
AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

133

On Training Feed Forward Neural

Networks For Approximation Problems

Luma. N. M.Tawfiq & Alaa. K. J. AL-Mosawi

Department of Mathematics, College of Education-Ibn Al-

Haitham,University of Baghdad

Abstract:
 In this paper, many modified and new algorithms have been proposed for

training feed-forward neural networks; many of them having a very fast convergence

rate for reasonable size networks.

We examine the similarities and differences between different training

methods and compare the performance of training with each representation applied to

the approximation problem.

 In all of these algorithms we use the gradient of the performance function

(energy function, error function) to determine how to adjust the weights such that the

performance function is minimized, where the back propagation algorithm has been

used to increase the speed of training. The above algorithms have a variety of

different computation and thus different type of form of search direction and storage

requirements; however none of the above algorithms has a global properties which

suited to all problems.

1. Introduction
 Back propagation (BP) process can train multilayer Feed Forward Neural

Networks (FFNN’s). With differentiable transfer functions, to perform a function

approximation to continuous function fRN, pattern association and pattern

classification. The term of back propagation to the process by which derivatives of

network error with respect to network weights and biases, can be computed. This

process can be used with a number of different optimization strategies.

2. Training Algorithms for Neural Networks

 Any non-linear optimization method, a local or global one, can be applied to the

optimization of feed-forward neural networks weights. Naturally, local searches are

fundamentally limited to local solutions, while global ones attempt to avoid this

limitation. The training performance varies depending on the objective function

(energy function or error function) and underlying error surface for a given problem

and network configuration.

 Since the gradient information of error surface is available for the most widely

applied network configurations, the most popular optimization methods have been

variants of gradient based back-propagation algorithms. Of course, this is sometimes

the result of an inseparable combination of network configuration and training

algorithm which limits the freedom to choose the optimization method.

Widely applied methods are, for example, modified back-propagation [1], back

propagation using the conjugate-gradient approach [2], scaled conjugate-gradient and

its stochastic counterpart [3], the Marquadt algorithm [4], and a concept learning

AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

134

based back-propagation [5]. Many of these gradient based methods are studied and

discussed even for large networks in [6]. Several methods have been proposed for

network configurations where the gradient information is not available, such as

simulated annealing for networks with non-differentiable transfer functions [7].

 In many studies only small network configurations are considered in training

experiments. Many gradient based methods and especially the Levenberg-Marquadt

method are extremely fast for small networks (few hundreds of parameters), thus,

leaving no room or motivation for discussion of using evolutionary approaches in the

cases where the required gradient information is available. The problem of local

minima can be efficiently avoided for small networks by using repeated trainings and

randomly initialized weight values. Nevertheless, evolutionary based global

optimization algorithms may be useful for validation of an optimal solution achieved

by a gradient based method.

 For large FFNNs, consisting of thousands of neurons, the most efficient training

methods (Levenberg-Marquadt, Quasi –Newton, etc.) demand an unreasonable

amount of computation due to their computational complexity in time and space. One

possibility could be a hybrid of traditional optimization methods and evolutionary

algorithms as studied in [8]. Unfortunately, it seems that none of the contemporary

methods can offer superior performance over all other methods on all problem

domains. It seems that no single solution appears to be available for the training of

artificial neural networks.

Now, we introduce training rules (algorithms) for FFNN:

2.1.Gradient (Steepest) Descent (taringd)

A standard back propagation algorithm is a gradient descent algorithm (as in

the Widrow-Hoff learning rule) .For the basic steepest (gradient) descent algorithm,

the weights and biases are moved in the direction of the negative gradient of the

performance function.

For the method of gradient descent, the weight update is given by :

 Wk+1= Wk + αk(gk) ……………………….….(1)

where αk is a parameter governing the speed of learning, named learning rate,

controlling the distance between Wk+1 and Wk and gk is the gradient of the error

surface at Wk, Wk is the weight at iteration k .[9],[10]

The convergence condition is satisfied by choosing: 0 < αk <

.max2

1

 where max. is

the largest eigenvalue of weight matrix.

