 3

 4 5 8 7

 10 15 14 12

Solution:

The (SRD) schedule is (1,3,4,2). Applying (MA) on the jobs (1,3,4) the schedule

(1,4,3,2) is obtained. Order the tardy jobs (3,4) by (EDD) rule to get =(1,4,3,2).

Compute = ∑

 =42.

It should be noted that an optimal sequence is (1, 4, 3, 2) for this example, and the

optimal value is 42 which is obtained by using complete enumeration.

7.2. Heuristic (2)

The following algorithm (heuristic) is proposed to obtain the second upper bound ()

for problem (Z).

Algorithm

Step (1): Order the jobs by (SRD) to get a sequence , .

Step (2): If there exists a job () such that , ,

then a new sequence , which is obtained from after

ordering the jobs according to (EDD) rule, otherwise go to Step

(4).

Step (3): Compute = ∑

 , go to Step (5).

Step (4): Compute = ∑

 .

Step (5): Stop.

Hence our upper bound is UB=min{ , }.

Example (2): The second heuristic is illustrated in four jobs scheduling problem.

 1 2 3 4

 3 6 5 2

Qar Vol.9 No.2 June 2014-Journal of University of Thi

12

 4 3 6 7

 10 15 13 11

Solution:

The (SRD) schedule is (4,1,3,2). At the first completion time (= 9) the set of

jobs (1,2,3) are found which ready jobs (), {1,2,3}. The jobs (1,2,3) are ordered

by (EDD) rule, to get =(4,1,3,2).

Compute = ∑

 = 32.

It should be noted that an optimal sequence is (4, 1, 3, 2) for this example, and the

optimal value is 32 which is obtained by using complete enumeration.

8. The Lower Bound (LB)

In this section, two lower bounds and are derived for problem (Z) and

LB=max{ , }.

8.1. The First Lower Bound ()

The first lower bound is based on decomposing (Z) into three subproblems

and as shown in Section (4), then was calculated to be the lower bound for),

 to be the minimum value for , to be the lower bound for) and applying

Theorem (1) to get a lower bound for problem (Z).

8.2. The Second Lower Bound ()

To obtain the second lower bound for problem (Z), the relaxation of constraints of

objective function will be as follows:

If there exists a job i such that and , , then job i schedule in the

first position. For the remaining jobs we assume that = and

 = , and applying Case (1). The optimal solution for the new problem is a

lower bound for problem (Z).

Proposition (1):

The () is a lower bound for problem (Z).

Proof:

Firstly, if there is a job satisfies the condition and , ,

then job is scheduled in the first position by Dominance rule (1). For remaining jobs

 = is assumed and = . This problem can be solved by using

Case (1). The first assumption for the release date to get a maximum reduction of the

completion time and makespan, and the second assumption for the due date to get a maximum

Qar Vol.9 No.2 June 2014-Journal of University of Thi

13

reduction of the tardy jobs, maximum tardiness and the number of tardy jobs. This means that

by this way the maximum reduction to the cost of the objective function is obtained.

Secondly, if there is no job satisfies above condition, then we assume =

and = and repeat above argument.

Example (3): The second lower bound is illustrated in five jobs scheduling problem.

 1 2 3 4 5

 0 1 7 6 9

 3 4 6 10 2

 3 10 17 18 15

Solution:

Since and , {2,3,4,5}, then job 1 scheduled in the first position. Since

 and , {3,4,5}, then job 2 scheduled in the second position. =min{7,6,9}=6

is assumed and =max{17,18,15}=18. Applying (MA) for the remaining jobs {3,4,5}, we

get

 1 2 3 5 4

 3 7 13 15 25

 0 0 0 0 7

Then = 1+7+25=33

 It should be noted that an optimal sequence is (1,2,3,5,4) for this example, and the

optimal value is 33 which is obtained by using complete enumeration.

9. Branch and Bound (BAB) algorithm

In this section, a description of our branch and bound (BAB) algorithm is given and its

implementation. The two heuristic methods are applied at the top of search tree (root node)

the better of the two heuristic sequences is used to provide an upper bound (UB) on cost of an

optimal schedule is obtained by choosing the better of two upper bounds from Section (7).

Also at the top of the search tree an initial lower bound (ILB) on the cost of an optimal

schedule is obtained by choosing the better of two lower bounds from Section (8). Our

algorithm uses a forward sequencing branching rule for which nodes at level k of the search

tree correspond to initial sequences in which jobs are sequenced in the first k positions.

The branching procedure describes the method to partition a subset of possible solution.

These subsets can be treated as a set of solutions of corresponding subproblems of the original

problem. The bounding procedure indicates how to calculate a lower bound (LB) on the

optimal solution value for each subproblem generated in the branching process. The search

strategy describes the method of choosing a node of the search tree to branch from it; we

Qar Vol.9 No.2 June 2014-Journal of University of Thi

14

usually branch from a node with smallest lower bound (LB) among the recently created

nodes.

Example (4): The (BAB) algorithm is illustrated in five jobs scheduling problem.

