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Abstract 

In this paper, a single machine scheduling problem is considered to minimize Multiple 

Objectives Function (MOF). The aim in this study is to find the optimal solution for the sum 

of the number of tardy jobs (∑   
 
   ), maximum tardiness (    ) and makespan (    ) with 

unequal release dates. Ten special cases are derived and proved that yield optimal solutions. A 

Branch and Bound algorithm is proposed with two lower bounds (   ,    ) and two upper 

bounds (   ,    ) that introduced in this paper, in order to find the exact (optimal) solution 

for it with two dominance rules which helped in reducing the number of branches in the 

search tree. Results of extensive computational tests show the proposed (BAB) algorithm is 

effective in solving problem up to (40) jobs at a time less than or equal to (30) minutes. In 

general, this problem is strongly NP-hard, and to the best of our knowledge this problem was 

not studied before. 

Keywords: Single machine, Scheduling, Multi-criteria, Number of tardy jobs, Maximum 

tardiness, Makespan, Release date.  

1. Introduction  
In this paper, the problem of scheduling n independent jobs on a single machine with 

unequal release date was considered to minimize the sum of the number of tardy jobs, 

maximum tardiness and makespan by using the (BAB) method. This problem is denoted by 

(1/    / ∑   
 
   +    +     ). 

 

2. Approaches for Multi-Criteria Problems 
In the literature there are two approaches for the multi-criteria problems [6]: 

The first one is hierarchical or lexicographical minimization. The performance criteria 

        are indexed in order of decreasing importance. First,    is minimized. Next,    is 

minimized subject to the constraint that the schedule has minimal    value. If necessary,    is 

minimized subject to the constraint that the values for    and    are equal to the values 

determined in the previous step. The obvious disadvantage of this approach is that the 

resulting schedule may perform very poorly on all criteria except the first one; this is a serious 
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setback if the criteria are not subject to a hierarchy but are somewhat equally important. The 

first result on multi-criteria scheduling, obtained by Smith, is based on this approach [5]. The 

studies by Chang P. and Su L.(2001) [3] and Chen W., et al.(1997) [4] are examples of 

hierarchical minimization problems with earliness and tardiness costs. The computational 

complexity results in hierarchical minimization are reviewed in Lee and Vairaktarakis (1993) 

[9]. 

The second method is simultaneous minimization. In the simultaneous approach there 

are two types, the first one typically generates all efficient schedules and selects the one that 

yields the best composite objective function value of these criteria. The second is to find the 

sum of these objectives as we used in this paper. Several scheduling problems considering the 

simultaneous minimization of various forms of earliness and tardiness costs have been studied 

in the literature (see, e.g. Hoogeveen, (1995) [7]; Moslehi, et al. (2005) [10]). 

3. Problem Formulation 

Single machine scheduling models seem to be very simple but are very important for 

understanding and modeling multiple machines models. A set N={1,2,…,n} of n independent 

jobs has to be scheduled on a single machine in order to optimize a given criterion.  

The (MOF) problem (1/    / ∑   
 
   +    +     ) can be stated as follows: 

A set of  n independent jobs  N={1,2,…,n} are available for processing at time   , job 

             is to be processed without interruption on a single machine that can be 

handled only one job at a time, requires processing time   , and ideally should be completed 

at its due date   . For a given sequence   of the jobs, completion time      , number of tardy 

jobs ∑      and the tardiness        are given by: 

                                                                     
                                                    

         {             }                    
}  (1) 

      {
                                                

                                                                
    (2) 

      max{                                            (3) 

The problem is strongly NP-hard because the problem 1/   /∑   
 
    is NP-hard [3] and 

the problem 1/  /     is strongly NP-hard [13]. 

The problem is to find a sequence   that minimizes the cost M. This problem is denoted 

by (Z) and can be stated as follows: 
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        {∑      
 
                    } 

                                                                                       
                                                        

                                                        

                                                       

                                          }
  
 

  
 

… (Z) 

Where      denotes the position of job   in the ordering    and S denotes the set of all 

enumerated schedules. 

Note that if   =0 for each job    , then the problem (Z) is reduced to the problem 

1//∑      
 
   +       +        . 

4. Decomposition of Problem (Z) and Some Basic Results 

In this section the problem (Z) is decomposed into three subproblems with a simple 

structure. Some results are stated which help in solving the problem (Z). 