2.2.Gradient Descent With Momentum (traingdm) [11]

There is another training algorithm for FFNN that often provides faster

convergence. The weight update formula for gradient descent with momentum is

given by: Wk+1=Wk + αk(gk) + (Wk Wk-1)

That is: Wk+1=Wk + αk(gk) + Wk

 i.e. ∆Wk+1=αk(gk) + Wk ……….……………(2)

AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

135

Where the momentum parameter is constrained to be in the range (0 , 1).

Momentum allows the ANN to make reasonably large weight adjustments, while

using a smaller learning rate to prevent a large response to the error from any one of

training pattern.

The gradient is constant (gk = const). Then, by applying iteratively (2) :

 ∆W = - αgk (1+ μ + μ2 + …) – - kg
-1

α

 (because μЄ(0,1) and then lim
∞→n

0n), i.e. the learning rate effectively increases

from α to
)-1(

α

.

Remark

There are several issues on gradient descent training algorithms:

1. When the learning rate α is too small, the learning algorithm converges very

slowly. However, when α is too large, the algorithm becomes unstable and

diverges.

2. Another peculiarity of the error surface that impacts the performance of the

gradient descent training algorithm is the presence of local minima [12]. It is

undesirable that the learning algorithm stops at a local minimum if it is

located far above a global minimum.

3. Neural network may be over-trained by using gradient descent algorithms and

obtain worse generalization performance. Thus, validation and suitable

stopping methods are required in the cost function minimization procedure.

4. Gradient-based training is very time-consuming in most applications.

The aim of this paper is to solve the above issues related with gradient-based

algorithms and propose an efficient training algorithm for FFNNs

3. Faster Trining

 In this section, we will discuss several high performance algorithms fall into

two main categories. The first category uses heuristic techniques, which were

developed from an analysis of the performance of the standard gradient descent

algorithm. Another heuristic modification is the momentum technique, variable

learning rate and resilient back propagation. The second category of fast algorithms

uses standard numerical optimization techniques such as: conjugate gradient, quasi-

Newton and Levenberg-Marquardt .

3.1.Variable Learning Rate

 With standard gradient descent, the learning rate is held constant

through out training. The performance of the algorithm is very sensitive to the proper

setting of the learning rate. If the learning rate is set too high, the algorithm becomes

unstable. If the learning rate is too small, the algorithm will take too long to converge.

Our numerical results and [13] shows that it is not practical to determine the optimal

setting for the learning rate before training and, in fact, the optimal learning rate

changes during the training process, as the algorithm moves across the performance

surface.

AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

136

D. G. Luenberger, 1991 shows that the optimal learning rate for quadratic

error surface :

 ηk
kk

T

k

k

T

k

ρE′′ρ

E′E
 , where k is the search direction.

 The performance of the steepest descent algorithm can be improved if we allow

the learning rate to change during the training process. Back propagation training

with an adaptive learning rate is implemented with the function 'traingda'. The

function 'traingdx' combines adaptive learning rate with momentum training. [13]

3.2.Resilient Back Propagation (trainrp) [14]

The resilient back propagation training algorithm eliminates the harmful

effect of having a small slope at the extreme ends of sigmoid transfer functions in

hidden layers. Only the sign of the derivative of the transfer function is used to

determine the direction of the weight update: the magnitude value of the derivative

has no effect on the weight update. Our results show the resilient back propagation is

generally much faster than the standard gradient descent algorithm. Also it has a nice

property that it requires only a modest increase in memory requirements, and thus we

do need to store the update values for each weight and bias.

3.3.Quasi-Newton Algorithms [16]

Quasi-Newton (or secant) methods are based on Newton’s method but we

require calculation of second derivatives (Hessian matrix) at each step. They update

an approximate Hessian matrix at each iteration of the algorithm.