 1 2 3 4 5

 0 5 8 12 14

 8 6 5 6 10

 16 26 24 22 32

The (BAB) tree algorithm to give the optimal solutions for the problem 1/ / ∑

 is shown in Fig (2).

 1 2 3 4 5

 2 3 4 5

 3 4 5 2 4 5

 4 3 4 2

 5 5 5 5

Fig (2): The (BAB) tree for problem (Z)

UB=40

ILB=3

76543

53 43

3 3 4

3 3 4

4

4

4 4

3

34

4

Qar Vol.9 No.2 June 2014-Journal of University of Thi

15

The (BAB) method gives the schedule (1,3,4,2,5) that gives (∑

 =39.

10. Computational Experience

An intensive work of numerical experimentations has been performed. Subsection

(10.1) shows how instances (test problems) can be randomly generated.

10.1. Test Problems
 There exists in the literature a classical way to randomly generate test problems of

scheduling problems.

 The processing time is uniformly distributed in the interval [1, 10].

 The release date is uniformly distributed in the interval [0, P], where [=0.125,

0.25, 0.50, 0.75, 1.00] and P=∑

 .

 The due date is uniformly distributed in the interval

[P(1-TF-RDD/2),P(1-TF+RDD/2)];where P ∑

 .

depending on the relative range of due date (RDD) and on the average tardiness

factor (TF).

For both parameters, the values 0.2, 0.4, 0.6, 0.8 and 1.0 are considered. For each selected

value of where is the number of jobs, five problems were generated.

10.2. Computational Experience with the Lower and Upper Bounds of (BAB) Algorithm

 The (BAB) algorithm was tested by coding it in MATLAB 7.10.0 (R2010a) and

implemented on Intel(R) Core(TM)2 Duo CPU T6670 @ 2.20 GHZ, with RAM 2.00 GB

personal computer.

Table (1), shows the results for problem (Z) obtained by (BAB) algorithm. The first

column " " refers to the number of jobs, the second column "EX" refers to the number of

examples for each instance , where {5, 10, 15, 20, 25, 30, 35, 40}, the third column

"Optimal" refers to the optimal values obtained by (BAB) algorithm for problem (Z), the

fourth column "UB" refers to the upper bound, the fifth column "ILB" refers to the initial

lower bound, the sixth column "Nodes" refers to the number of nodes, the seventh column

"Time" refers to the time cost 'by second' to solve the problem, the last column "Status" refers

to the problem solved '0' or not '1'. The symbols "*" refers to UB gives an optimal solution

and "**" refers to ILB gives an optimal solution. The (BAB) algorithm was stopped when the

sum of "status column 3".

Qar Vol.9 No.2 June 2014-Journal of University of Thi

16

 A condition for stopping the (BAB) algorithm was determined and considering that the

problem is unsolved (state is 1), that the (BAB) algorithm is stopped after a fixed period of

time, here after 1800 second (i.e. after 30 minutes).

If the value of UB=ILB then the optimal is UB and there is no need to branch in the

search tree of (BAB) algorithm.

From Table (1), it is noticed that the heuristic of upper bound is good algorithm. It gives

the value for objective function equal to optimal or near optimal values.

Table (1): The performance of initial lower bound, upper bound, number of nodes and

computational time in second of (BAB) algorithm for (Z).

 EX Optimal UB ILB Nodes Time Status

5

1 65 65* 64 14 0.0028 0

2 32 33 31 14 0.0021 0

3 43 43* 41 14 0.0018 0

4 44 44* 44** 0 0.0008 0

5 33 34 32 14 0.0022 0

10

1 117 117* 113 93 0.0107 0

2 70 71 67 96 0.0105 0

3 103 104 100 119 0.0131 0

4 125 125* 121 162 0.0160 0

5 59 61 56 54 0.0065 0

15

1 167 168 163 366 0.0386 0

2 139 140 135 119 0.0143 0

3 163 166 160 309 0.0324 0

4 100 105 97 630 0.0641 0

5 140 143 136 210 0.0227 0

20

1 203 206 198 1469 0.1628 0

2 210 214 205 12664 1.2978 0

3 166 171 162 1263 0.1351 0

4 182 187 176 2985 0.3243 0

5 165 171 160 8836 0.9188 0

Table (1): continued

 EX Optimal UB ILB Nodes Time Status

25

1 261 267 257 2602 0.3099 0

2 256 262 250 4921 0.5762 0

3 274 281 270 35120 4.0163 0

4 223 229 217 11453 1.3186 0

5 258 264 253 33863 3.8647 0

30

1 379 384 374 5047 0.6587 0

2 300 305 294 150111 18.9608 0

3 277 284 269 767672 98.9491 0

4 261 269 252 4308611 551.2338 0

5 284 294 277 849200 106.0457 0

 1 407 413 400 30517 4.8198 0

Qar Vol.9 No.2 June 2014-Journal of University of Thi

17

35

2 396 404 390 108684 15.9127 0

3 343 350 335 1727223 256.8693 0

4 394 401 387 11750681 1664.3691 0

5 339 349 330 7261310 969.0710 0

40

1 393 403 387 838338 138.2405 0

2 436 446 428 3447719 606.1721 0

3 449 459 440 3735047 665.1139 0

4 428 433 414 11173344 1800.0122 1

5 380 390 368 12063100 1800.0019 1

Table (2) summarizes Table (1)

Table (2) is the summary of Table (1), and shows the average of nodes and

computational times for the solved problems, also, shows the unsolved problems among the 5

problems of each , where {5, 10, 15, 20, 25, 30, 35, 40}.