M=       ∑      
 
                     

This problem can be decomposed into three subproblems (    ,     ) and      . 

                                                                            
                                                                                                   
                                                                    

                                                                   

                                                                    

                                               }
  
 

  
 

….(     

                                                                           
                                                                                                   
                                                                    

                                                                  

                                                        }
 
 

 
 

….(     

         {∑      
 
   }                                      

                                                                                   
                                                    

                                                   

                                                

                                                               }
  
 

  
 

….      

Theorem (1):          M where   ,   ,    and  M  are the minimum objective 

function values of                    and (Z), respectively. 

Proof: 
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Let    be the maximum tardiness obtained by using preemption scheduling (i.e. 

(GEDD) order (sequencing the n jobs in non-decreasing order of smallest remaining due 

dates) [5]) then                … (4) 

 Let    be the makespan obtained by using (SRD) rule [1] then              … (5) 

And let    be the number of tardy jobs obtained by using relax release dates    

             and      ,           , to get the problem 1//∑   
 
    having due date 

         for each job  , this relaxed problem is solved by Moor algorithm [11] then 

        ∑   
 
      … (6) 

Then from (4), (5) and (6) we get  

            {∑   
 
   }              +              

              ∑   
 
          +     } 

Hence          M.                                                                                                                                  

5. Special cases yield optimal solution 

A machine scheduling problem of type NP-hard is not easily solvable and it is more 

difficult when the objective function is multi objective. Using some mathematical 

programming techniques to find the optimal solution for this kind of problem as: dynamic 

programming and branch and bound method. Some time special cases for this problem can be 

solved. A special case for scheduling problem means finding an optimal schedule directly 

without using mathematical programming techniques. A special case if it exists depends on 

satisfying some conditions in order to make the problem easily solvable. These conditions 

depend on the objective function as well as the jobs [8]. In this section some special cases of 

our problem (Z) are given. 

Case (1): If      and     ,    (j=1,2,…,n ), then (MA) gives an optimal solution, for 

1/         / ∑   
 
              . 

Proof: 

Since        ∑   
 
    and             ∑   

 
           in any order. Then 

problem (Z) reduces to the problem 1/     / ∑   
 
   , but this problem was solved by (MA) 

[12]. Then (MA) gives an optimal solution for the problem 1/         / ∑   
 
     

         .                                                                                                                               

Case (2): If all jobs have a common due date (i.e.     ,            ) and if (SRD) 

gives       , then (SRD) is an optimal solution for 1/                 / ∑   
 
     

           problem. 
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Proof: 

Sine       , then no job with be tardy, i.e.     =0  and   ∑   
 
   =0. Then the 

problem 1/                  / ∑   
 
               is reduced to 1/   /    , but this 

problem was solved by (SRD) [1]. Then (SRD) gives the optimal solution.                              

Case (3): If     ,      and     , (j=1,2,…,n), then (MA) gives an optimal solution. 

Proof: 

Since          ,                    and 

     {
                        
                                               

    in any order. 

Then the problem 1/    ,     ,     /∑   
 
               is reduced to 1/     

/∑   
 
   , but this problem was solved by (MA) [12]. So (MA) gives an optimal solution for 

the problem 1/              / ∑   
 
             .                                                   

Case (4): If the (SRD) rule satisfies       for each job   in (SRD), then (SRD) gives an 

optimal solution for 1/   / ∑   
 
               problem. 

Proof: 

Since      ,     in SRD. Then no job with be tardy, i.e. ∑   
 
    =0 and     =0. Then 

the problem 1/          / ∑   
 
               is reduced to 1/   /    , but this problem 

was solved by (SRD) [1]. So (SRD) gives an optimal solution.                                                  

Case (5): If (SRD) rule satisfy        ,   job   in (SRD) (where k is a positive integer), 

then (SRD) gives an optimal solution for 1/   / ∑   
 
               problem.  

Proof: 

Since        ,     in (SRD). Then ∑   
 
      and        . Then the problem 

1/   ,        / ∑   
 
                is reduced to 1/   /    , but this problem was 

solved by (SRD) [1]. Then (SRD) gives an optimal solution.                                                     

Case (6): The (SRD) rule is optimal for the problem 1/   / ∑   
 
               if       

and               , (j=1,2,…,n). 