The optimum weight value can be computed in an iterative manner by writing:

 Wk+1 Wk ηkH1gk ……...…... (3)

where ηk is the learning rate, gk is the gradient of the error surface with respect to the

Wk and H is the Hessian matrix (second derivatives of the error surface with respect

to the Wk) [15]. We can show that the Quasi-Newton’s method converges to the

optimal weight W*. Now rewrite the equation of Newton’s method as:

 W* Wk
1

2
H1gk …………………………..….(4)

Therefore, from equations (3) and (4), we get :

 Wk+1 Wk 2ηk(Wk W*) Wk(1 2ηk) + 2ηkW*

Starting with an initial weight of W0 , we get :

 W1 = W0(1 2ηk) + 2ηk W* W* + (1 2ηk)(W0 W*)

 W2 = W1(1 2ηk) + 2ηkW* W0(1 2ηk)
2 + 2ηk W*(1 2ηk) + 2ηk W*

 = W* + (1 2ηk)
2(W0 W*)

 Wk = W* + (1 2ηk)
m(W0 W*)

AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

137

Since W0 W* is fixed, Wk converges to W*, provided :

 0 < 2ηk 1 , i.e., 0 < ηk ½ .

We see that in the quasi-Newton method the steps do not proceed along the direction

of the gradient. Now we introduce two quasi-Newton algorithms :

3.3.1.BFGS Quasi-Newton Algorithm (trainbfg) [13]

This algorithm requires more computation for each iteration and our results

shows more storage require than the CG methods, although, generally, converges in

fewer iterations. For a very large ANN it may be better to use resilient back

propagation or one of the CG algorithms. For smaller ANN, however, BFGS quasi-

Newton algorithm can be used as an efficient training function.

3.3.2.One Step Secant Algorithm (trainoss) [13]

Since the BFGS algorithm requires more storage and computation in each

iteration than the CG algorithms, there is need for a secant approximation with

smaller storage and computation requirements. The one step secant (OSS) method is

an attempt to bridge the gap between the CG algorithms and the quasi-Newton

(secant) algorithms .

This algorithm does not store the complete Hessian matrix; it assumes that at

each iteration the previous Hessian was the identity matrix. This has the additional

advantage that the new search direction can be calculated without computing a matrix

inverse.

3.4.Levenberg-Marquardt Algorithm (trainlm) [13]

The Levenberg-Marquardt algorithm was designed to approach second order

training speed without having to compute the Hessian matrix. When the performance

function has the form of a sum of squares, then the Hessian matrix can be

approximated as H JTJ and the gradient can be computed as g JTe, where J is the

Jacobian matrix, which contains first derivatives of the network errors with respect to

the weights and biases, and e is a vector of network errors. The Levenberg-Marquardt

algorithm uses this approximation to the Hessian matrix in the following Newton

update: Wk+1 Wk [JTJ + I]1JTe

when the scalar 0, this is just Newton’s method. When is large, this becomes

gradient descent with a small step size.

3.5.Conjugate Gradient Algorithms (traincg)

The conjugate gradient algorithms perform a search along conjugate

directions, which produces generally faster convergence than gradient descent

directions [Hagan and Beale, 1996]. The CG algorithms start out by searching in the

gradient descent direction (negative of the gradient) on the first iteration, 0g0.

AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

138

Then the next search direction is determined so that it is conjugate to previous search

directions, that is : [12]

 Wk+1 Wk + ηkk . Where k gk + k k1.

The various versions of CG are distinguished by the manner in which the k is

computed.

In this paper, we will present different variations of CG algorithms with a

comparison between them. In most of the training algorithms a learning rate is used to

determine the length of the weight update (step size).

In most of the CG algorithms, the step size is adjusted at each iteration. A

search is made along the CG direction to determine the step size, which will minimize

the performance function along that line search. The CG algorithms that usually used

in ANN as a training algorithm is much faster than variable learning rate back

propagation, and are sometimes faster than Resilient back propagation, although the

results will vary from one problem to another.

