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ABSTRACT  
    In recent years, the uses of high dimensional appear in a large and a lot of applications 
appear within it.  So, we study these applications and take one of them that play a central 
role in the factoring of prime number which is an application especially in cryptography. 
Our main purpose is to introduce another procedure which make the operation of 
computing the factoring of N = p.q as more easy as the direct computation fast, therefore, 
an approach is working on for finding the number of integral points(lattice points) make 
benefit from the concept of the Tutte polynomial and its application on integral points of 
a polytope. Polytopes which are taken are the Platonic solid, and a map is making 
between a ball and a polytope in four dimensions, then discusses the relation between the 
numbers of integral points of them from dimension one to n dimension. We found a 
relation between the radiuses of the ball, the edge of the cube which is one of the Platonic 
solid and the dimension together with Pascal triangle, the rhombic dodecahedron, 
octahedron, and icosahedrons are also taken. 
Keywords: Polytope, lattice point, Tutte polynomial.  

حساب عدد  النقاط  ذات الاحداثيات الصحيحة فيالكرة ذات الاربعة الأبعاد باستخدام متعدد 
 )تات (الحدود

  الخلاصة
. لذلك وكبيرة من التطبيقاتفي مجموعة واسعة  يةلالعا الأبعاد استخدامات ظھرتفي السنوات الأخيرة ،    

الذي ھو  ايجاد عوامل الاعداد الاوليةتلعب دورا محوريا في  التي اھااحد ناذواتخ التطبيقاتھذه  درسنا
 العواملايجاد التي تجعل من عملية  ىآخر تقنيةوخاصة في الترميز . ھدفنا الرئيسي ھو أن نقدم  مھم تطبيق

p.q=N ذات ، وھو نھج يعمل على إيجاد عدد النقاط  قدمنا تقريبين ، لذلك المباشرحساب ال ولة عنأكثر سھ 
تات الاستفادة من مفھوم متعدد الحدودب الابعاد الصحيحة  تم اخذ.  متعدد الاضلاع والزواياوتطبيقه على  

 ناناقش، ثم  البعد الرابعفي  الاضلاع والزوايامتعدد بين الكرة و  وجدنا تطبيق، و الأفلاطونيةالاشكال 
n البعد إلى الاولبعد المن  بينھماالعلاقة بين أعداد النقاط   حرف وأقطار الكرة وجدنا علاقة بين أنصاف 

 الاشكال تم اخذ أيضاباسكال ،  و مثلثالبعد مع  الاشكال الأفلاطونية ھو واحد منحيث ان المكعب  المكعب
 Rhombic ,dodecahedron  , octahedron, icosahedrons. 
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INTRODUCTION  
onvex bounded polyhedrons are fundamental geometric objects that have been 
investigated since antiquity. The beauty of  their theory is now a day 
complemented by their importance for many other objects, ranging from the 

integration theory, algebraic topology, and algebraic geometry (toric varieties) to the 
linear and combinatorial optimization, and  another   applications given in [6,7,14,15].  
The main reason of this paper is to make use of Platonic solids which are cube, 
tetrahedron, octahedron, icosahedrons and dodecahedron. And use the concepts of  
Ehrhart  polynomials for them depends on the Tutte polynomials to get the number of  
integral points and make use of  it with the solutions of  equation that compute  the 
number of integral points on a ball in four dimension. We approximately cover the entire 
sphere with the dodecahedron which is one of the Platonic solid rather than a cube that 
we use it in the previous paper, [12,13].  
     Fukuda in [5] shows that every arrangement of spheres (and hence every central 
arrangements of hyperplanes) is combinatorial equivalent to some convex polytope. Also 
Mazo in [9] proved that there is a relationship between the number of integral point on a 
sphere and the volume of it. Although a four - dimensional Euclidean geometry with time 
as the fourth dimension was already known since Galileo Galilei’s time, it was Einstein 
who showed that the fourth dimension, time, is essentially different from the other three 
dimensions. Therefore, his early creations were unrealistic. And yet, real 4d-objects have 
to exist, if the relativistic geometry is real. 
    Shatha in [13] proved that there is a relation between the number of integral points and 
the edge of cube together with Pascal triangle. 
   As we discussed before the difficult factorization problem for N = p.q with p and q 
large primes, presented as follows: For an integer number N=p.q consider the 4-
dimensional convex body B(N) = {xR4 : x1