Table (2): Summary of Table (1) of (BAB) algorithm

n Av. Nodes Av. Time Unsolved problem

5 11.2 0.0019 0

10 104.8 0.0114 0

15 326.8 0.0344 0

20 5443.4 0.5678 0

25 17591.8 2.0171 0

30 1216128.2 155.1696 0

35 4175683 582.2084 0

40 2673701.3 469.8422 2

10. Conclusions

In this paper, the problems of scheduling jobs on one machine for a variety of three-

criteria are considered.

A branch and bound algorithm is proposed to find the optimal solution for the problem

1/ / ∑

 with two lower bounds (,), two upper bounds (,

) and two dominance rules. Ten special cases for the problem (Z) are derived and proved.

References

[1] Baker, K.R., "Introduction to Sequencing and Scheduling", John Wily, New York (1974).

[2] Brucker P.,"Scheduling Algorithms", Springer-Verlag Berlin Heidelberg (2006).

[3] Chang P., Su L., "Scheduling n Jobs on One Machine to Minimize the Maximum Lateness with a

Minimum Number of Tardy Jobs", Computer and Industrial Engineering, 40, 349-360 (2001).

[4] Chen T.,Qi X., and Tu F., "Single Machine Scheduling to Minimize Weighed Earliness Subject to

Maximum Tardiness", Computer of Operation Research, 24 , 147-152 (1997).

[5] Horn, W.A., "Some Simple Scheduling Algorithm", Naval Research Logistics Quarterly 21, 177-

185 (1974).

Qar Vol.9 No.2 June 2014-Journal of University of Thi

18

[6] Hoogeveen J.A,"Single Machine Scheduling to Minimize a Function of Two or Three Maximum

Cost Criteria", Journal of Algorithms, 21,415-433 (1996).

[7] Hoogeveen, J.A., Van de Velde, S.L.," Minimizing Total Completion Time and Maximum Cost

Simultaneously is Solvable in Polynomial Time", Operations Research Letters 17, 205-208

(1995).

[8] Husein N.A.," Machine Scheduling Problem to Minimize Multiple Objective Function", M.Sc.

thesis, Dept. of Mathematics, College of Education (Ibn AL-Haitham), Baghdad University

(2012).

[9] Lee, C.V., and Vairaktarakis, G.L.," Complexity of Single Machine Hierarchical Scheduling: A

Survey Complexity in Numerical Optimization", World Scientific 19, 269-298 (1993).

[10] Moslehi G., Moghaddam R., Vasei M., and Azaron A.,"Optimal Scheduling for a Single Machine

to Minimize the Sum of Maximum Earliness and Tardiness Considering Idle Insert", Applied

Mathematics and Computation 167, 1430-1450 (2005).

[11] Moore,J.M.,"An n Job, One Machine Sequencing Algorithm for Minimizing the Number of Late

Jobs", Mgnt. Sci. 15(1), 102-109 (1968).

[12] P. Baptiste.,"An () Algorithm for Preemptive Scheduling of a Single Machine to Minimize the

Number of Late Jobs", Operations Research Letters, 24:175-180, 1999.

[13] Pinedo, M.L.,"Scheduling Theory, Algorithms, and Systems", Springer Science+Business Media,

Llc., New York (2008).

 الخلاصة

. هدفنا في هذه الدراسةة (MOF)في هذا البحث, درسنا مسألة جدولة الماكنة الواحدة لتصغير دالة متعددة الاهداف

∑خرة) أهو ايجاد الحل الامثةل لمجمةوع دةدد النتاجةام المتة

تمةا) إكبةر ممةت أ(و خير) أكبةر ممةت تةوأ(

(مع وقم تحضير للنتاجام غير متساوي. ت اشةتاا وبرهةات دشةرة حةالام خاصةة تعحةي الحلةول المثلة . كةذل

قدُمم في (,)مت الايود العليا يتواثن (,)مت الايود الدنيا يتاقترحنا خوارممية التفرع والتايد مع اثن

تسةاددات فةي تالةيد دةدد التفردةام فةي مةع قادةدتيت للميمنةة ة قيةد الدراسةةمسةأللهذا البحث مت اجل ايجاد الحل الامثل ل

 (40) ت خوارممية التفرع والتايد الماترحة فعالة فةي حةل المسةائل لغايةةبأ أثبتمنتائج الاختبارام الحسابية .شجرة البحث

, وحسب معرفتنا ات هةذه strongly NP-hard. بشكل دا هذه المسألة مت نوع دقياة (30)قل او يساوي أنتاج في وقم

 درس مت قبل.المسألة ل تُ