3.5.1.Fletcher-Reeves update (traincgf)

 The general procedure for determining the new search direction is to

combine the new gradient descent direction with the previous search direction :

 k gk + kk1.For Fletcher-Reeves update procedure [14] : k

1k
T

1k

k
T
k

gg

gg

The training parameters for 'traincgf' are: epochs, show, goal, time, min-grad,

srchFcn.

The training status will be displayed every show iterations of the algorithm.

The other parameters determine when the training is stopped. The training will stop

when the number of iterations exceeds an epochs, if the performance function drops

below goal, if the magnitude of the gradient is less than mingrad or if the training

time is longer than time in seconds. The parameter srchfcn is the name of the line

search function. traincgf generally converges in fewer iterations than Resilient back

propagation (trainrp) (although there is more computation required in each iteration).

3.5.2.Polak-Ribiere update (traincgp)

 Another version of the conjugate gradient algorithm was proposed by Polak

and Ribiere [16]. For the Polak-Ribiere update, the constant k is computed from :

 k

1k
T

1k

k
T

1k

gg

gg

The traincgp routine has performance similar to traincgf. It is difficult to predict

which algorithm will perform best on a given problem. The storage requirements for

Polak-Ribiere (four vectors) are slightly larger than for Fletcher-Reeves (three

vectors).

AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

139

3.5.3.Dixon update (traincgd)

We propose another version of the conjugate gradient algorithm, which

derive from classical method proposed by Dixon [16].

For the Dixon update, the constant k is computed by: k

1k
T

1k

k
T
k

g

gg

The training parameters for traincgd are: epochs, show, goal, time, min-grad, max-

fail, srchFcn, scal-tol, alpha, beta, delta, gama, low-lim, up-lim, maxstep, minstep,

bmax.

The training status will be displayed every show iterations of the algorithm.

The other parameters determine when the training is stopped. The training will stop if

the number of iterations exceeds epochs, if the performance function drops below

goal, if the magnitude of the gradient is less than mingrad, or if the training time is

longer than time seconds, max-fail which is associated with the early stopping

technique.

The parameter srchFcn is the name of the line search function. The

remaining parameters are associated with specific line search routines. The default

line search routine srchcha is used.

The traincgd routine has performance, which is some what better than

traincgp for some problems, although performance on any given problem is difficult

to predict. The storage requirements for the Dixon algorithm (three vectors).

3.5.4.Al-Assady and Al-Bayati update (traincga)

We use another version of the conjugate gradient algorithm, when the

classical method proposed by Al-Assady and Al-Bayati [16].

For the Al-Assady and Al-Bayati update, the constant k is computed by:

 k

k
T

1k

1k
T
k

g

gg

The training parameters for traincga are: epochs, show, goal, time, min-

grad, max-fail, srchFcn. The storage requirements for the Al-Assady and

Al-Bayati algorithm (four vectors).
3.5.5.Hestenes-Stiefel update (traincgh)

 We will consider another version of the CG algorithm, when the classical method

proposed by Hestenes-Stiefel [12].

For the Hestenes-Stiefel update, the constant k is computed by :

AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

140

 k

1k
T

1k

1k
T
k

g

gg

The traincgh routine has performance similar to traincgd.

The storage requirements for the Hestenes-Stiefel algorithm (four vectors)

3.5.6.Reyadh-Luma update (traincgr)

We propose a new version of the CG algorithm when the search direction at

each iteration is determined by: k gk + kk1

Where the constant k is computed by: k

1k
T

1k

1k
T
k

g

gg

The training parameters for traincgr are: epochs, show, goal, time, min-grad, max-

fail, sigma, lambda.[13]

3.5.7.Line Search Routines (SRCHCHA)

The method of srchcha was designed to be used in a combination with a CG

algorithm for ANN training. We have used this routine as the default search for most

of the CG algorithms, since it appears to produce excellent results for many different

problems. It does require the computation of the derivatives (back propagation) in

addition to the computation of performance function, but it over comes this limitation

by locating the minimum with fewer steps.