2+x2
2+x3

2+x4
2 ≤ N}, thus if we know that N 

= p.q, and B(N) denotes the number of lattice points in B(N). The fast factorization of n is 
based on fast computing of B (N). And the application for this problem relates to RSA 
cryptosystems.  
    Many optimization techniques involving a sub step that counts the number of integral 
points in a set S, which can be described by a set of linear constraints, i.e. S is the 
intersection of zd and a rational polyhedron [11]. The problem of counting the number of 
elements in S is therefore equivalent to count the number of integral points in a polytope 
which implies that the count is finite (since the polytope is bounded polyhedron). 
Different algorithms are used to find the number of integral points since 1980, all of them 
depend on the concept of integer programming for more see [1,2]. 
 
Definitions and theorems 
   Firstly some of the basic definitions are given to consolidate results, which are given as 
follows: 
Definition 2.1, [10]: 
    Let Ax ≤ b where A  Rm×d  is a given real matrix, and b  Rm is a known real vector. 
A set P = {x  Rd : Ax ≤b} is said to be a polyhedron. Every bounded polyhedron is said 
to be a polytope. 
 

C
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Definition 2.2, [4]: 
   Let P  Rd be a lattice d-polytope, for a positive integer t, tP = {tx :x  P} is said to be 
the dilated polytope. 
Definition 2.3, [16]:  
    Let P Rd be a lattice d-polytope. a map L : N → N is defined by L(P, t) = card(tP  
Zd), where card means the cardinality of (tPZd) and N is the set of natural numbers. It is 
seen that L(P, t) can be represented as, L(P, t) = 1 + ∑ܿ௜  ௜, this polynomial is said to beݐ
the Ehrhart polynomial of a lattice d-polytope P. 
Theorem 2.1, [16](Pick’s theorem):  
    For d = 2, P Rd and P is an integral polyhedron. The famous formula, states that: The 
number of integral points in an integral polyhedron is equal to the area of the polyhedron 
plus half the number of integral points on the boundary of the polyhedron plus one,  
 
|P Z2 | = area(P) + |P Z2 |/2 + 1                                                                 …(1) 
 
   Formula (1) is useful because it is much more efficient than the direct enumeration of 
integral points in a polyhedron. The area of P is computed by triangulating the 
polyhedron. Furthermore, the boundary P is a union of finitely many straight-line 
intervals, and counting integral points in intervals. 
Theorem 2.2, [1](Ehrhart’s theorem):  
     Let P be a convex lattice polygon and let t be a positive integer, the following equality 
always holds. 
 |P Z2 | = area(P) + |P Z2 |/2 + 1. 
Theorem 2.3, [1](Ehrhart - Macdonald reciprocity):  
    Let P be a d-polytope in Rd with integer vertices, let L(P, t) be the number of integer 
points in tP , and L(Po, t) be the number of integer points in the relative interior of tP . 
Then let L(P, t) and L(Po, t) are polynomial functions in  t  of degree d that satisfy L(P, 0) 
= 1 and L(Po, t) = (−1)dL(P,−t). 
Theorem 2.4, [8](Jacobi 1829): 
     The number of representations of N as a sum of four squares equates 8 times the sum 
of all divisors of N that are not divisible by 4. 
Tutte Polynomial 
    In this section some definitions and theorems that are related to Tutte polynomial are 
given. 
    Tutte polynomial is a polynomial in two variables x and y which can be defined for a 
graph, matrix or, more generally a matroid, most of the interesting applications arise 
when the underlying structure is a graph or a matrix, but matroids are an extremely useful 
vehicle for unifying the concepts and definitions, for example, the all terminal reliability 
probability of a network. Now we must define the Tutte polynomial for matroids which is 
the main polynomial in this work. 
Definition 3.1, [17]:  
    Let X⊂ Z୬	, for every A⊆ X	, let r (A) be the rank of A that is the number of all 

spanned subspace of Թ
୬

.The Tutte polynomial of the matroid is defined as: 
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T୶ሺx, yሻ ൌ ෍ 		
୅⊆ଡ଼

ሺx െ 1ሻ୬ି୰ሺ୅ሻ			ሺy െ 1ሻ|୅|ି୰ሺ୅ሻ 

where, 
n means the dimension of the lattice n-dimensional space	Z୬. 
|A| means the maximal cardinality of an independent subset of A. 
 