Proof: 

Since           , (j=1,2,…,n) , i.e. ∑   
 
   = n. And     =      . Then the 

problem 1/  ,    ,               / ∑   
 
                is reduced to 1/   /    , but 

this problem was solved by (SRD) [1]. Then (SRD) gives an optimal solution.                         
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Case (7): If      and     (MA) =     (EDD), then (MA) gives optimal solution for 

1/     / ∑   
 
               problem. 

Proof:  

Since        ∑   
 
    in any order. Since 1/     /     minimized by (EDD) rule 

[2]. And     (MA) =     (EDD). Then (MA) schedule is optimal for both criterion (∑   
 
    

and     ). Hence (MA) is optimal for 1/  / ∑   
 
                problem.                         

Case (8): If     ,      and if there is a schedule   satisfy   =     ,   job    , then the 

schedule   gives an optimal solution for 1/    ,     ,   =      / ∑   
 
                

problem. 

Proof: 

For the condition of processing time and release dates           in any order,   = 

     and   =     ,         , then    =   , this means all the jobs are just-in-time (JIT), 

i.e.     =0 and   ∑   
 
      and the cost of objective function depends on      only. Hence 

the schedule   gives the optimal solution for 1/    ,     ,   =      / ∑   
 
          

     problem.                                                                                                                              

Case (9): If      and ∑   
 
   (MA)=∑   

 
   (EDD), then (EDD) rule is optimal for the 

problem 1/   / ∑   
 
              . 

Proof: 

The condition of release date gives        ∑   
 
    in any order. Since 1/    

 /∑   
 
    is minimized by (MA)[12]. And ∑   

 
   (EDD) = ∑   

 
   (MA). Then (EDD) rule is 

optimal for both criterion (∑   
 
    and     ). Hence (EDD) rule is optimal for 1/   / 

∑   
 
                problem.                                                                                               

Case (10): If the schedule   satisfies (SRD) and (EDD) at the same time, then   gives an 

optimal solution for 1/    / ∑   
 
   +    +      problem. 

Proof: 

Consider the sequence         where   and    Partial sequences and    and   are two 

jobs with         and      . 

Let   be a completion time of last job in   and   be the number of tardy jobs in   

(   ). Let           a new sequence (by interchange jobs   and   in original sequence) 

(see Fig (1)). 

 :                  
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  :                  

                              

                    Fig (1): The schedules   and    

In  : The number of tardy jobs in subsequence     in  . 

Let    max{   ,   }. 

       +    and    max{   ,    }+   . 

If        

Then  ∑           {
                           
                          

 

If      . 

Then  ∑           {
                               
                                   

 

In   : The number of tardy jobs in subsequence     in   . 

Let    max{   ,   } 

  
         and   

    
    . 

If   
    , then, job i is late and ∑   

 
            . 

If   
    . 

Then  ∑   
 

         {
                              
                                   

 

Then ∑           ∑   
 

         … (7) 

For schedule  : The maximum tardiness in subsequence     in  . 

    =max{ ,   ,   }, where  =          , 

                                             max{      , 0} and                                  

                                             max{      , 0} 

For schedule   : The maximum tardiness in      in   . 
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 =max{ ,   

 ,   
 }, 

                                            
   max{  

     , 0} and 

                                            
        

     , 0}  

Since   
    

  and      , then   
    

  

So     
 =max{ ,   

 }, 

Since        max{ ,   }  max{ ,   }       

    
     (Since       and    0). 

  max   
                          

    . 

Since   
    

     and    max{   ,    }+   . 

 Either            
            and             . 

    
     (Since      ). 

 Or            
            and          . 

    
     (since       and    0 ). 

  max{  
                          

    . 

Therefore     
 =max{ ,   

 } max{ ,    ,   }=     

Then          
    … (8) 

The makespan in       is         

The makespan in        is     
    

  

Since   
       ,then           

  …(9) 

From (7), (8) and (9), we get  

 ∑                     ∑   
 

             
      

  … (10) 

Then from (10)   gives an optimal solution for 1/  /∑   
 
   +    +     .                                