3.6. Error Surfaces

 Generally the error may be represented as a surface E = E(W) into the NW + 1

space where NW is the total number of weights. The goal is to find the minima of

error function, where g = 0; however note that this condition is not enough to find the

absolute minima because it is also true for local minimums, maximums and saddle-

points.

 In general it is not possible to find the solution W in a closed form. Then a

numerical approach is taken, to find it by searching the weights space in incremental

steps (k = 1, …) of the form Wk+1 = Wk +∆Wk. However, usually, the algorithm does

not guarantee for the finding of absolute minima and even a saddle-point may stick

them.

 On the other hand the weight space have a high degree of symmetry and thus

many local and global minimums which give the same value for the error function;

then a relatively fast convergence may be achieved starting from a random point.

3.7. Initialization and Termination of Training

 Usually the weights are initialized with random values to avoid problems due to

weight space symmetry. However there are two restrictions:

 If the initial weights are too big then the activation functions f will have

values into the saturation region (e.g. sigmoidal activation function) and their

derivatives f ' will be small, leading to a small error gradient as well, i.e. an

approximatively at error surface and, consequently, a slow training.

AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

141

 If the initial weights are too small then the activation functions f will be linear

and their derivatives will be quasi-constant, the second derivatives will be

small and then the Hessian will be small meaning that around minimums the

error surface will be approximatively at end, consequently, a slow training.

We suggest the method to determinate the weights by the following:

3.7.1.Determination of weights by Computation

 For a linear FFNN's let actual output vector y=WX and the desired output vector

is d , then the total error E(W) over all the L input/output pattern pairs is given by :

 =)W(E
L
1 ∑

L

1=i

2
ii ||Wxd||

We can write

 =)W(E
L
1 ∑

L

1=i

2||WXD|| ………………………. (5)

Using the definition that the trace of a square matrix S is the sum of the main

diagonal entries of S, it is easy to see that: =)W(E
L
1

tr(S),

where the matrix S is given by: S=(D-WX) (D-WX)T ,and tr(S) is the trace of the

matrix S.

Using the definition for pseudo inverse of a matrix, i.e. A+ = AT(AAT)-1 , we get the

matrix identities A+AAT=AT and AAT(A+)T=A.

Using these matrix identities we get:

 S = (D–WX)(D–WX)T=(DX-1X–WX)(DX-1X–WX)T=(DX-1-W) XXT (DX-1-W)

 = (W-DXT(XT)-1X-1)XXT(W-DXT(XT)-1X-1)T+DDT- DDT

 = (W-DXT(XXT)-1)XXT(W-DXT(XXT)-1)T+DDT-DXT(XXT)-1XDT

 S = (W-DX+)XXT(W-DX+)T+D(I-X+X)DT ………….. …….(6)

It can be seen that the trace of the first term in equation (6) is always nonnegative, as

it is in a quadratic form of the real symmetric matrix XXT.

It becomes zero for W=DX+. The trace of the second term is a constant, independent

of W. Since the trace of sum of matrices is the sum of traces of the individual

matrices, the error E(W) is minimum when W=DX+.

The minimum error is obtained by substituting W=DX+ in equation (5) and is given

by:

 E min =
L
1 2+ ||XDXD||

 =
L
1

tr[(D(I-X+X))(D(I-X+X))T] =
L
1

tr[D(I-X+X)(I-X+X)TDT]

 =
L
1

tr[D(I-X+X)(I-(X+X)T)DT]

 =
L
1

tr[D(I-(X+X)-(X+X)T +(X+X)(X+X)T)DT]

AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

142

 =
L
1

tr[D(I-X+X-XT(X+)T +X+X))DT] =
L
1

tr[D(I-(X+X)T)DT]

 =
L
1

tr[D(I-X+X)DT]……………………………………………………(7)

 where I is an L×L identity matrix. The above simplification is obtained by using the

following matrix identities (X+X)T=XT(X+)T and XXT(X+)T =X

Note

 We use pseudo inverse since we can not be compute the inverse of matrix and we

use Singular Value Decomposition (SVD) method to compute pseudo inverse.