Definition 2.2, [18]: 
   A multiplicity (arithmetic) Tutte polynomial (X,I,m) is called representable, means that 
the multiplicity (arithmetic) matroid  is realized by a list of elements in a finitely 
generated abelian group. 
 
The proposed method 
    The proposed method is given in this section is to give a procedure for computing the 
number of integral points in 4-dimensional ball which is depending on the Ehrhart 
polynomials of a polytope (cube) and its properties. 
procedures I: 
     In this procedure we cover a ball in four dimension by a cube with edges a, and make 
use of the Ehrhart polynomial for the cube in 4-dimension. Approximately computing the 
number of integral points depend on the Ehrhart polynomials of the cube. First imagine a 
circle putting in first quadrant in a square with the same center with dimension two and 
get a general formula for the number of integral points include the radius of the circle and 
the edge of the cube which as follows: In dimension two 
Let a = the edge of the square. 
r = radius of the circle. 
N-cube=number of integral points on a cube. 
N-circle=number of integral points on a circle. 
Now if a = 2 then r = 1 and N-cube=1. 
if a = 3 then r = 3/2 and N-cube=4. 
     Combinatorial, the number of integral points on a circle is computed. This is similar to 
the number of integral points on a cube. Continue in this computation until we reach to 
the general formula as follow: 
    From the general formula of the Ehrhart polynomial for a cube, Which is L(P, t) = 
(t+1)n 
We have the number of integral points in a cube is (a − 1)2, where a is the edge of the 
square. We didn’t stop at this point but we want to of our computation and try to compute 
using Ehrhart polynomial for the square and then number of integral points by putting 1 
in the Ehrhart polynomial as follows using theorem (2.1) 
|P Z2 | = area (P) + |P Z2 |/2 + 1. 
     L(P, t) = 4t2 + 4t + 1 
The number of integral points is 9. 
The number that entirely in P, can be found by using 
L(P0, t) = (−1)dL(P,−t) = (−1)2[4−12 + 4−1 + 1] = 1 
    And so on. For dimension 3, we put a ball in a cube also we get a general formula as 
we are obtained it in dimension two, and the results are compared with the Ehrhart 
polynomial. 
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L(P, t) = (t + 1)d,L(P0, t) = (t − 1)d 
L(P0, 2t) = (2t − 1)3,L(P0, 2) = 1 
L(P0, 3t) = (3t − 1)3,L(P0, 3) = 8 
L(P0, 4t) = (4t − 1)4,L(P0, 4) = 27 
L(P0, nt) = (nt − 1)3 = number of lattice points in a sphere. 
For dimension four, the general formula 
L(P0, t) = (t − 1)d 
L(P0, nt) = (nt − 1)4 
 

Table(1). Number of lattice points in dimension 2 
 

n a r N-cube N-circle 
1 2 1 1 1 
 3 3/2 4 4 
 4 2 9 9 
 5 5/2 16 16 
 6 3 25 25 
 7 7/2 36 36 
 8 4 49 49 
 9 9/2 64 64 

 
Table (2). Number of lattice points in dimension 3 

 
n a r N-cube N-circle
1 2 1 1 1 
 3 3/2 8 8 
 4 2 27 27 
 5 5/2 64 64 
 6 3 53 53