6. Dominance Rules 

Because of branching scheme, the size of the search tree is directly linked to the length 

of the current sequence (which represents the number of nodes). Hence, a preprocessing step 
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is performed in order to remove as many positions as possible. Reducing the current sequence 

is done by using several dominance rules. Dominance rules usually specify whether a node 

can be eliminated before its lower bound is calculated. Clearly, dominance rules are 

particularly useful when a node can be eliminated which has a lower bound that is less than 

the optimum solution. Some of dominance rules are valid for minimization of the sum of the 

number of tardy jobs, maximum tardiness and makespan. 

As in the preprocessing step, similar dominance rules are also used within the branch 

and bound procedure to cut nodes that is dominated by others. These improvements lead to 

very large decrease in the number of nodes to obtain the optimal solution. 

Below two of dominance rules are stated in order to decrease the number of nodes in 

search tree as well as decreasing the solution time [8]. 

Dominance Rule (1): If       and       then job   proceed job   in the optimal solution 

for the problem (Z). 

Proof: It is clear from case (10). 

   

Dominance Rule (2): If    be a partial sequence which it's jobs are scheduled, K N. For 

     =N K, if      ,       and (     )    (     )    0. Then job   proceed job   

in the optimal solution for the problem (Z). 

Proof: 

Let (  ,  ,  ) be the schedule which is obtained by interchanging jobs   and   in (  ,  ,  ). 

All jobs other than   and   have the same completion time in (  ,  ,  ) as in (  ,  ,  ). So the 

difference in completion time between (  , , ) and (  ,  ,  ) depends only on the completion 

time of jobs   and  . Let   be a completion time of last job in   . 

In (  ,  ,  ),     =    

In (  , , ),     
 =  

  

But (  
    ) since (                     ) and (   0) 

Then     
       … (11) 

The maximum tardiness in (  , , ) is: 

     =max{  ,   ,   }, where   =       
     

                                             max{(             )    , 0} and                                  

                                             max{(     )     , 0} 

Since (     )    (     )    and               , then       
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So     =max{  ,   } 

The maximum tardiness of (  ,  ,  ) is: 

    
 =max{  ,   

 ,   
 }, 

                                            
                         ,0} and                                

                                            
   max{( max{  

 ,   }+   )    , 0} 

But (  
    ) since  

(     )    (     )   ,                              and     . 

And (  
    ) since      

  and it has the same due date. 

Then     
       … (12) 

From the condition, (     )    (     )    0 the jobs   and   are late in both 

partial schedules  (  , , ) and  (  , , ). 

Then from (11), (12) and lateness of jobs   and   we get,     in the optimal solution for the 

problem (Z).  

7. The Upper bound (UB) 

In this section, heuristic methods are proposed and applied once at the root node of 

search tree (BAB) algorithm to find an upper bound (UB) on (Z). We suggested two heuristic 

methods, the best one of the heuristic is used to provide an upper bound (UB). 

7.1. Heuristic (1) 

The following algorithm (heuristic) is proposed to obtain the first upper bound (   ) 

for problem (Z). 

Algorithm     

Step (1): Order the jobs by (SRD) to obtain a sequence          ,              . 

Step (2): If there exists a tie (jobs with the same release dates) applying (MA) on these jobs, 

otherwise go to Step (5).  

Step (3): Let Q be a sequence of tardy jobs which is obtained from    

Step (4): Let  =(                    be a new sequence which is obtained from   after 

ordering the jobs of Q according to (EDD), go to Step (6).  

Step (5): Compute    = ∑      
 
                    , go to Step (7). 
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Step (6): Compute    = ∑      
 
                    . 

Step (7): Stop. 

Example (1): The first heuristic is illustrated in four jobs scheduling problem. 

  1 2 3 4 

   3 4 3 3 

   4 5 8 7 

   10 15 14 12 

 

Solution: 

The (SRD) schedule is (1,3,4,2). Applying (MA) on the jobs (1,3,4) the schedule 

(1,4,3,2) is obtained. Order the tardy jobs (3,4) by (EDD) rule to get  =(1,4,3,2). 

Compute    = ∑      
 
                    =42. 

It should be noted that an optimal sequence is (1, 4, 3, 2) for this example, and the 

optimal value is 42 which is obtained by using complete enumeration. 

7.2. Heuristic (2) 

The following algorithm (heuristic) is proposed to obtain the second upper bound (   ) 

for problem (Z). 