3.7.2. Singular Value Decomposition (SVD)

 The following singular value decomposition (SVD) of an m×n matrix X is used

to compute the pseudo inverse and to evaluate the minimum error.

A singular value and corresponding singular vectors of a rectangular matrix XRmn

are a scalar σ and a pair of vectors u and v that satisfy:

X v u & XT u v

With the singular values on the diagonal of a diagonal matrix S and the corresponding

singular vectors forming the columns of two orthogonal matrices U and V, we have:

X V U S & XT U V S

Where U and V are orthogonal. The above decomposition of X is called the singular

value decomposition (S V D) : X U S VT

The singular value decomposition of an m× n matrix, X, involves the

computation of an m ×m matrix, U, an m× n matrix, S, and an n× n matrix, V.

In other wards, U and V are both square and S is the same size as X.

 If X has many more rows than columns, the resulting U can be quite large, but

most of its columns are multiplied by zeros in S. In this situation, the economy sized

decomposion saves both time and storage by producing an m× n matrix, U, an n× n

matrix, S, and the same V.

The eigenvalue decomposion is the appropriate tool for analyzing a matrix

when it represents a mapping from a vector space in to itself. On the other hand, the

SVD is the appropriate tool for analyzing a mapping from one vector space in to

another vector space, possibly with a different dimension.

Most systems of simultaneous linear equations fall into the last category.

 If X is square, symmetric and positive definite, then its eigenvalue and SVD

are the same. But, as X departs from symmetry and positive definiteness, the

difference between the two decompositions increases.

In particular, the SVD of a real matrix is always real, but the eigenvalue decomposion

of real, non symmetric matrix might be complex.

AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

143

Now, we can provide a simple explanation for the well known phenomenon

reported in many practical studies with Ann's. This is the observation that better

results may well be obtained if the iteration is not continued to converge.

These problems are closely related to the issue of non spanning patterns

which we have already encountered. The linear least squares (L.S) problem of

minimizing ||XW Y||2 always has a solution. The solution is unique if and only if

null(X) 0, that is, linear least squares has a unique solution when X has linear

independent columns (XTX non-singular, even if X is singular) that is null(X) 0 if

and only if X has linearly independent columns.

Now XRmn, if n > m, then null(X) 0.

 Then we may have in this case (null(X) 0) near linear dependent among

possibly the last columns and in this case we cant use L.S.S. because one is unsure

about the rank (X) and in this case a remedy for this problem is to use a new

technique, singular value decomposition (SVD) and this technique used as follow :

Split X in to USVT, where U and V are orthogonal and S is diagonal (but not

necessarily square). That is UUT Im, VVT In. Then:

S

1

2

n

0 0

0 0

0 0

0 0 0

0 0 0

The matrices U and V consist of the orthonormalize eigenvectors of XTX, XXT

respectively. i are the square root, i
T

i (X X) and said singular values of X.

Now, if the rank(X) = r, then : r+1 r+2 r+3 … n 0

Remark

 Another way to improve network performance is to train multiple instances of

the same network, but with a different set of initial weights, and choosing among

those who give best results. This method is called committee of networks.

The criteria for stopping the training process may be one of the following:

 Stop after a fixed number of steps.

 Stop when the error function had become smaller than a specified amount.

 Stop when the change in the error function (∆E) had become smaller than a

specified amount.

 Stop when the error on an (independent) validation set begins to increase.

AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

144

AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

145

References:-
[1] G.-B. Huang, (4, JULY 2006), " Real -Time Learning Capability of Neural

Networks ", IEEE

 Transactions on Neural Networks, VOL. 17, NO.

[2] W. W. Hsieh, (August 31, 2008), "Machine Learning Methods in Environmental

Sciences Neural Networks and Kernels", Cambridge University Press.

[3] G. Weir-Smith and C.A.Schwabe, (2002), "Spatial interpolation vs neural network

propagation as a method of extrapolating from field surveys", GIS Centre, HSRC

(Human Sciences Research Council), Pretoria.