 7 7/2 63 63

 8 4 73 73

 9 9/2 83 83

 
Table (3). Number of lattice points in dimension 4 

 
n a r N-cube N-circle 
1 2 1 1 1 
 3 3/2 24 24

 4 2 34 34

 5 5/2 44 44

 6 3 54 54

 7 7/2 64 64

 8 4 74 74

 9 9/2 84 84
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Remark 2.1 
 Before we take the second procedure, the Tutte polynomial for the Platonic solid is 
given as follows:   
Example 2.1 
    Let the six pair of octahedron is{(1,1,0), (1,-1,0),(1,0,1),(1,0,-1),(0,1,1),(0,1,-1)}. 
This shape can fill space without leaving any gaps, now let{(1,1,0),(1,0,1),(0,1,1)} be the 
generators and compute the other vertices as a linear combination of them. After some 
calculations, get the Ehrhart polynomial the same as of a cube. For tetrahedron the 
rotation will preserve the number of integral points, which is the aim of a lot of papers 
concerning this work.  
Example 2.2 
     Let (0,1,1),(1,0,1),(1,1,0) be the generating vertices of icosahedra(the set of all 
icosahedrons),when we take the generators and computing the other vertices as a linear 
combination of them. After computing multiplicity Tutte polynomial and Ehrhart 
polynomial get the same result of cube, that is: 
Mଡ଼ሺx, yሻ=ሺx െ 1ሻଷ+3ሺx െ 1ሻଶ+3 (x-1) +1. 
ࣟ୶ሺqሻ ൌ qଷ ൅ ଶݍ3 ൅ 3q ൅ 1. 
     Finally from 3 generators above we get the different multiplicity Tutte polynomial but 
the same Ehrhart polynomial that is the same Ehrhart polynomial of cube. 
 
 

                                               
    Figure (1) cube                                              Figure (2) octahedron.   
 
     

                                         
  Figure (3) icosahedrons.                                Figure (4) dodecahedron  
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Figure (5) rhombic dodecahedron 

 
 
Procedure II: 
     In this procedure we cover a ball in four dimension by a rhombic dodecahedron, and 
make use of the Tutte polynomials with the Ehrhart polynomial for the rhombic 
dodecahedron in 4-dimension.  
     Approximately computing the number of integral points depend on the Ehrhart 
polynomials of the rhombic dodecahedron. First imagine a circle putting in first quadrant 
in a cube with the same center with dimension two and get a general formula for the 
number of integral points include the radius of the circle and the edge of the cube which 
as follows: In dimension two 
Let a* = the edge of the cube. 
r = radius of the circle. 
N-cube=number of integral points on a cube. 
N-circle=number of integral points on a circle. 
Now if a* = 2 then r = 1 and N-cube=1. 
if a* = 3 then r = 3/2 and N-cube=4. 
 
     Combinatorial the number of integral points on a circle is computed which is similar 
to the number of integral points on a cube. Continue in this computation until we reach to 
the general formula as follow: 
      From the general formula of the Ehrhart polynomial for a cube, Which is L (P, t) = 
(t+1)n 
     we have the number of integral points in a cube is (a* − 1)2, where a is the edge of the 
square. We didn’t stop at this point but we want to of our computation and try to compute 
using Ehrhart polynomial for the square and then number of integral points by putting 1 
in the Ehrhart polynomial as follows using theorem (2.1) 
|P Z2 | = area|P Z2 | = area (P) + |P Z2 |/2 + 1. 
     L(P, t) = 4t2 + 4t + 1 
The number of integral points is 9. 
The number that entirely in P, can be found by using 
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L(P0, t) = (−1)dL(P,−t) = (−1)2[4−12 + 4−1 + 1] = 1 
    And so on. For dimension 3, we put a ball in a cube also we get a general formula as 
we are obtained it in dimension two, and the results are compared with the Ehrhart 
polynomial. 
L(P, t) = (t + 1)d,L(P0, t) = (t − 1)d 
L(P0, 2t) = (2t − 1)3,L(P0, 2) = 1 
L(P0, 3t) = (3t − 1)3,L(P0, 3) = 8 
L(P0, 4t) = (4t − 1)4,L(P0, 4) = 27 
L(P0, nt) = (nt − 1)3 = number of lattice points in a sphere. 
For dimension four, the general formula 
L(P0, t) = (t − 1)d 
L(P0, nt) = (nt − 1)4 

 

 

 
Table(4). Number of lattice points in dimension 2 

n a* r N-cube N-circle 
1 2 1 1 1 
 3 3/2 4 4 
 4 2 9 9 
 5 5/2 16 16 
 6 3 25 25 
 7 7/2 36 36 
 8 4 49 49 
 9 9/2 64 64 

 
Table (5). Number of lattice points in dimension 3 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

n a* R N-cube N-circle 
1 2 1 1 1 
 3 3/2 8 8 
 4 2 27 27 
 5 5/2 64 64 
 6 3 53 53

 7 7/2 63 63

 8 4 73 73

 9 9/2 83 83
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Table (6). Number of lattice points in dimension 4 
n a R N-cube N-circle 
1 2 1 1 1 

 3 3/2 24 24

 4 2 34 34

 5 5/2 44 44

 6 3 54 54

 7 7/2 64 64

 8 4 74 74

 9 9/2 84 84
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