Algorithm     

Step (1): Order the jobs by (SRD) to get a sequence          ,              . 

Step (2): If there exists a job   (       ) such that            ,              , 

then a new sequence        ,                which is obtained from   after 

ordering the jobs               according to (EDD) rule, otherwise go to Step 

(4). 

Step (3): Compute    = ∑      
 
                    , go to Step (5). 

Step (4): Compute    = ∑      
 
                    . 

Step (5): Stop. 

Hence our upper bound is UB=min{     ,     }. 

Example (2): The second heuristic is illustrated in four jobs scheduling problem. 

  1 2 3 4 

   3 6 5 2 
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   4 3 6 7 

   10 15 13 11 

 

Solution: 

The (SRD) schedule is   (4,1,3,2). At the first completion time (     = 9) the set of 

jobs (1,2,3) are found which ready jobs (        ),   {1,2,3}. The jobs (1,2,3) are ordered 

by (EDD) rule, to get   =(4,1,3,2). 

Compute    = ∑      
 
                     = 32. 

It should be noted that an optimal sequence is (4, 1, 3, 2) for this example, and the 

optimal value is 32 which is obtained by using complete enumeration. 

8. The Lower Bound (LB) 

In this section, two lower bounds     and     are derived for problem (Z) and 

LB=max{   ,    }. 

8.1. The First Lower Bound (   ) 

The first lower bound is based on decomposing (Z) into three subproblems               

and       as shown in Section (4), then    was calculated to be the lower bound for     ),  

   to be the minimum value for      ,    to be the lower bound for     ) and applying 

Theorem (1) to get a lower bound     for problem (Z). 

8.2. The Second Lower Bound (   ) 

To obtain the second lower bound for problem (Z), the relaxation of constraints of 

objective function will be as follows: 

If there exists a job i such that        and      ,         , then job i schedule in the 

first position. For the remaining jobs we assume that   =               and 

  =              , and applying Case (1). The optimal solution for the new problem is a 

lower bound for problem (Z). 

Proposition (1): 

The (   ) is a lower bound for problem (Z). 

Proof:  

Firstly, if there is a job   satisfies the condition        and      ,          , 

then job   is scheduled in the first position by Dominance rule (1). For remaining jobs 

  =               is assumed and   =              . This problem can be solved by using 

Case (1). The first assumption for the release date to get a maximum reduction of the 

completion time and makespan, and the second assumption for the due date to get a maximum 
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reduction of the tardy jobs, maximum tardiness and the number of tardy jobs. This means that 

by this way the maximum reduction to the cost of the objective function is obtained.  

Secondly, if there is no job satisfies above condition, then we assume   =             

and   =             and repeat above argument.                                                                     

Example (3): The second lower bound is illustrated in five jobs scheduling problem. 

  1 2 3 4 5 

   0 1 7 6 9 

   3 4 6 10 2 

   3 10 17 18 15 

 

Solution: 

Since       and       ,   {2,3,4,5}, then job 1 scheduled in the first position. Since 

      and      ,   {3,4,5}, then job 2 scheduled in the second position.   =min{7,6,9}=6 

is assumed and   =max{17,18,15}=18. Applying (MA) for the remaining jobs {3,4,5}, we 

get 

  1 2 3 5 4 

    3 7 13 15 25 

    0 0 0 0 7 

Then    = 1+7+25=33 

          It should be noted that an optimal sequence is (1,2,3,5,4) for this example, and the 

optimal value is 33 which is obtained by using complete enumeration. 

9. Branch and Bound (BAB) algorithm 

In this section, a description of our branch and bound (BAB) algorithm is given and its 

implementation. The two heuristic methods are applied at the top of search tree (root node) 

the better of the two heuristic sequences is used to provide an upper bound (UB) on cost of an 

optimal schedule is obtained by choosing the better of two upper bounds from Section (7). 

Also at the top of the search tree an initial lower bound (ILB) on the cost of an optimal 

schedule is obtained by choosing the better of two lower bounds from Section (8). Our 

algorithm uses a forward sequencing branching rule for which nodes at level k of the search 

tree correspond to initial sequences in which jobs are sequenced in the first k positions. 

The branching procedure describes the method to partition a subset of possible solution. 