[4] J.M. Turmon, (August 1995), "Assessing Generalization of Feed forward Neural

Networks", phD. thesis, University of Cornell,.

[5] M.A.Ali, S.D.Gore and M.AL-Sarierah, (2005),"The Use of Neural Network to

Recognize the parts of the Computer Motherboard", Journal of Computer Sciences

1(4), pp. 477- 481.

[6] J.ILONEN, J.-K.KAMARAINEN and J.LAMPINEN, (2003), "Differential

Evolution Training Algorithm for Feed-Forward Neural Networks", Neural

Processing Letters 17:pp. 93–105.

[7] S. Breutel, (2004), "Analysing the Behaviour of Neural Networks", PhD thesis,

Queensland University of Technology, Brisbane.

[8] T. Su, J. Jhang and C. Hou, (September 2008), "A Hybrid Artificial Neural

Networks and Particle Swarm Optimization for Function Approximation",

International Journal of Innovative Computing, Information and Control ICIC

International , Volume 4, Number 9, pp. 2363—2374.

[9] A.Pinkus, (1999), "Approximation theory of the MLP model in neural networks",

Acta Numerica, pp.143-195.

[10] L.N.M.Tawfiq and Q.H.Eqhaar, (2007), "On Feed forward neural network with

Ridge basis function", Journal Al-Qadisiya for Pure Science, Vol. 12, No.4.

[11] T.Poggio and F.Girosi, (July 1989), "A Theory of Networks for Approximation

and Learning ,"Massachusetts Institute of Technology Artificial Intelligence

Laboratory", A.I.Memo No.1140, C.B.I.P Paper No.31.

[12] R. M. Hristev, (1998), "The ANN Book", Edition 1.

[13] L.N.M.Tawfiq, (2004), "On Design And Training of Artificial Neural Networks

For Solving Differential Equations", phD.Thesis, College of Education Ibn Al-

Haitham,Bahgdad University.

[14] G.P.Jaya Prakash and TRBstaff Representative, (December1999), "Use of

Artificial Neural Networks In Geomechanical And Pavement System", Transportation

Research Circular, Number E-co12.

[15] N.Stanevski and D.Tsvetkov, (2004), "On the Quasi-Newton Training Method

for Feed-Forward Neural Networks", International Conference on Computer System

and Technologies.

[16] L.N.M.Tawfiq and R.S.Naoum, (2005), "On Training of Artificial Neural

Networks", AL-Fath Jornal, No 23.

 حول تدريب الشبكات العصبية ذات التغذية التقدمية

AL-Qadisiya Journal for science Vol. 15 No. 2 year 2010

146

 لمسائل التقريب

 لمى ناجي محمد توفيق و علاء كامل جابر

 جامعة بغداد –بن الهيثم أ–لية التربية ك –قسم الرياضيات

 -:خلاصةال
لتغذية بية ذات اصفي هذا البحث اقترحنا عدد من الخوارزميات المطورة والجديدة لتدريب الشبكات الع

ف ه والاختلالتشابواختبرنا أوجه ا التقدمية البعض منها تمتلك سرعة تقارب جيدة للشبكات ذات التركيب المعقول

 بين طرق التدريب المختلفة وقارنا الأداء للتدريب لكل تمثيل طبق على مسائل التقريب .

بط ضيد كيفية لتحد (ء) دالة الخطأ, دالة الطاقة في كل تلك الخوارزميات استخدمنا انحدار دالة الأدا

 لتدريب ريع االأوزان بحيث تكون دالة الأداء أقل ما يمكن . حيث استخدمنا خوارزمية الانتشار المرتد لتس

ه صيغ لاتجاسب الجميع الخوارزميات أعلاه تتنوع من حيث اختلاف الحسابات وبالتالي اختلاف الأنواع ح

 مسائل . كل اللخزن الذي تقتضيه وكل الخوارزميات أعلاه لا تمتلك خواص رئيسية تجعلها مناسبة لالتفتيش وا