These subsets can be treated as a set of solutions of corresponding subproblems of the original 

problem. The bounding procedure indicates how to calculate a lower bound (LB) on the 

optimal solution value for each subproblem generated in the branching process. The search 

strategy describes the method of choosing a node of the search tree to branch from it; we 
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usually branch from a node with smallest lower bound (LB) among the recently created 

nodes. 

Example (4): The (BAB) algorithm is illustrated in five jobs scheduling problem. 

  1 2 3 4 5 

   0 5 8 12 14 

   8 6 5 6 10 

   16 26 24 22 32 

The (BAB) tree algorithm to give the optimal solutions for the problem 1/  / ∑   
 
     

           is shown in Fig (2). 

 

                                           

                  

                         1                    2              3               4                5 

 

              

                             2                   3                  4                       5 

                                                                               

 

                          3         4                5              2           4                  5 

 

                                                                                    

                         4             3                             4                2 

 

     

                       5             5                               5               5                                                                             

 

Fig (2): The (BAB) tree for problem (Z) 
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The (BAB) method gives the schedule (1,3,4,2,5) that gives (∑   
 
         

      =39. 

 

 

10. Computational Experience 

An intensive work of numerical experimentations has been performed. Subsection 

(10.1) shows how instances (test problems) can be randomly generated. 

10.1. Test Problems  
         There exists in the literature a classical way to randomly generate test problems of 

scheduling problems. 

 The processing time    is uniformly distributed in the interval [1, 10]. 

 The release date    is uniformly distributed in the interval [0, P], where [ =0.125, 

0.25, 0.50, 0.75, 1.00] and P=∑   
 
   . 

 The  due  date     is  uniformly  distributed  in  the  interval  

[P(1-TF-RDD/2),P(1-TF+RDD/2)];where P ∑   
 
   .  

depending on the relative range of due date (RDD) and on the average tardiness 

factor (TF). 

For both parameters, the values 0.2, 0.4, 0.6, 0.8 and 1.0 are considered. For each selected 

value of   where   is the number of jobs, five problems were generated. 

10.2. Computational Experience with the Lower and Upper Bounds of (BAB) Algorithm  

          The (BAB) algorithm was tested by coding it in MATLAB 7.10.0 (R2010a) and 

implemented on Intel(R) Core(TM)2 Duo CPU T6670 @ 2.20 GHZ, with RAM 2.00 GB 

personal computer. 

Table (1), shows the results for problem (Z) obtained by (BAB) algorithm. The first 

column " " refers to the number of jobs, the second column "EX" refers to the number of 

examples for each instance  , where   {5, 10, 15, 20, 25, 30, 35, 40}, the third column 

"Optimal" refers to the optimal values obtained by (BAB) algorithm for problem (Z), the 

fourth column "UB" refers to the upper bound, the fifth column "ILB" refers to the initial 

lower bound, the sixth column "Nodes" refers to the number of nodes, the seventh column 

"Time" refers to the time cost 'by second' to solve the problem, the last column "Status" refers 

to the problem solved '0' or not '1'. The symbols "*" refers to UB gives an optimal solution 

and "**" refers to ILB gives an optimal solution. The (BAB) algorithm was stopped when the 

sum of "status column  3". 
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        A condition for stopping the (BAB) algorithm was determined and considering that the 

problem is unsolved (state is 1), that the (BAB) algorithm is stopped after a fixed period of 

time, here after 1800 second (i.e. after 30 minutes). 

If the value of UB=ILB then the optimal is UB and there is no need to branch in the 

search tree of (BAB) algorithm. 

From Table (1), it is noticed that the heuristic of upper bound is good algorithm. It gives 

the value for objective function equal to optimal or near optimal values. 

Table (1): The performance of initial lower bound, upper bound, number of nodes and   

computational time in second of (BAB) algorithm for (Z). 

  EX Optimal UB ILB Nodes Time Status 

 

 

5 

 

 

1 65 65* 64 14 0.0028 0 

2 32 33 31 14 0.0021 0 

3 43 43* 41 14 0.0018 0 

4 44 44* 44** 0 0.0008 0 

5 33 34 32 14 0.0022 0 

 

 

10 

 

 

1 117 117* 113 93 0.0107 0 

2 70 71 67 96 0.0105 0 

3 103 104 100 119 0.0131 0 

4 125 125* 121 162 0.0160 0 

5 59 61 56 54 0.0065 0 

 

 

15 

 

 

1 167 168 163 366 0.0386 0 

2 139 140 135 119 0.0143 0 

3 163 166 160 309 0.0324 0 

4 100 105 97 630 0.0641 0 

5 140 143 136 210 0.0227 0 

 

 

20 

1 203 206 198 1469 0.1628 0 

2 210 214 205 12664 1.2978 0 

3 166 171 162 1263 0.1351 0 

4 182 187 176 2985 0.3243 0 

5 165 171 160 8836 0.9188 0 

 

Table (1): continued 

 

  EX Optimal UB ILB Nodes Time Status 

 

 

25 

1 261 267 257 2602 0.3099 0 

2 256 262 250 4921 0.5762 0 

3 274 281 270 35120 4.0163 0 

4 223 229 217 11453 1.3186 0 

5 258 264 253 33863 3.8647 0 

 

 

30 

 

1 379 384 374 5047 0.6587 0 

2 300 305 294 150111 18.9608 0 

3 277 284 269 767672 98.9491 0 

4 261 269 252 4308611 551.2338 0 

5 284 294 277 849200 106.0457 0 

 1 407 413 400 30517 4.8198 0 
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35 

 

 

2 396 404 390 108684 15.9127 0 

3 343 350 335 1727223 256.8693 0 

4 394 401 387 11750681 1664.3691 0 

5 339 349 330 7261310 969.0710 0 

 

 

40 

 

 

1 393 403 387 838338 138.2405 0 

2 436 446 428 3447719 606.1721 0 

3 449 459 440 3735047 665.1139 0 

4 428 433 414 11173344 1800.0122 1 

5 380 390 368 12063100 1800.0019 1 

 

Table (2) summarizes Table (1) 

Table (2) is the summary of Table (1), and shows the average of nodes and 

computational times for the solved problems, also, shows the unsolved problems among the 5 

problems of each  , where   {5, 10, 15, 20, 25, 30, 35, 40}. 

Table (2): Summary of Table (1) of (BAB) algorithm 

n Av. Nodes Av. Time Unsolved problem 

5 11.2 0.0019 0 

10 104.8 0.0114 0 

15 326.8 0.0344 0 

20 5443.4 0.5678 0 

25 17591.8 2.0171 0 

30 1216128.2 155.1696 0 

35 4175683 582.2084 0 

40 2673701.3 469.8422 2 

 

10. Conclusions 

In this paper, the problems of scheduling jobs on one machine for a variety of three-

criteria are considered. 

A branch and bound algorithm is proposed to find the optimal solution for the problem 

1/  / ∑   
 
               with two lower bounds (   ,    ), two upper bounds (   , 

   ) and two dominance rules. Ten special cases for the problem (Z) are derived and proved. 
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 الخلاصة

. هدفنا في هذه الدراسةة (MOF)في هذا البحث, درسنا مسألة جدولة الماكنة الواحدة لتصغير دالة متعددة الاهداف 

∑خرة ) أهو ايجاد الحل الامثةل لمجمةوع دةدد النتاجةام المتة   
 
تمةا  ) إكبةر ممةت أ( و    خير ) أكبةر ممةت تةوأ(     

( مع وقم تحضير للنتاجام غير متساوي. ت  اشةتاا  وبرهةات دشةرة حةالام خاصةة تعحةي الحلةول المثلة . كةذل      

قدُمم في  (    ,   )مت الايود العليا  يتواثن (    ,   )مت الايود الدنيا  يتاقترحنا خوارممية التفرع والتايد مع اثن

تسةاددات فةي تالةيد دةدد التفردةام فةي  مةع قادةدتيت للميمنةة ة قيةد الدراسةةمسةأللهذا البحث مت اجل ايجاد الحل الامثل ل

 (40) ت خوارممية التفرع والتايد الماترحة فعالة فةي حةل المسةائل لغايةةبأ أثبتمنتائج الاختبارام الحسابية  .شجرة البحث

, وحسب معرفتنا ات هةذه strongly NP-hard. بشكل دا  هذه المسألة مت نوع  دقياة (30)قل او يساوي أنتاج في وقم 

 درس مت قبل.المسألة ل  تُ 

 

 


